-
为满足重力梯度测量卫星无拖曳飞行任务和近地轨道高分辨率观测卫星精确维轨任务对离子推力器连续变推力能力及其高分辨率特性的应用需求, 对高分辨率宽范围变推力离子推力器开展了技术研究与应用验证. 基于Kaufman型离子推力器等离子体放电与离子束流引出两大关键物理过程之间的弱耦合性和相对分离性, 提出了发散场构型的宽范围变推力离子推力器技术方案, 开展了放电室宽范围放电稳定性设计、兼顾宽温域启动和高密度引出需求的凹球面离子光学系统构型设计以及空心阴极电流发射连续性设计等技术研究工作. 基于此, 完成了10 cm口径高分辨率宽范围连续变推力离子推力器的设计优化与地面性能评测, 并在2023年实现在轨飞行应用. 卫星在轨测试结果表明: 10 cm口径高分辨率宽范围连续变推力离子推力器可在98.3—585.3 W功率范围内实现1.39—20.05 mN的推力调节, 比冲保持在547—3056 s范围内, 与地面测试结果相当; 推力响应速率约为3 mN/s, 推力分辨率不低于15 μN, 较地面测试结果更佳. 相比同类型传统化学推进模式下的卫星轨道控制效果, 基于10 cm口径高分辨率宽范围连续变推力离子推力器的卫星维轨精度提高2个数量级, 有效保障了卫星在轨工程任务的实施.To meet the application requirements for continuous variable thrust capability and high-resolution characteristics for ion thrusters in drag-free flight missions of gravity gradient measurement satellites and precise orbit maintenance missions of near-Earth high-resolution observation satellites, the technical research on a high-resolution wide-range variable thrust ion thruster and its application verification are conducted. Leveraging the weak coupling and relative independence between the two critical physical processes of plasma discharge and ion beam extraction in Kaufman-type ion thrusters, a wide-range variable thrust ion thruster technical scheme with a divergent magnetic field configuration is proposed. The key technical investigations include wide-range discharge stability in the discharge chamber, a concave spherical ion optical system configuration design balancing wide-temperature-range ignition and high-density extraction requirements, and hollow cathode current emission continuity design. The discharge chamber structure based on a divergent magnetic field configuration can rapidly adjust plasma density under varying discharge intensities through optimal coordination of anode gas supply, magnetic induction intensity, and anode current, while resolving critical technical challenges in low-power discharge stability and high-power operational reliability. Adopting a concave spherical ion optical system, the technical challenge in matching grid thermal deformation spacing with the reliable extraction of high-density ion beams is addressed. The concave spherical configuration can realize full-power ion beam extraction within approximately 10 s in low-temperature environments. Meanwhile, the hollow cathode based on a lanthanum hexaboride (LaB6) emitter, through redundant design of emitter thickness and adaptive design of the cathode orifice aspect ratio, not only extends the emitter evaporation loss lifespan but also achieves stable operation within an emission current range of 0.5–3.4 A. Based on this, the design optimization and ground-based performance evaluation of a 10-cm-aperture high-resolution wide-range continuously variable thrust ion thruster are completed (In fact, such an ion thruster already achieved on-orbit flight in 2023.). Satellite on-orbit test results indicate that the 10-cm-aperture thruster achieves thrust regulation of 1.39–20.05 mN within a power range of 98.3–585.3 W, with specific impulse maintained at 547–3056 s, consistent with ground test results. The thrust response rate reaches approximately 3 mN/s, and thrust resolution exceeds 15 μN, outperforming ground test metrics. Compared with traditional chemical propulsion systems used for satellite orbit control, this thruster improves orbit maintenance accuracy by two orders of magnitude, effectively ensuring the implementation of satellite’s on-orbit engineering missions.
-
Keywords:
- high-resolution /
- continuously variable thrust /
- ion thruster /
- on-orbit verification
-
图 3 大推力高功率工作点下放电室电磁场及等离子体特征参数分布 (a) 电势等势线与磁力线; (b) 电场线与磁场等势线; (c) 稳态时放电室内电子分布; (d) 稳态时放电室内离子密度分布
Fig. 3. Distribution of electromagnetic field and plasma characteristic parameters in the discharge chamber at a high-power, high-thrust operating point: (a) Equipotential lines and magnetic field lines; (b)electric field lines and magnetic equipotential lines; (c) electron distribution in the discharge chamber at steady state; (d) ion density distribution in the discharge chamber at steady state
图 5 两种曲面形式下离子光学系统引出束流密度分布及低温启动特性曲线对比 (a) 引出束流密度分布对比; (b) –90 ℃低温环境下引束流特性曲线对比
Fig. 5. Comparison of extracted beam current density distribution and cold-start characteristics for two different surface forms of the ion optics system: (a) Comparison of extracted beam current density distribution; (b) comparison of extracted beam current characteristic curves at –90 ℃ low-temperature environment.
