搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变调控反钙钛矿型Li3OCl电子结构和光学性质

胡宇霄 李海鹏 仇康

引用本文:
Citation:

应变调控反钙钛矿型Li3OCl电子结构和光学性质

胡宇霄, 李海鹏, 仇康
cstr: 32037.14.aps.74.20250588

Strain-tuned electronic structure and optical properties of anti-perovskite Li3OCl

HU Yuxiao, LI Haipeng, QIU Kang
cstr: 32037.14.aps.74.20250588
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 反钙钛矿Li3OCl作为极具潜力的新一代固态电解质候选材料, 凭借其优异的离子传导性能与宽电化学窗口, 近年来成为材料领域的研究热点. 然而, 其光电性能的应变调控机制仍未得到充分阐释. 本研究运用第一性原理计算方法, 系统地探究双轴应变和单轴应变分别对Li3OCl材料电子结构及光学性质的调控规律. 研究发现, 相较于本征态, 施加2%单轴拉伸应变时, 材料导带底能量显著降低, 间接带隙从6.26 eV减小至6.02 eV, 光吸收边发生红移; 而2%双轴压缩应变作用下, 带隙增大至6.38 eV, 且间接带隙转变为直接带隙, 光吸收边出现蓝移现象. 通过态密度分析进一步表明, 应变会引发Li-p与O-p/Cl-p 轨道杂化程度增强, 显著优化了光激发载流子的跃迁路径. 此外, 拉伸应变致使介电函数虚部峰值红移, 消光系数起始阈值降至6.02 eV, 有效地拓宽了材料的光响应范围; 压缩应变则导致光学响应蓝移, 并增强了材料在特定能量区间的光吸收强度. 本研究揭示了应变调控晶格常数与轨道杂化来优化光电性能的微观作用机制, 为基于光-力协同策略设计高性能固态电解质提供了重要理论依据.
    The lithium-rich anti-perovskite Li3OCl has emerged as an ideal candidate for next-generation lithium-ion batteries (LIBs) due to its excellent ionic conductivity and wide electrochemical stability window. However, achieving ionic conductivity that meets practical application requirements remains challenging. Strain engineering and opto-ionic effects provide new approaches for optimizing the performance, but currently there is a lack of research on the quantitative regulatory mechanisms by which strain influences the electronic structure and optical properties of Li3OCl (both of which are critical for ionic transport and optoelectronic integration). In this study, first-principles calculations are performed using the HSE06 hybrid functional to systematically investigate the effects of biaxial (+2%)and uniaxial (–2%) strains - on electronic structure and optical properties of Li3OCl.In this study, it is found that strain-free Li3OCl exhibits an indirect bandgap of 6.263 eV. Biaxial tensile strain causes a significant downward shift in the energy of the conduction band minimum (Γ point), reducing the bandgap to 6.023 eV (+2% strain) and reinforcing the indirect bandgap characteristics. Biaxial compressive strain (–2%) expands the bandgap to 6.380 eV and triggers off an upward shift in the Γ-point energy level, leading to a transition from an indirect to a direct bandgap. Uniaxial strain exhibits similar trends but with a smaller regulatory magnitude than biaxial strain. The analysis of density of states shows that tensile strain reduces the Li-p state density near the conduction band minimum while enhancing the hybridization of Li-p with O-p/Cl-p orbitals, optimizing carrier transition channels. Compressive strain increases the electron state density near the Fermi level, enhancing the probability of optical transitions. In terms of optical response, tensile strain induces an overall redshift in the complex dielectric function (ε1(ω) and ε2(ω)), absorption coefficient, and extinction coefficient. Compressive strain causes a systematic blue-shift in optical parameters. Despite the expanded bandgap, the optical absorption intensity is significantly enhanced in the ultraviolet region due to the direct bandgap characteristics and the increased state density at the band edges.This study provides new ideas for studying the applications of Li3OCl in optoelectronic devices and solid-state batteries. By precisely regulating its bandgap and light absorption properties through strain engineering, Li3OCl can adapt to the excitation requirements of different wavelengths of light. For example, in light-controlled solid-state batteries, Li3OCl optimized by tensile strain has a wider light response range (red-shifted to lower energy), which can effectively utilize lower-energy photons (such as near-ultraviolet or the edge of visible light) to excite carriers. On the other hand, Li3OCl optimized by compressive strain has higher light absorption efficiency in specific ultraviolet bands, potentially increasing the concentration of carriers excited by photons in these bands. The strain-optimized Li3OCl can synergistically utilize the light field and stress field to enhance ionic conductivity. In addition, its red-shifted light absorption edge makes it promising as an ultraviolet-visible light conversion layer, expanding the range of light energy utilization. However, in practical applications, further research is needed on the synergistic mechanisms of non-uniform strain, temperature effects, and light-force coupling. Moreover, experimental verification of its interfacial stability and cycle performance is required to promote the practical application of high-performance all-solid-state batteries.
      通信作者: 李海鹏, haipli@cumt.edu.cn ; 仇康, qkxzmc@163.com
    • 基金项目: 国家自然科学基金(批准号: 11504418)和中央高校基本科研业务费(批准号: 2019ZDPY16)资助的课题.
      Corresponding author: LI Haipeng, haipli@cumt.edu.cn ; QIU Kang, qkxzmc@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504418) and the Fundamental Research Fund for the Central Universities, China (Grant No. 2019ZDPY16).
    [1]

