搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行时间光电子谱仪在超快光学测量实验中的应用

朱孝先 高亦谈 王一鸣 赵昆

引用本文:
Citation:

飞行时间光电子谱仪在超快光学测量实验中的应用

朱孝先, 高亦谈, 王一鸣, 赵昆

Applications of time-of-flight photoelectron spectrometers in ultrafast optics experiments

Zhu Xiaoxian, Gao Yitan, Wang Yiming, Zhao Kun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 飞行时间光电子谱仪(Time-of-Flight Photoelectron Spectrometer,TOF-PES)作为超快电子动力学研究的核心工具,凭借其数十皮秒量级的飞行时间分辨率与宽能量探测范围,在阿秒脉冲表征与强场量子过程研究中提供了不可替代的技术支撑。本文尝试系统地总结飞行时间光电子谱仪的技术原理与发展历程,探讨磁瓶式高分辨率谱仪技术在电子轨迹控制与收集效率提升方面的突破,并结合双光子跃迁干涉阿秒拍频重构、阿秒条纹相机等实验技术分析其在阿秒脉冲表征中的关键作用。此外,还介绍了TOF技术与其它高精度探测手段之间的融合应用,包括角分辨光电子能谱、冷靶反冲离子动量谱仪及速度成像谱仪,展示其在获取多维电子动力学信息方面的潜力。最后对TOF技术瓶颈以及未来发展方向进行了探讨。
    Time-of-Flight Photoelectron Spectroscopy (TOF-PES) has emerged as a cornerstone diagnostic tool in attosecond science and ultrafast dynamics, offering exceptional energy and temporal resolution. This article presents a comprehensive review of TOF-PES technology, its underlying principles, and its crucial role in attosecond metrology. The first part introduces the historical development of TOF methods, from early ion mass spectrometry to modern photoelectron applications, detailing key innovations such as energy and spatial focusing, magnetic shielding, and delay-line detectors. The implementation of magnetic bottle spectrometers (MBES) is discussed in depth, emphasizing their advantages in wide-angle electron collection and enhanced energy resolution, achieved through trajectory collimation and magnetic gradient design.
    We then focus on the application of TOF-PES in attosecond pulse characterization, particularly in the RABBITT (Reconstruction of Attosecond Beating by Interference of Two-photon Transitions) and attosecond streaking techniques. A broad array of experimental breakthroughs is reviewed, including ultrafast delay scanning, energy-time mapping through photoelectron modulation, and the use of MBES to resolve phase and amplitude of attosecond pulse trains with sub-50 attosecond precision. These advances demonstrate TOF-PES as a critical enabler of temporal phase reconstruction and group delay measurement across extreme-ultraviolet (XUV) spectral regimes.
    Further sections explore the integration of TOF-based detection in time- and angle-resolved photoemission spectroscopy (TR-ARPES and ARTOF), enabling full 3D momentum-resolved detection without mechanical rotation or slits. The synergy between TOF and ultrafast laser sources facilitates simultaneous energy and momentum resolution across the Brillouin zone, with applications spanning topological materials, superconductors, and charge-density wave systems.
    Finally, the review extends to momentum-resolved ultrafast electron-ion coincidence techniques. The use of TOF in COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) and VMI (Velocity Map Imaging) is evaluated, highlighting its indispensable role in resolving correlated electron-ion dynamics, few-body fragmentation processes, and tunneling time delays on attosecond and even zeptosecond scales.
    Overall, this work underscores the central role of TOF-PES in pushing the frontiers of ultrafast science. While current challenges include space-charge effects, detector response limitations, and data handling complexity, future advances in quantum detection, AI-driven trajectory correction, and high-repetition-rate light sources are poised to overcome these barriers. TOF-PES, through its continuous evolution, remains a critical platform for probing quantum dynamics at the fastest timescales known.
  • [1]

    Cameron A E 1948An ion" velocitron" (Atomic Energy Commission) p1

    [2]

