搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分辨率宽范围连续变推力离子推力器设计及其天地一体化验证

胡竟 谷增杰 王成飞 郭德洲 王大年 陈娟娟 杨三祥 唐福俊 孙明明 贾艳辉 吴辰宸 耿海 杨福全 成荣

引用本文:
Citation:

高分辨率宽范围连续变推力离子推力器设计及其天地一体化验证

胡竟, 谷增杰, 王成飞, 郭德洲, 王大年, 陈娟娟, 杨三祥, 唐福俊, 孙明明, 贾艳辉, 吴辰宸, 耿海, 杨福全, 成荣

Design of high-resolution wide-range continuously variable thrust ion thruster and its space-earth integrated verification

HU Jing, GU Zengjie, WANG Chengfei, GUO Dezhou, WANG Danian, CHEN Juanjuan, YANG Sanxiang, TANG Fujun, SUN Mingming, JIA Yanhui, WU Chenchen, GENG Hai, YANG Fuquan, CHENG Rong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为满足重力梯度测量卫星无拖曳飞行任务和近地轨道高分辨率观测卫星精确维轨任务对离子推力器连续变推力能力及其高分辨率特性的应用需求, 对高分辨率宽范围变推力离子推力器开展了技术研究与应用验证. 基于Kaufman型离子推力器等离子体放电与离子束流引出两大关键物理过程之间的弱耦合性和相对分离性, 提出了发散场构型的宽范围变推力离子推力器技术方案, 开展了放电室宽范围放电稳定性设计、兼顾宽温域启动和高密度引出需求的凹球面离子光学系统构型设计以及空心阴极电流发射连续性设计等技术研究工作. 基于此, 完成了10 cm口径高分辨率宽范围连续变推力离子推力器的设计优化与地面性能评测, 并在2023年实现在轨飞行应用. 卫星在轨测试结果表明: 10 cm口径高分辨率宽范围连续变推力离子推力器可在98.3—585.3 W功率范围内实现1.39—20.05 mN的推力调节, 比冲保持在547—3056 s范围内, 与地面测试结果相当; 推力响应速率约为3 mN/s, 推力分辨率不低于15 μN, 较地面测试结果更佳. 相比同类型传统化学推进模式下的卫星轨道控制效果, 基于10 cm口径高分辨率宽范围连续变推力离子推力器的卫星维轨精度提高2个数量级, 有效保障了卫星在轨工程任务的实施.
    To meet the application requirements for continuous variable thrust capability and high-resolution characteristics for ion thrusters in drag-free flight missions of gravity gradient measurement satellites and precise orbit maintenance missions of near-Earth high-resolution observation satellites, the technical research on a high-resolution wide-range variable thrust ion thruster and its application verification are conducted. Leveraging the weak coupling and relative independence between the two critical physical processes of plasma discharge and ion beam extraction in Kaufman-type ion thrusters, a wide-range variable thrust ion thruster technical scheme with a divergent magnetic field configuration is proposed. The key technical investigations include wide-range discharge stability in the discharge chamber, a concave spherical ion optical system configuration design balancing wide-temperature-range ignition and high-density extraction requirements, and hollow cathode current emission continuity design. The discharge chamber structure based on a divergent magnetic field configuration can rapidly adjust plasma density under varying discharge intensities through optimal coordination of anode gas supply, magnetic induction intensity, and anode current, while resolving critical technical challenges in low-power discharge stability and high-power operational reliability. Adopting a concave spherical ion optical system, the technical challenge in matching grid thermal deformation spacing with the reliable extraction of high-density ion beams is addressed. The concave spherical configuration can realize full-power ion beam extraction within approximately 10 s in low-temperature environments. Meanwhile, the hollow cathode based on a lanthanum hexaboride (LaB6) emitter, through redundant design of emitter thickness and adaptive design of the cathode orifice aspect ratio, not only extends the emitter evaporation loss lifespan but also achieves stable operation within an emission current range of 0.5–3.4 A. Based on this, the design optimization and ground-based performance evaluation of a 10-cm-aperture high-resolution wide-range continuously variable thrust ion thruster are completed (In fact, such an ion thruster already achieved on-orbit flight in 2023.). Satellite on-orbit test results indicate that the 10-cm-aperture thruster achieves thrust regulation of 1.39–20.05 mN within a power range of 98.3–585.3 W, with specific impulse maintained at 547–3056 s, consistent with ground test results. The thrust response rate reaches approximately 3 mN/s, and thrust resolution exceeds 15 μN, outperforming ground test metrics. Compared with traditional chemical propulsion systems used for satellite orbit control, this thruster improves orbit maintenance accuracy by two orders of magnitude, effectively ensuring the implementation of satellite’s on-orbit engineering missions.
  • 图 1  发散场放电室示意图

    Fig. 1.  Schematic diagram of a divergent-field discharge chamber.