图 11 基于地面测试设备的推力器主要性能参数变化情况 (a) 主阴极触持极电流、中和器触持极电流、励磁电流及加速栅电流; (b) 推力、比冲及功率
Fig. 11. Variation of main performance parameters of the thruster based on ground test equipment: (a) Keeper current, neutralizer keeper current, magnet current and acceleration grid current; (b) thrust, specific impulse and power.
图 13 离子推力器快速变推力能力与高分辨率推力调节能力在轨验证测试结果 (a) 主份推力器快速变推力; (b) 备份推力器快速变推力; (c) 主份推力器15 mN高分辨率推力调节; (d) 备份推力器20 mN高分辨率推力调节
Fig. 13. On-orbit verification test results of the ion thruster’s rapid thrust variation capability and high-resolution thrust adjustment capability: (a) Main thruster rapid thrust variation; (b) backup thruster rapid thrust variation; (c) main thruster 15 mN high-resolution thrust adjustment; (d) backup thruster 20 mN high-resolution thrust adjustment.
图 14 离子推力器单推力点高精密维轨期间主要工作参数变化情况 (a) 推力与比冲; (b) 功率; (c) 阴极触持电流和中和器触持电流; (d) 加速栅电流
Fig. 14. Variation of main operating parameters during high-precision orbital maintenance at a single thrust point for the ion thruster: (a) Thrust and specific impulse; (b) power; (c) cathode keeper current and neutralizer keeper current; (d) acceleration grid current.
表 1 放电室设计参数 (1 Gs = 10–4 T)
Table 1. Discharge chamber design parameters (1 Gs = 10–4 T).
参数名称 设计结果 几何构型 柱形阳极筒+屏栅筒 长径比 1∶0.78 磁场发散度/% 73 挡板直径/mm 26 磁感应强度调节范围/Gs 3—35 阳极电流调节范围/A 0.7—2.9 阳极供气调节范围/(mg·s–1) 0.01—0.50 表 2 两种球面形式下的推力器工作参数对比
Table 2. Comparison of thruster operating parameters for the two surface forms.
参数名称 球面形式 凸面 凹面 屏栅电流/ mA 354 352 加速电流/mA 1.2 1.8 阳极电压/V 40.3 40.6 阳极电流/A 2.53 2.67 主阴极触持电流/A 0.81 0.81 90%束流发散角/(°) 22.1 18.1 95%束流发散角/(°) 25.7 19.3 表 3 离子光学系统设计参数
Table 3. Ion optics system design parameters.
参数名称 设计结果 栅片材料 Mo 束流直径/cm 10 球面拱高/cm 5 屏栅加速栅厚度比 1:0.8 屏栅加速栅孔径比 1:1.51 间距 0.55 表 4 空心阴极设计参数
Table 4. Hollow cathode design parameters.
参数名称 设计结果 发射体材料 六硼化镧 阴极顶小孔长径比 1∶12 发射体内径与长度比 1∶2.05 发射电流/A 0.5—3.4 发射体厚度与内直径比 1∶0.78 发射体设计蒸发损耗寿命/h 40000 表 5 离子推力器变推力调节的阳极供气及阳极电流参数
Table 5. Anode gas supply and anode current parameters for ion thruster variable thrust adjustment.
推力覆盖范围/mN 阳极电流/A 阳极供气/(mg·s–1) 1—3 0.55 0.100 4—5 0.80 0.150 6—8 1.45 0.185 9—11 2.00 0.250 12—14 2.20 0.335 15—16 2.35 0.390 17—18 2.50 0.450 19—20 2.70 0.500 -
[1] 郑茂繁, 张天平, 孟伟, 李兴坤, 梁凯 2015 推进技术 36 1116
Zheng M F, Zhang T P, Meng W, Li X K, Liang K 2015 J. Propul. Technol. 36 1116
[2] 张天平, 田华兵, 孙运奎 2010 真空与低温 16 72
Zhang T P, Jiang H C, Sun Y K 2010 Vacuum Cryogen. 16 72
[3] 胡竟, 江豪成, 王亮, 王小永, 顾左 2015 真空与低温 21 103
Hu J, Jiang H C, Wang L, Wang X Y, Gu Z 2015 Vacuum Cryogen. 21 103
[4] David H M 1997 25th International Electric Propulsion Conference Cleveland, USA, August 24-28, 1997 p1997-095-1
[5] Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &Exhibit Huntsville, USA, July 20–23, 2003 p2003–4542-1
[6] Corbett M H, Edwards C H 2007 30th International Electric Propulsion Conference Florence, Italy, September 17–20, 2007 p2007-210-1
[7] Ismat M A R, Wallace N C, Mike K 2007 30th International Electric Propulsion Conference Florence, Italy, September 17–20, 2007 p2007-170-1
[8] Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1
[9] Gray H 2011 32nd International Electric Propulsion Conference Wiesbaden, Germany, September 11–15, 2011 p2011-091-1
[10] Gray H, Wallace N, Rudwan I 2011 32nd International Electric Propulsion Conference Wiesbaden, Germany, September 11–15, 2011 p2011-092-1