    Wiley W C, McLaren I H 1955Rev. Sci. Instrum. 26 1150

    [3]

    Baldwin G C, Friedman S I 1967Rev. Sci. Instrum. 38 519

    [4]

    Nakai M Y, LaBar D A, Harter J A, Birkhoff R D 1967Rev. Sci. Instrum. 38 820

    [5]

    Bachrach R Z, Brown F C, Hagström S B M 1975J. Vac. Sci. Technol. 12 309

    [6]

    Hemmers O, Whitfield S B, Glans P, Wang H, Lindle D W, Wehlitz R, Sellin I A 1998Rev. Sci. Instrum. 69 3809

    [7]

    Ulrich V, Barth S, Lischke T, Joshi S, Arion T, Mucke M, Förstel M, Bradshaw A M, Hergenhahn U 2011J. Electron Spectrosc. Relat. Phenom. 183 70

    [8]

    Bostedt C, Bozek J D, Bucksbaum P H, Coffee R N, Hastings J B, Huang Z, Lee R W, Schorb S, Corlett J N, Denes P 2013J. Phys. B: At. Mol. Opt. Phys. 46 164003

    [9]

    Hsu T, Hirshfield J L 1976Electrostatic energy analyzer using a nonuniform axial magnetic field Department of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520

    [10]

    Beamson G, Porter H Q, Turner D W 1980J. Phys. E: Sci. Instrum. 13 64

    [11]

    Kruit P, Read F H 1983J. Phys. E: Sci. Instrum. 16 313

    [12]

    Giniger R, Hippler T, Ronen S, Cheshnovsky O 2001Rev. Sci. Instrum. 72 2543

    [13]

    Hikosaka Y, Sawa M, Soejima K, Shigemasa E 2014J. Electron Spectrosc. Relat. Phenom. 192 69

    [14]

    Kothe A, Metje J, Wilke M, Moguilevski A, Engel N, Al-Obaidi R, Richter C, Golnak R, Kiyan I Y, Aziz E F 2013Rev. Sci. Instrum. 84 023106

    [15]

    Zhao K, Zhang Q, Chini M, Chang Z 2012Multiphoton Processes and Attosecond Physics Berlin, Heidelberg, 2012 pp109

    [16]

    Zhang Q, Zhao K, Chang Z 2014J. Electron Spectrosc. Relat. Phenom. 195 48

    [17]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G, Agostini P 2001Science 292 1689

    [18]

    Mairesse Y, De Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller H G, Agostini P, Salières P 2003Science 302 1540

    [19]

    Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A 2011Phys. Rev. Lett. 106 143002

    [20]

    Gruson V, Barreau L, Jiménez-Galan Á, Risoud F, Caillat J, Maquet A, Carré B, Lepetit F, Hergott J F, Ruchon T, Argenti L, Taïeb R, Martín F, Salières P 2016Science 354 734

    [21]

    Jordan I, Jain A, Gaumnitz T, Ma J, Wörner H J 2018Rev. Sci. Instrum. 89 053103

    [22]

    Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021Phys. Rev. A 104 063119

    [23]

    Kumar M, Singhal H, Ansari A, Chakera J A 2023Rev. Sci. Instrum. 94 023303

    [24]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001Nature 414 509

    [25]

    Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U 2004Nature 427 817

    [26]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R 2006Science 314 443

    [27]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R 2008Science 320 1614

    [28]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012Opt. Lett. 37 3891

    [29]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y 2017Nat. Commun. 8 186

    [30]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017Opt. Express 25 27506

    [31]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013Chin. Phys. Lett. 30 093201

    [32]

    Wang X L, Xu P, Li J, Yuan H, Bai Y L, Wang Y S, Zhao W 2020Chin. J. Lasers 47 415002(in Chinese) [王向林, 徐鹏, 李捷, 袁浩, 白永林, 王屹山, 赵卫2020中国激光47 415002]

    [33]