    图 2  工质分配器供气结构示意图

    Fig. 2.  Schematic diagram of the propellant distributor gas supply structure.

    图 3  大推力高功率工作点下放电室电磁场及等离子体特征参数分布 (a) 电势等势线与磁力线; (b) 电场线与磁场等势线; (c) 稳态时放电室内电子分布; (d) 稳态时放电室内离子密度分布

    Fig. 3.  Distribution of electromagnetic field and plasma characteristic parameters in the discharge chamber at a high-power, high-thrust operating point: (a) Equipotential lines and magnetic field lines; (b)electric field lines and magnetic equipotential lines; (c) electron distribution in the discharge chamber at steady state; (d) ion density distribution in the discharge chamber at steady state

    图 4  基于凸球面离子光学系统的离子推力器放电室结构示意图

    Fig. 4.  Schematic diagram of an ion thruster discharge chamber structure based on a convex spherical surface ion optics system.

    图 5  两种曲面形式下离子光学系统引出束流密度分布及低温启动特性曲线对比 (a) 引出束流密度分布对比; (b) –90 ℃低温环境下引束流特性曲线对比

    Fig. 5.  Comparison of extracted beam current density distribution and cold-start characteristics for two different surface forms of the ion optics system: (a) Comparison of extracted beam current density distribution; (b) comparison of extracted beam current characteristic curves at –90 ℃ low-temperature environment.

    图 6  宽范围变推力离子推力器实物照片

    Fig. 6.  Photograph of a wide-range variable thrust ion thruster.

    图 7  试验系统组成

    Fig. 7.  Composition of the test system.

    图 8  推力器在不同推力工作点的引束流照片 (a) 1 mN; (b) 5 mN; (c) 15 mN; (d) 20 mN

    Fig. 8.  Photographs of the thruster’s extracted beam at different thrust operating points: (a) 1 mN; (b) 5 mN; (c) 15 mN; (d) 20 mN.

    图 9  宽范围变推力离子推力器主要性能参数变化规律 (a) 推力、比冲随功耗的变化曲线; (b) 励磁电流对推力影响规律

    Fig. 9.  Variation patterns of the main performance parameters for the wide-range variable thrust ion thruster: (a) Thrust and specific impulse versus power consumption; (b) influence law of magnet current on thrust.

    图 10  宽范围推力点下推力分辨率测试结果 (a) 1 mN; (b) 5 mN; (c) 15 mN; (d) 20 mN

    Fig. 10.  Thrust resolution test results at wide-range thrust points: (a) 1 mN; (b) 5 mN; (c) 15 mN; (d) 20 mN.

    图 11  基于地面测试设备的推力器主要性能参数变化情况 (a) 主阴极触持极电流、中和器触持极电流、励磁电流及加速栅电流; (b) 推力、比冲及功率

    Fig. 11.  Variation of main performance parameters of the thruster based on ground test equipment: (a) Keeper current, neutralizer keeper current, magnet current and acceleration grid current; (b) thrust, specific impulse and power.

    图 12  离子推力器在轨供电供气控制系统简图

    Fig. 12.  Simplified diagram of the on-orbit power and gas supply.

    图 13  离子推力器快速变推力能力与高分辨率推力调节能力在轨验证测试结果 (a) 主份推力器快速变推力; (b) 备份推力器快速变推力; (c) 主份推力器15 mN高分辨率推力调节; (d) 备份推力器20 mN高分辨率推力调节

    Fig. 13.  On-orbit verification test results of the ion thruster’s rapid thrust variation capability and high-resolution thrust adjustment capability: (a) Main thruster rapid thrust variation; (b) backup thruster rapid thrust variation; (c) main thruster 15 mN high-resolution thrust adjustment; (d) backup thruster 20 mN high-resolution thrust adjustment.