    Lü X, Wu G, Howard J W, Chen A, Zhao Y, Daemen L L, Jia Q 2014 Chem. Commun. 50 11520Google Scholar

    [2]

    Luo X, Li Y, Zhao X 2024 Energy Environ. Mater. 7 e12627Google Scholar

    [3]

    Wang Q, Liu B, Shen Y, Wu J, Zhao Z, Zhong C, Hu W 2021 Adv. Sci. 8 2101111Google Scholar

    [4]

    Zhu J, Li S, Zhang Y, Howard J W, Lü X, Li Y, Wang Y, Kumar R S, Wang L, Zhao Y 2016 Appl. Phys. Lett. 109 101904Google Scholar

    [5]

    余启鹏, 刘琦, 王自强, 李宝华 2020 物理学报 69 228805Google Scholar

    Yu Q P, Liu Q, Wang Z Q, Li B H 2020 Acta Phys. Sin. 69 228805Google Scholar

    [6]

    Lu J, Li Y 2021 J. Mater. Sci. Mater. Electron. 32 9736Google Scholar

    [7]

    Wang Y, Chen D, Zhuang Y, Chen W, Long H, Chen H, Xie R 2021 Adv. Opt. Mater. 9 2100624Google Scholar

    [8]

    Zhao Y, Daemen L L 2012 J. Am. Chem. Soc. 134 15042Google Scholar

    [9]

    Abdulchalikova N R, Aliev A E 1995 Synth. Met. 71 1929Google Scholar

    [10]

    Aliev A É, Krivorotov V F, Khabibullaev P K 1997 Phys. Solid State 39 1378Google Scholar

    [11]

    Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y 2016 Chem. Rev. 116 140Google Scholar

    [12]

    Tsymbalov E, Shi Z, Dao M, Suresh S, Li J, Shapeev A 2021 Npj Comput. Mater. 7 76Google Scholar

    [13]

    Kahlaoui S, Belhorma B, Labrim H, Boujnah M, Regragui M 2020 Heliyon 6 e03713Google Scholar

    [14]

    Itoh M, Inaguma Y, Jung W, Chen L, Nakamura T 1994 Solid State Ionics 70–71 203

    [15]

    Wei J, Ogawa D, Fukumura T, Hirose Y, Hasegawa T 2015 Cryst. Growth Des. 15 2187Google Scholar

    [16]

    Shen H, Wang Q, Chen Z, Rong C, Chao D 2023 Materials 16 4266Google Scholar

    [17]

    Li F, Li J, Zhu F, Liu T, Xu B, Kim T H, Kramer M J, Ma C, Zhou L, Nan C W 2019 Matter 1 1001Google Scholar

    [18]

    Zuo X, Zhu J, Müller-Buschbaum P, Cheng Y J 2017 Nano Energy 31 113Google Scholar

    [19]

    Tippens J, Miers J C, Afshar A, Lewis J A, Cortes F J Q, Qiao H, Marchese T S, Di Leo C V, Saldana C, McDowell M T 2019 ACS Energy Lett. 4 1475Google Scholar

    [20]

    Defferriere T, Klotz D, Gonzalez-Rosillo J C, Rupp J L M, Tuller H L 2022 Nat. Mater. 21 438Google Scholar

    [21]

    Wu M, Xu B, Lei X, Huang K, Ouyang C 2018 J. Mater. Chem. A 6 1150Google Scholar

    [22]

    Emly A, Kioupakis E, Van Der Ven A 2013 Chem. Mater. 25 4663Google Scholar

    [23]

    Pegolo P, Baroni S, Grasselli F 2022 Npj Comput. Mater. 8 24Google Scholar

    [24]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [25]

    Kresse G, Furthmüller J, Hafner J 1994 Phys. Rev. B 50 13181Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [29]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [30]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, Ángyán J G 2006 J. Chem. Phys. 124 154709Google Scholar

    [31]

    Qin H, Zuo Y, Jin J, Wang W, Xu Y, Cui L, Dang H 2019 RSC Adv. 9 24483Google Scholar

    [32]

    Li L, Guo X, Lu X, Ren J, La P 2023 Mater. Sci. Semicond. Process. 154 107189Google Scholar