    Wang X, Xiao F, Wang J, Wang L, Zhang B, Liu J, Zhao J, Zhao Z 2024Ultrafast Sci. 4 0080

    [34]

    Lee C, Rohwer T, Sie E J, Zong A, Baldini E, Straquadine J, Walmsley P, Gardner D, Lee Y S, Fisher I R 2020Rev. Sci. Instrum. 91 043102

    [35]

    Boschini F, Zonno M, Damascelli A 2024Rev. Mod. Phys. 96 015003

    [36]

    Madéo J, Man M K, Sahoo C, Campbell M, Pareek V, Wong E L, Al-Mahboob A, Chan N S, Karmakar A, Mariserla B M K 2020Science 370 1199

    [37]

    Buss J H, Wang H, Xu Y, Maklar J, Joucken F, Zeng L, Stoll S, Jozwiak C, Pepper J, Chuang Y D 2019Rev. Sci. Instrum. 90 023105

    [38]

    Na M, Mills A K, Jones D J 2023Phys. Rep. 1036 1

    [39]

    Haight R, Silberman J A, Lilie M I 1988Rev. Sci. Instrum. 59 1941

    [40]

    Kirchmann P S, Rettig L, Nandi D, Lipowski U, Wolf M, Bovensiepen U 2008Appl. Phys. A 91 211

    [41]

    Wannberg B 2009Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 601 182

    [42]

    Öhrwall G, Karlsson P, Wirde M, Lundqvist M, Andersson P, Ceolin D, Wannberg B, Kachel T, Dürr H, Eberhardt W 2011J. Electron Spectrosc. Relat. Phenom. 183 125

    [43]

    Berntsen M H, Götberg O, Tjernberg O 2011Rev. Sci. Instrum. 82 095113

    [44]

    Ovsyannikov R, Karlsson P, Lundqvist M, Lupulescu C, Eberhardt W, Föhlisch A, Svensson S, Mårtensson N 2013J. Electron Spectrosc. Relat. Phenom. 191 92

    [45]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013Science 342 453

    [46]

    Holldack K, Ovsyannikov R, Kuske P, Müller R, Schälicke A, Scheer M, Gorgoi M, Kühn D, Leitner T, Svensson S 2014Nat. Commun. 5 4010

    [47]

    Oloff L P, Oura M, Rossnagel K, Chainani A, Matsunami M, Eguchi R, Kiss T, Nakatani Y, Yamaguchi T, Miyawaki J 2014New J. Phys. 16 123045

    [48]

    Medjanik K, Fedchenko O, Chernov S, Kutnyakhov D, Ellguth M, Oelsner A, Schönhense B, Peixoto T R, Lutz P, Min C H 2017Nat. Mater. 16 615

    [49]

    Kühn D, Sorgenfrei F, Giangrisostomi E, Jay R, Musazay A, Ovsyannikov R, Stråhlman C, Svensson S, Mårtensson N, Föhlisch A 2018J. Electron Spectrosc. Relat. Phenom. 224 45

    [50]

    Zong A, Kogar A, Bie Y Q, Rohwer T, Lee C, Baldini E, Ergeçen E, Yilmaz M B, Freelon B, Sie E J 2019Nat. Phys. 15 27

    [51]

    Maklar J, Dong S, Beaulieu S, Pincelli T, Dendzik M, Windsor Y W, Xian R P, Wolf M, Ernstorfer R, Rettig L 2020Rev. Sci. Instrum. 91 123112

    [52]

    Schoenhense G, Kutnyakhov D, Pressacco F, Heber M, Wind N, Agustsson S Y, Babenkov S, Vasilyev D, Fedchenko O, Chernov S 2021Rev. Sci. Instrum. 92 053703

    [53]

    Berntsen M H, Götberg O, Tjernberg O 2011Rev. Sci. Instrum. 82 095113

    [54]

    Guo Q, Dendzik M, Grubišić-Čabo A, Berntsen M H, Li C, Chen W, Matta B, Starke U, Hessmo B, Weissenrieder J 2022Struct. Dyn. 9 024304

