搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

M(Mn, Ti, Mo)掺杂α-Fe稳定性、电子结构和力学性能的第一性原理计算

华孙铭樯 孔得通 胡晓 厍旭 王枭 王远

引用本文:
Citation:

M(Mn, Ti, Mo)掺杂α-Fe稳定性、电子结构和力学性能的第一性原理计算

华孙铭樯, 孔得通, 胡晓, 厍旭, 王枭, 王远

First-principles study of stabilities, electronic structures, and mechanical properties of M(Mn, Ti, Mo)-doped α-Fe

HUA Sunmingqiang, KONG Detong, HU Xiao, SHE Xu, WANG Xiao, WANG Yuan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 针对目前钢铁材料掺杂合金元素改性主要从细晶、弥散强化两方面入手, 涉及铁素体基体相本身性能改善的研究不足, 本文结合第一性原理计算和正交试验法, 构建Fe16-x-y-zMnxTiyMoz(x, yz = 0, 1或2)三元掺杂超胞模型, 系统研究M (Mn, Ti, Mo)掺杂对其稳定性、力学性能和电子结构的影响. 形成热(Hform)计算表明, 所有固溶体均能自发形成, 且Ti掺杂最利于固溶体形成, Mn次之, Mo最不利; 结合能(Ecoh)计算表明, 所有固溶体均具有结构稳定性, 且Mo掺杂对其结构稳定性的影响最大, Ti掺杂次之, Mn掺杂最小; 电子结构分析表明, 掺杂原子Mn 3d, Ti 3d和Mo 4d与Fe 3d态重叠增加, 并出现明显的杂化现象, 导致费米能级降低, 且Fe13Ti1Mo2费米能级最低, 稳定性最好, 与结合能判定结果一致; 力学性能计算表明, M掺杂降低了固溶体的抗拉压变形能力和硬度, 但却提升了其塑性, 这为韧塑性铁素体基钢铁材料的设计提供了理论借鉴与技术参考.
    Ferrite (α-Fe), as a fundamental phase of steel materials, plays a decisive role in determining their macroscopic mechanical behaviors through its microscopic properties, particularly in engineering applications involving resistance to plastic deformation and fracture, fatigue resistance, wear resistance, and low-temperature toughness. Therefore, alloying elements are commonly introduced to improve the performance of steel via mechanisms such as grain refinement strengthening and precipitation strengthening. However, in these strengthening mechanisms, the effects of doped alloying elements on the stability, electronic structure, and mechanical properties of ferrite itself have not been thoroughly investigated. In this study, orthogonal experimental design and first-principles calculations are employed to investigate the effects of ternary alloy doping with M (Mn, Ti, Mo) on the stabilities, electronic structures, and mechanical properties of a ferrite-based supercell model Fe16-x-y-zMnxTiyMoz (x, y, or z = 0, 1, or 2), aiming to provide both theoretical insight and experimental reference for improving the comprehensive performance of ferrite-based steels by modifying the properties of the matrix phase. The results of the formation enthalpy (Hform) calculations indicate that all solid solutions have negative formation enthalpies, suggesting that they can form spontaneously. Among them, Ti doping is the most favorable for solid solution formation, followed by Mn, with Mo being the least favorable. The Fe13Ti1Mo2 configuration is the easiest to form spontaneously. The cohesive energy (Ecoh) results demonstrate that all solid solutions exhibit structural stabilities. Fe13Ti1Mo2 has the largest (most negative) cohesive energy of –477.96 eV, indicating that it possesses the highest structural stability. The contribution of Mo doping to stability enhancement is the greatest, followed by Ti, while the influence of Mn is the smallest. Electronic structure calculations reveal that M doping consistently reduces the density of states (DOS) at the Fermi level for Fe16-x-y-zMnxTiyMoz. The lowest DOS at the Fermi level is found to be 4.294 in Fe13Ti1Mo2, indicating enhanced hybridization and overlap between Mn 3d, Ti 3d, Mo 4d, and Fe 3d states. This strong hybridization leads to a decrease in the Fermi level and contributes to the high stability of the Fe13Ti1Mo2 phase. Mechanical property calculations indicate that M doping reduces the Young’s modulus (E) and Vickers hardness (HV) of the solid solutions. However, the K values (K = GH/BH) are all greater than 1.75, and Poisson’s ratios (ν) exceed 0.26, implying that while stiffness and hardness decrease, the ductility of the materials is improved. This study provides valuable guidance for designing ductile and tough ferrite-based steel materials.
  • 图 1  Fe16-x-y-zMnxTiyMoz超胞模型 (a) Fe16; (b) Fe13Ti2Mo1; (c) Fe13Ti1Mo2; (d) Fe13Mn1Ti2; (e) Fe13Mn1Ti1Mo1; (f) Fe13Mn1Mo2; (g) Fe13Mn2Ti1; (h) Fe13Mn2Mo1; (i) Fe10Mn2Ti2Mo2