    图 14  离子推力器单推力点高精密维轨期间主要工作参数变化情况 (a) 推力与比冲; (b) 功率; (c) 阴极触持电流和中和器触持电流; (d) 加速栅电流

    Fig. 14.  Variation of main operating parameters during high-precision orbital maintenance at a single thrust point for the ion thruster: (a) Thrust and specific impulse; (b) power; (c) cathode keeper current and neutralizer keeper current; (d) acceleration grid current.

    表 1  放电室设计参数 (1 Gs = 10–4 T)

    Table 1.  Discharge chamber design parameters (1 Gs = 10–4 T).

    参数名称设计结果
    几何构型柱形阳极筒+屏栅筒
    长径比1∶0.78
    磁场发散度/%73
    挡板直径/mm26
    磁感应强度调节范围/Gs3—35
    阳极电流调节范围/A0.7—2.9
    阳极供气调节范围/(mg·s–1)0.01—0.50
    下载: 导出CSV

    表 2  两种球面形式下的推力器工作参数对比

    Table 2.  Comparison of thruster operating parameters for the two surface forms.

    参数名称球面形式
    凸面凹面
    屏栅电流/ mA354352
    加速电流/mA1.21.8
    阳极电压/V40.340.6
    阳极电流/A2.532.67
    主阴极触持电流/A0.810.81
    90%束流发散角/(°)22.118.1
    95%束流发散角/(°)25.719.3
    下载: 导出CSV

    表 3  离子光学系统设计参数

    Table 3.  Ion optics system design parameters.

    参数名称设计结果
    栅片材料Mo
    束流直径/cm10
    球面拱高/cm5
    屏栅加速栅厚度比1:0.8
    屏栅加速栅孔径比1:1.51
    间距0.55
    下载: 导出CSV

    表 4  空心阴极设计参数

    Table 4.  Hollow cathode design parameters.

    参数名称设计结果
    发射体材料六硼化镧
    阴极顶小孔长径比1∶12
    发射体内径与长度比1∶2.05
    发射电流/A0.5—3.4
    发射体厚度与内直径比1∶0.78
    发射体设计蒸发损耗寿命/h40000
    下载: 导出CSV

    表 5  离子推力器变推力调节的阳极供气及阳极电流参数

    Table 5.  Anode gas supply and anode current parameters for ion thruster variable thrust adjustment.

    推力覆盖范围/mN阳极电流/A阳极供气/(mg·s–1)
    1—30.550.100
    4—50.800.150
    6—81.450.185
    9—112.000.250
    12—142.200.335
    15—162.350.390
    17—182.500.450
    19—202.700.500
    下载: 导出CSV
  • [1]

    郑茂繁, 张天平, 孟伟, 李兴坤, 梁凯 2015 推进技术 36 1116

    Zheng M F, Zhang T P, Meng W, Li X K, Liang K 2015 J. Propul. Technol. 36 1116

    [2]

    张天平, 田华兵, 孙运奎 2010 真空与低温 16 72

    Zhang T P, Jiang H C, Sun Y K 2010 Vacuum Cryogen. 16 72

    [3]

    胡竟, 江豪成, 王亮, 王小永, 顾左 2015 真空与低温 21 103

    Hu J, Jiang H C, Wang L, Wang X Y, Gu Z 2015 Vacuum Cryogen. 21 103

    [4]

    David H M 1997 25th International Electric Propulsion Conference Cleveland, USA, August 24-28, 1997 p1997-095-1

    [5]

    Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &Exhibit Huntsville, USA, July 20–23, 2003 p2003–4542-1

    [6]

    Corbett M H, Edwards C H 2007 30th International Electric Propulsion Conference Florence, Italy, September 17–20, 2007 p2007-210-1

    [7]

    Ismat M A R, Wallace N C, Mike K 2007 30th International Electric Propulsion Conference Florence, Italy, September 17–20, 2007 p2007-170-1

    [8]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1

    [9]

    Gray H 2011 32nd International Electric Propulsion Conference Wiesbaden, Germany, September 11–15, 2011 p2011-091-1

    [10]

    Gray H, Wallace N, Rudwan I 2011 32nd International Electric Propulsion Conference Wiesbaden, Germany, September 11–15, 2011 p2011-092-1

    [11]