    [55]

    Zhu X L, Ma X W, Sha S, Liu H P, Wei B R, Wang Z L, Cao S P, Qian D B 2004Nucl. Electron. Detect. Technol. 24 253(in Chinese) [朱小龙, 马新文, 沙杉, 刘惠萍, 魏宝仁, 汪正林, 曹士娉, 钱东斌2004核电子学与探测技术24 253]

    [56]

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011Acta Phys. Sin. 60 236(in Chinese) [郭大龙, 马新文, 冯文天, 张少锋, 朱小龙2011物理学报60 236]

    [57]

    Ullrich J, Schmidt-Böcking H 1987Phys. Lett. A 125 193

    [58]

    Frohne V, Cheng S, Ali R, Raphaelian M, Cocke C L, Olson R E 1993Phys. Rev. Lett. 71 696

    [59]

    Ullrich J, Schmidt-Böcking H, Dörner R, Mergel V, Spielberger L, Jagutzki O 1994Cold-target recoil-ion momentum-spectroscopy: First results and future perspectives of a novel high resolution technique for the investigation of collision induced many-particle reactions SCAN-9410386

    [60]

    Moshammer R, Unverzagt M, Schmitt W, Ullrich J, Schmidt-Böcking H 1996Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 108 425

    [61]

    Mergel V, Achler M, Dörner R, Khayyat Kh, Kambara T, Awaya Y, Zoran V, Nyström B, Spielberger L, McGuire J H, Feagin J, Berakdar J, Azuma Y, Schmidt-Böcking H 1998Phys. Rev. Lett. 80 5301

    [62]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000Phys. Rep. 330 95

    [63]

    Weber Th, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000Phys. Rev. Lett. 84 443

    [64]

    Ergler Th, Rudenko A, Feuerstein B, Zrost K, Schröter C D, Moshammer R, Ullrich J 2006Phys. Rev. Lett. 97 193001

    [65]

    Schmidt L Ph H, Jahnke T, Czasch A, Schöffler M, Schmidt-Böcking H, Dörner R 2012Phys. Rev. Lett. 108 073202

    [66]

    Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014Rev. Sci. Instrum. 85 103113

    [67]

    Fehre K, Eckart S, Kunitski M, Pitzer M, Zeller S, Janke C, Trabert D, Rist J, Weller M, Hartung A, Schmidt L Ph H, Jahnke T, Berger R, Dörner R, Schöffler M S 2019Sci. Adv. 5 eaau7923

    [68]

    Grundmann S, Trabert D, Fehre K, Strenger N, Pier A, Kaiser L, Kircher M, Weller M, Eckart S, Schmidt L Ph H, Trinter F, Jahnke T, Schöffler M S, Dörner R 2020Science 370 339

    [69]

    Eppink A T, Parker D H 1997Rev. Sci. Instrum. 68 3477

    [70]

    Takahashi M, Cave J P, Eland J H D 2000Rev. Sci. Instrum. 71 1337

    [71]

    Gebhardt C R, Rakitzis T P, Samartzis P C, Ladopoulos V, Kitsopoulos T N 2001Rev. Sci. Instrum. 72 3848

    [72]

    Townsend D, Minitti M P, Suits A G 2003Rev. Sci. Instrum. 74 2530

    [73]

    Lin J J, Zhou J, Shiu W, Liu K 2003Rev. Sci. Instrum. 74 2495

    [74]

    Lee S K, Cudry F, Lin Y F, Lingenfelter S, Winney A H, Fan L, Li W 2014Rev. Sci. Instrum. 85 123303

    [75]

    Lin Y F, Lee S K, Adhikari P, Herath T, Lingenfelter S, Winney A H, Li W 2015Rev. Sci. Instrum. 86 096110

    [76]

    Urbain X, Bech D, Van Roy J P, Géléoc M, Weber S J, Huetz A, Picard Y J 2015Rev. Sci. Instrum. 86 023305