    [33]

    Tignon J, Voisin P, Delalande C, Voos M, Houdré R, Oesterle U, Stanley R P 1995 Phys. Rev. Lett. 74 3967Google Scholar

    [34]

    Silveirinha M G 2011 Phys. Rev. B 83 165119Google Scholar

    [35]

    Ou Y, Hou W, Zhu D, Li C, Zhou P, Song X, Xia Y, Lu Y, Yan S, Zhou H, Cao Q, Zhou H, Liu H, Ma X, Liu Z, Xu H, Liu K 2025 Energy Environ. Sci. 18 1464Google Scholar

    [36]

    Xiao Y, Miara L J, Wang Y, Ceder G 2019 Joule 3 1252Google Scholar

  • 图 1  Li3OCl的单胞结构

    Fig. 1.  Unit cell structures of Li3OCl.

    图 2  双轴/单轴应变下Li3OCl应变能与应变之间关系

    Fig. 2.  The relationship between the strain energy and strain of Li3OCl under biaxial/uniaxial strain.

    图 3  (a) 双轴应变和(b) 单轴应变下Li3OCl的声子色散关系

    Fig. 3.  Phonon dispersion relations of Li3OCl under (a) biaxial strain and (b) uniaxial strain.

    图 4  Li3OCl的能带结构和态密度

    Fig. 4.  The band structure and density of states of Li3OCl.

    图 5  双轴/单轴应变下Li3OCl的带隙

    Fig. 5.  The bandgap of Li3OCl under biaxial/uniaxial strain.

    图 6  (a) 双轴应变和(b) 单轴应变下Li3OCl的能带结构

    Fig. 6.  Energy band structure of Li3OCl under (a) biaxial strain and (b) uniaxial strain.

    图 7  (a) 双轴压缩应变e = –2%时, (b) 无应变e = 0%和(c) 双轴拉伸应变e = 2%时Li3OCl总态密度和分波态密度

    Fig. 7.  Total density of states and partial density of states of Li3OCl under (a) –2% biaxial compressive strain, (b) no strain, and (c) 2% biaxial tensile strain.

    图 8  双轴应变下Li3OCl的介电函数 (a) 介电函数实部; (b) 介电函数虚部

    Fig. 8.  Dielectric function of Li3OCl under biaxial strain: (a) Real part of the dielectric function; (b) imaginary part of the dielectric function.

    图 9  双轴应变下Li3OCl的(a) 吸收系数、(b) 折射率、(c) 消光系数和(d) 反射率

    Fig. 9.  (a) Absorption coefficients, (b) reflection index, (c) extinction coefficient, and (d) reflectivity of Li3OCl under biaxial strain.

  • [1]

    Lü X, Wu G, Howard J W, Chen A, Zhao Y, Daemen L L, Jia Q 2014 Chem. Commun. 50 11520Google Scholar

    [2]

    Luo X, Li Y, Zhao X 2024 Energy Environ. Mater. 7 e12627Google Scholar

    [3]

    Wang Q, Liu B, Shen Y, Wu J, Zhao Z, Zhong C, Hu W 2021 Adv. Sci. 8 2101111Google Scholar

    [4]

    Zhu J, Li S, Zhang Y, Howard J W, Lü X, Li Y, Wang Y, Kumar R S, Wang L, Zhao Y 2016 Appl. Phys. Lett. 109 101904Google Scholar

    [5]

    余启鹏, 刘琦, 王自强, 李宝华 2020 物理学报 69 228805Google Scholar

    Yu Q P, Liu Q, Wang Z Q, Li B H 2020 Acta Phys. Sin. 69 228805Google Scholar

    [6]

    Lu J, Li Y 2021 J. Mater. Sci. Mater. Electron. 32 9736Google Scholar

    [7]

    Wang Y, Chen D, Zhuang Y, Chen W, Long H, Chen H, Xie R 2021 Adv. Opt. Mater. 9 2100624Google Scholar

    [8]

    Zhao Y, Daemen L L 2012 J. Am. Chem. Soc. 134 15042Google Scholar

    [9]

    Abdulchalikova N R, Aliev A E 1995 Synth. Met. 71 1929Google Scholar

    [10]

    Aliev A É, Krivorotov V F, Khabibullaev P K 1997 Phys. Solid State 39 1378Google Scholar

    [11]

    Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y 2016 Chem. Rev. 116 140Google Scholar

    [12]

    Tsymbalov E, Shi Z, Dao M, Suresh S, Li J, Shapeev A 2021 Npj Comput. Mater. 7 76Google Scholar

    [13]

    Kahlaoui S, Belhorma B, Labrim H, Boujnah M, Regragui M 2020 Heliyon 6 e03713Google Scholar

    [14]