    Angelo N G, Stephen C Neil W 2011 32nd International Electric Propulsion Conference Wiesbaden, Germany, September 11–15, 2011 p2011-234-1

    [12]

    Toshiyuki O, Hiroyuki O 2011 32nd International Electric Propulsion Conference Wiesbaden, Germany, September 11–15, 2011 p2011-6072-1

    [13]

    Hitoshi K, Kenichi K 2011 32nd International Electric Propulsion Conference Wiesbaden, Germany, September 11–15, 2011 p2011-332-1

    [14]

    Wilbur P J, Brophy J R 1986 AIAA J. 24 278Google Scholar

    [15]

    Bechtel R T 1981 15th International Electric Propulsion Conference Las Vegas, USA, April 21–23, 1981 p1981-714-1

    [16]

    Kerslake W R 1971 J. Spacecraft Rockets 1971 8 213

    [17]

    Bennett W, Ogunjobi T A, Menart J A 2007 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Cincinnati, USA, July 8–11, 2007 p2007-5248-1

    [18]

    Ogunjobi T A, Menart J A 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, USA, July 9–12, 2006 p2006-4489-1

    [19]

    Hiatt J M, Wilbur P J 1985 18th International Electric Propulsion Conference Alexandria, USA, September 30–October 02, 1985 p1985-2007-1

    [20]

    Menart J A, Patierson M J 1998 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Cleveland, USA July 13–15, 1998 p1998–3343-1

    [21]

    陈娟娟, 耿海, 龙建飞, 吴辰宸, 贾艳辉, 郭宁 2022 真空与低温 28 514

    Chen J J, Geng H, Long J F, Wu C C, Jia Y H, Guo N 2022 Vacuum Cryogen. 28 514

    [22]

    鹿畅 2019 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Lu C 2019 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [23]

    赵志伟, 张天平, 冉文亮, 李璇 2023 火箭推进 49 1

    Zhao Z W, Zhang T P, Ran W L, Li X 2023 J. Rocket Propul. 49 1

    [24]

    郭德洲, 胡竟, 杨福全, 耿海, 李娟, 赵以德, 李建鹏 2022 真空与低温 28 115

    Guo D Z, Hu J, Yang F Q, Geng H, Li J, Zhao Y D, Li J P 2022 Vacuum Cryogen. 28 115

    [25]

    Zhang T P, Wang X Y, Jiang H C 2013 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1

    [26]

    Zhang T P, Yang L, Tian L C, Wang L, Yang F Q, Zhao Y D, Chen J J, Wang X Y 2015 34th International Electric Propulsion Conference Kobe, Japan, July 4–10, 2015 p2015-31-1

    [27]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p197

    [28]

    张天平, 杨福全, 李娟 2020 离子电推进技术(上海: 科学出版社)第91页

    Zhang T P, Yang F Q, Li J 2020 Technology of Ion Electric Propulsion (Shanghai: Science Press) p91

    [29]

    刘金声 1995 离子束技术及应用(北京: 国防工业出版社)第111—113页

    Liu J S 1995 Ion Beam Technology and Application (Beijing: National Defense Industry Press) pp111–113

    [30]

    陈娟娟, 张天平, 贾艳辉, 郑茂繁 2013 真空与低温 19 163

    Chen J J, Zhang T P, Jia Y H, Zheng M F 2013 Vacuum Cryogen. 19 163

    [31]

    Brophy J R, Wilbur P J 1982 J. Spacecraft Rockets 19 586Google Scholar

    [32]

    Milligan D J, Gabriel S B 1999 35th Joint Propulsion Conference and Exhibit Los Angeles, USA, June 20–24, 1999 p1999-2440-1

    [33]

    李建鹏, 赵以德, 靳伍银, 张兴民, 李娟, 王彦龙 2022 物理学报 71 195203Google Scholar

    Li J P, Zhao Y D, Jin W Y, Zhang X M, LI J, Wang Y L 2022 Acta Phys. Sin. 71 195203Google Scholar

    [34]

    王进, 郭宁, 谷增杰, 丁继 2022 真空与低温 23 318

    Wang J, Guo N, Gu Z J, Ding J 2017 Vacuum Cryogen. 23 318

    [35]

    Palluel P, Shroff A M 1980 J. Appl. Phys. 51 2984

    [36]

    Domomkos M, Foster J E, Soula G C 2005 J. Propul. Power 21 102Google Scholar

    [37]