    [77]

    Orunesajo E, Basnayake G, Ranathunga Y, Stewart G, Heathcote D, Vallance C, Lee S K, Li W 2021J. Phys. Chem. A 125 5220

    [78]

    Nomerotski A 2019Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 937 26

    [79]

    Winney A H, Lee S K, Lin Y F, Liao Q, Adhikari P, Basnayake G, Schlegel H B, Li W 2017Phys. Rev. Lett. 119 123201

  • [1] 张一晨, 丁南南, 李加林, 付玉喜. 阿秒瞬态吸收光谱:揭示电子动力学的超快光学探针. 物理学报, doi: 10.7498/aps.74.20250546
    [2] 魏志远, 胡勇, 曾令勇, 李泽宇, 乔振华, 罗惠霞, 何俊峰. 1T-NbSeTe电子结构的角分辨光电子能谱. 物理学报, doi: 10.7498/aps.71.20220458
    [3] 赵林, 刘国东, 周兴江. 高温超导体电子结构和超导机理的角分辨光电子能谱研究. 物理学报, doi: 10.7498/aps.70.20201913
    [4] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, doi: 10.7498/aps.68.20191450
    [5] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, doi: 10.7498/aps.68.20191544
    [6] 王艳梅, 唐颖, 张嵩, 龙金友, 张冰. 飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究. 物理学报, doi: 10.7498/aps.67.20181334
    [7] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究. 物理学报, doi: 10.7498/aps.67.20181768
    [8] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新. 双色场控制与测量原子分子超快电子动力学过程的研究进展. 物理学报, doi: 10.7498/aps.65.223206
    [9] 冯小静, 郭玮, 路兴强, 姚洪斌, 李月华. 三态K2分子飞秒含时光电子能谱的理论研究. 物理学报, doi: 10.7498/aps.64.143303
    [10] 张敏, 唐田田, 张朝民. NaLi分子飞秒含时光电子能谱的理论研究. 物理学报, doi: 10.7498/aps.63.023302
    [11] 武煜宇, 陈石, 高新宇, Andrew Thye Shen Wee, 徐彭寿. 6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)]R30°重构表面的同步辐射角分辨光电子能谱研究. 物理学报, doi: 10.7498/aps.58.4288
    [12] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认. 物理学报, doi: 10.7498/aps.55.4496
    [13] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究. 物理学报, doi: 10.7498/aps.54.5372
    [14] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布. 物理学报, doi: 10.7498/aps.54.2653
    [15] 杨志红, 施大宁, 罗达峰. 层间耦合与高温超导体角分辨光电子能谱和Ba位替代效应. 物理学报, doi: 10.7498/aps.53.3902
    [16] 陈艳, 董国胜, 张明, 金晓峰, 陆尔东, 潘海斌, 徐彭寿, 张新夷, 范朝阳. Mn/GaAs(100)界面电子结构的同步辐射光电子能谱研究. 物理学报, doi: 10.7498/aps.44.145
    [17] 张训生, 董峰, 鲍德松, 杜志强. NO在Cu(110)表面吸附的角分辨光电子能谱. 物理学报, doi: 10.7498/aps.42.1194
    [18] 鲍世宁, 徐熔, 李海洋, 朱立, 徐纯一, 徐亚伯. CO与K在Cu(111)面上共吸附的角分辨紫外光电子能谱. 物理学报, doi: 10.7498/aps.41.523
    [19] 鲍世宁, 朱立, 徐亚伯. CO在有K沉积的W(100)面上吸附的角分辨紫外光电子能谱. 物理学报, doi: 10.7498/aps.40.1888
    [20] 卢学坤, 侯晓远, 丁训民, 陈平. 用角分辨紫外光电子能谱研究GaP的能带结构. 物理学报, doi: 10.7498/aps.39.108
计量
  • 文章访问数:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-05

/

返回文章
返回