    Itoh M, Inaguma Y, Jung W, Chen L, Nakamura T 1994 Solid State Ionics 70–71 203

    [15]

    Wei J, Ogawa D, Fukumura T, Hirose Y, Hasegawa T 2015 Cryst. Growth Des. 15 2187Google Scholar

    [16]

    Shen H, Wang Q, Chen Z, Rong C, Chao D 2023 Materials 16 4266Google Scholar

    [17]

    Li F, Li J, Zhu F, Liu T, Xu B, Kim T H, Kramer M J, Ma C, Zhou L, Nan C W 2019 Matter 1 1001Google Scholar

    [18]

    Zuo X, Zhu J, Müller-Buschbaum P, Cheng Y J 2017 Nano Energy 31 113Google Scholar

    [19]

    Tippens J, Miers J C, Afshar A, Lewis J A, Cortes F J Q, Qiao H, Marchese T S, Di Leo C V, Saldana C, McDowell M T 2019 ACS Energy Lett. 4 1475Google Scholar

    [20]

    Defferriere T, Klotz D, Gonzalez-Rosillo J C, Rupp J L M, Tuller H L 2022 Nat. Mater. 21 438Google Scholar

    [21]

    Wu M, Xu B, Lei X, Huang K, Ouyang C 2018 J. Mater. Chem. A 6 1150Google Scholar

    [22]

    Emly A, Kioupakis E, Van Der Ven A 2013 Chem. Mater. 25 4663Google Scholar

    [23]

    Pegolo P, Baroni S, Grasselli F 2022 Npj Comput. Mater. 8 24Google Scholar

    [24]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [25]

    Kresse G, Furthmüller J, Hafner J 1994 Phys. Rev. B 50 13181Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [29]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [30]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, Ángyán J G 2006 J. Chem. Phys. 124 154709Google Scholar

    [31]

    Qin H, Zuo Y, Jin J, Wang W, Xu Y, Cui L, Dang H 2019 RSC Adv. 9 24483Google Scholar

    [32]

    Li L, Guo X, Lu X, Ren J, La P 2023 Mater. Sci. Semicond. Process. 154 107189Google Scholar

    [33]

    Tignon J, Voisin P, Delalande C, Voos M, Houdré R, Oesterle U, Stanley R P 1995 Phys. Rev. Lett. 74 3967Google Scholar

    [34]

    Silveirinha M G 2011 Phys. Rev. B 83 165119Google Scholar

    [35]

    Ou Y, Hou W, Zhu D, Li C, Zhou P, Song X, Xia Y, Lu Y, Yan S, Zhou H, Cao Q, Zhou H, Liu H, Ma X, Liu Z, Xu H, Liu K 2025 Energy Environ. Sci. 18 1464Google Scholar

    [36]

    Xiao Y, Miara L J, Wang Y, Ceder G 2019 Joule 3 1252Google Scholar

  • [1] 李祗烁, 曹欣睿, 吴顺情, 吴建洋, 文玉华, 朱梓忠. 单层Janus MoSSe在不同手性角单轴拉伸应变下力学性质的第一性原理研究. 物理学报, 2025, 74(16): 166201. doi: 10.7498/aps.74.20250437
    [2] 张竺立, 张凡, 王凯雷, 李超, 王锦涛. Fe掺杂对二维CuI电子结构及光学性质的影响. 物理学报, 2025, 74(2): 023102. doi: 10.7498/aps.74.20241325
    [3] 郭宏伟, 贺苗苗, 姜云, 李会, 张金彦, 连敏, 崔田. 高压下无铅双钙钛矿Cs2AgInCl6的结构和光电性能. 物理学报, 2025, 74(17): 178401. doi: 10.7498/aps.74.20250613
    [4] 张英楠, 张敏, 张派, 胡文博. 基于第一性原理GGA+U方法研究Si掺杂β-Ga2O3电子结构和光电性质. 物理学报, 2024, 73(1): 017102. doi: 10.7498/aps.73.20231147
    [5] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [6] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [7] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [8] 高立科, 赵先豪, 刁心峰, 唐天宇, 唐延林. 第一性原理对CsSnBr3施加静水压力后光电性质的探究. 物理学报, 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [9] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [10] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [11] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [12] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [13] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [14] 丁磊, 王聪, 褚立华, 纳元元, 闫君. 反钙钛矿Mn3AX化合物的晶格、磁性和电输运性质的研究进展. 物理学报, 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [15] 苏锐, 何捷, 陈家胜, 郭英杰. 金红石相VO2电子结构与光电性质的第一性原理研究. 物理学报, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [16] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [17] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [18] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [19] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [20] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
计量
  • 文章访问数:  801
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-01
  • 修回日期:  2025-06-09
  • 上网日期:  2025-07-15

/

返回文章
返回