[11] Angelo N G, Stephen C Neil W 2011 32nd International Electric Propulsion Conference Wiesbaden, Germany, September 11–15, 2011 p2011-234-1
[12] Toshiyuki O, Hiroyuki O 2011 32nd International Electric Propulsion Conference Wiesbaden, Germany, September 11–15, 2011 p2011-6072-1
[13] Hitoshi K, Kenichi K 2011 32nd International Electric Propulsion Conference Wiesbaden, Germany, September 11–15, 2011 p2011-332-1
[14] Wilbur P J, Brophy J R 1986 AIAA J. 24 278
Google Scholar
[15] Bechtel R T 1981 15th International Electric Propulsion Conference Las Vegas, USA, April 21–23, 1981 p1981-714-1
[16] Kerslake W R 1971 J. Spacecraft Rockets 1971 8 213
[17] Bennett W, Ogunjobi T A, Menart J A 2007 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Cincinnati, USA, July 8–11, 2007 p2007-5248-1
[18] Ogunjobi T A, Menart J A 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, USA, July 9–12, 2006 p2006-4489-1
[19] Hiatt J M, Wilbur P J 1985 18th International Electric Propulsion Conference Alexandria, USA, September 30–October 02, 1985 p1985-2007-1
[20] Menart J A, Patierson M J 1998 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Cleveland, USA July 13–15, 1998 p1998–3343-1
[21] 陈娟娟, 耿海, 龙建飞, 吴辰宸, 贾艳辉, 郭宁 2022 真空与低温 28 514
Chen J J, Geng H, Long J F, Wu C C, Jia Y H, Guo N 2022 Vacuum Cryogen. 28 514
[22] 鹿畅 2019 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Lu C 2019 Ph. D. Dissertation (Harbin: Harbin Institute of Technology
[23] 赵志伟, 张天平, 冉文亮, 李璇 2023 火箭推进 49 1
Zhao Z W, Zhang T P, Ran W L, Li X 2023 J. Rocket Propul. 49 1
[24] 郭德洲, 胡竟, 杨福全, 耿海, 李娟, 赵以德, 李建鹏 2022 真空与低温 28 115
Guo D Z, Hu J, Yang F Q, Geng H, Li J, Zhao Y D, Li J P 2022 Vacuum Cryogen. 28 115
[25] Zhang T P, Wang X Y, Jiang H C 2013 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1
[26] Zhang T P, Yang L, Tian L C, Wang L, Yang F Q, Zhao Y D, Chen J J, Wang X Y 2015 34th International Electric Propulsion Conference Kobe, Japan, July 4–10, 2015 p2015-31-1
[27] Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p197
[28] 张天平, 杨福全, 李娟 2020 离子电推进技术(上海: 科学出版社)第91页
Zhang T P, Yang F Q, Li J 2020 Technology of Ion Electric Propulsion (Shanghai: Science Press) p91
[29] 刘金声 1995 离子束技术及应用(北京: 国防工业出版社)第111—113页
Liu J S 1995 Ion Beam Technology and Application (Beijing: National Defense Industry Press) pp111–113
[30] 陈娟娟, 张天平, 贾艳辉, 郑茂繁 2013 真空与低温 19 163
Chen J J, Zhang T P, Jia Y H, Zheng M F 2013 Vacuum Cryogen. 19 163
[31] Brophy J R, Wilbur P J 1982 J. Spacecraft Rockets 19 586
Google Scholar
[32] Milligan D J, Gabriel S B 1999 35th Joint Propulsion Conference and Exhibit Los Angeles, USA, June 20–24, 1999 p1999-2440-1
[33] 李建鹏, 赵以德, 靳伍银, 张兴民, 李娟, 王彦龙 2022 物理学报 71 195203
Google Scholar
Li J P, Zhao Y D, Jin W Y, Zhang X M, LI J, Wang Y L 2022 Acta Phys. Sin. 71 195203
Google Scholar
[34] 王进, 郭宁, 谷增杰, 丁继 2022 真空与低温 23 318
Wang J, Guo N, Gu Z J, Ding J 2017 Vacuum Cryogen. 23 318
[35] Palluel P, Shroff A M 1980 J. Appl. Phys. 51 2984
[36] Domomkos M, Foster J E, Soula G C 2005 J. Propul. Power 21 102
Google Scholar
[37] Goebel D M, Jameson KK 2007 J. Propul. Power 23 552
Google Scholar
[38] 胡 竟, 杨福全, 郭德洲, 谷增杰, 邵明学, 郑茂繁 2020 推进技术 41 2382
Hu J, Yang F Q, Guo D Z, Gu Z J, Shao M X, Zheng M F 2020 J. Propul. Technol. 41 2382
[39] Moore S N 1997 25th International Electric Propulsion Conference Cleveland Ohio, USA, August 24–28, 1997 p1997-017-1
计量
- 文章访问数: 366
- PDF下载量: 3
- 被引次数: 0