    Goebel D M, Jameson KK 2007 J. Propul. Power 23 552Google Scholar

    [38]

    胡 竟, 杨福全, 郭德洲, 谷增杰, 邵明学, 郑茂繁 2020 推进技术 41 2382

    Hu J, Yang F Q, Guo D Z, Gu Z J, Shao M X, Zheng M F 2020 J. Propul. Technol. 41 2382

    [39]

    Moore S N 1997 25th International Electric Propulsion Conference Cleveland Ohio, USA, August 24–28, 1997 p1997-017-1

  • [1] 董耀勇, 吴仪, 郑学军, 王登龙, 赵鹏. 双腔光力系统中基于连续域束缚态的超高分辨率质量传感. 物理学报, doi: 10.7498/aps.74.20250063
    [2] 刘凡, 蒋渊丞, 郭华. 高分辨率磁共振二维扩散成像技术综述. 物理学报, doi: 10.7498/aps.74.20250235
    [3] 付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠. 微波离子推力器中磁场发散区电子加热模式研究. 物理学报, doi: 10.7498/aps.73.20240017
    [4] 谈人玮, 杨涓, 耿海, 吴先明, 牟浩. 氮气工质10厘米ECRIT中和器实验研究. 物理学报, doi: 10.7498/aps.72.20221951
    [5] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理. 物理学报, doi: 10.7498/aps.72.20230719
    [6] 李建鹏, 靳伍银, 赵以德. 多模式离子推力器输入参数设计及工作特性研究. 物理学报, doi: 10.7498/aps.71.20212045
    [7] 李建鹏, 赵以德, 靳伍银, 张兴民, 李娟, 王彦龙. 多模式离子推力器放电室和栅极设计及其性能实验研究. 物理学报, doi: 10.7498/aps.71.20220720
    [8] 李建鹏, 靳伍银, 赵以德. 加速电压和阳极流率对离子推力器性能的影响. 物理学报, doi: 10.7498/aps.71.20211316
    [9] 钟志, 赵婉婷, 单明广, 刘磊. 远心同-离轴混合数字全息高分辨率重建方法. 物理学报, doi: 10.7498/aps.70.20210190
    [10] 龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正. 离子推力器推力密度特性. 物理学报, doi: 10.7498/aps.67.20171507
    [11] 龙建飞, 张天平, 李娟, 贾艳辉. 离子推力器栅极透过率径向分布特性研究. 物理学报, doi: 10.7498/aps.66.162901
    [12] 陈茂林, 夏广庆, 徐宗琦, 毛根旺. 栅极热变形对离子推力器工作过程影响分析. 物理学报, doi: 10.7498/aps.64.094104
    [13] 时光, 张福民, 曲兴华, 孟祥松. 高分辨率调频连续波激光绝对测距研究. 物理学报, doi: 10.7498/aps.63.184209
    [14] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, doi: 10.7498/aps.63.182901
    [15] 郑晶晶, 简水生, 马林, 柏云龙, 裴丽, 宁提纲, 闻映红. 具有大范围高分辨率线性响应特性的超短无芯光纤溶液折射率传感器. 物理学报, doi: 10.7498/aps.62.150703
    [16] 杨涓, 王与权, 李鹏飞, 王阳, 王云民, 马艳杰. 无工质微波推力器推力测量实验. 物理学报, doi: 10.7498/aps.61.110301
    [17] 杨涓, 李鹏飞, 杨乐. 不同功率下无工质微波推力器的推力预估. 物理学报, doi: 10.7498/aps.60.124101
    [18] 尚英, 霍丙忠, 孟春宁, 袁景和. 并矢格林函数下的球形超透镜. 物理学报, doi: 10.7498/aps.59.8178
    [19] 朱德彰, 潘浩昌, 曹建清, 朱福英, 陈国明, 陈国樑, 杨絜, 邹世昌. 用高分辨率沟道背散射谱仪研究硅的低能氮离子氮化. 物理学报, doi: 10.7498/aps.39.96
    [20] 陆坤权, 常龙存, 赵雅琴. X射线连续谱晶体单色器的分辨率. 物理学报, doi: 10.7498/aps.32.1505
计量
  • 文章访问数:  366
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-27
  • 修回日期:  2025-08-08
  • 上网日期:  2025-09-02

/

返回文章
返回