    Fig. 1.  Supercell model of Fe16-x-y-zMnxTiyMoz: (a) Fe16; (b) Fe13Ti2Mo1; (c) Fe13Ti1Mo2; (d) Fe13Mn1Ti2; (e) Fe13Mn1Ti1Mo1; (f) Fe13Mn1Mo2; (g) Fe13Mn2Ti1; (h) Fe13Mn2Mo1; (i) Fe10Mn2Ti2Mo2.

    图 2  态密度图和分波态密度图 (a) Fe16; (b) Fe13Ti2Mo1; (c) Fe10Mn2Ti2Mo2; (d) Fe13Ti1Mo2; (e) Fe13Mn1Ti1Mo1; (f) Fe13Mn1Ti2

    Fig. 2.  Density of states and partial density of states plots: (a) Fe16; (b) Fe13Ti2Mo1; (c) Fe10Mn2Ti2Mo2; (d) Fe13Ti1Mo2; (e) Fe13Mn1Ti1Mo1; (f) Fe13Mn1Ti2.

    图 3  差分电荷密度图 (a) Fe16; (b) Fe13Ti2Mo1; (c) Fe10Mn2Ti2Mo2; (d) Fe13Ti1Mo2; (e) Fe13Mn1Ti1Mo1; (f) Fe13Mn1Ti2

    Fig. 3.  Differential charge density diagram: (a) Fe16; (b) Fe13Ti2Mo1; (c) Fe10Mn2Ti2Mo2; (d) Fe13Ti1Mo2; (e) Fe13Mn1Ti1Mo1; (f) Fe13Mn1Ti2.

    表 1  M掺杂α-Fe的正交试验设计及原子百分比

    Table 1.  Orthogonal experimental design and atomic percentage content of M-doped α-Fe.

    超胞元素M原子百分比/%
    MnTiMo
    Fe16000
    Fe13Ti2Mo1012.56.25
    Fe13Ti1Mo206.2512.5
    Fe13Mn1Ti26.2512.50
    Fe13Mn1Ti1Mo16.256.256.25
    Fe13Mn1Mo26.25012.5
    Fe13Mn2Ti112.56.250
    Fe13Mn2Mo112.506.25
    Fe10Mn2Ti2Mo212.512.512.5
    下载: 导出CSV

    表 2  Fe16-x-y-zMnxTiyMozε, HformEcoh的计算值

    Table 2.  Calculated values of ε, Hform and Ecoh for Fe16-x-y-zMnxTiyMoz.

    超胞 晶胞体积 ε/% Hform
    /(kJ·mol–1)
    Ecoh
    /(kJ·mol–1)
    Fe16 178.79 –7.51 –449.39
    Fe13Ti2Mo1 190.51 6.56 –16.52 –477.95
    Fe13Ti1Mo2 190.70 6.66 –10.73 –477.96
    Fe13Mn1Ti2 185.61 3.81 –15.48 –460.85
    Fe13Mn1Ti1Mo1 187.73 5.00 –10.40 –461.58
    Fe13Mn1Mo2 188.92 5.67 –5.37 –462.35
    Fe13Mn2Ti1 182.89 2.29 –9.53 –444.06
    Fe13Mn2Mo1 184.48 3.18 –4.58 –445.51
    Fe10Mn2Ti2Mo2 194.98 9.06 –12.97 –473.45
    下载: 导出CSV

    表 3  Fe16-x-y-zMnxTiyMozε, HformEcoh的正交试验分析

    Table 3.  Orthogonal test analysis of ε, Hform and Ecoh of Fe16-x-y-zMnxTiyMoz.

    指标 ε/% Hform/(kJ·mol–1) Ecoh/(kJ·mol–1)
    Mn Ti Mo Mn Ti Mo Mn Ti Mo
    K0 13.22 8.85 6.1 –34.76 –17.46 –32.53 –1405.30 –1357.24 –1354.30
    K1 14.48 13.95 14.47 –31.25 –30.66 –31.50 –1384.78 –1383.60 –1385.04
    K2 14.53 19.43 21.39 –27.08 –44.97 –29.07 –1363.02 –1412.25 –1413.76
    R 1.31 10.58 15.29 7.68 27.51 3.46 42.28 55.01 59.46
    Ranking Mo>Ti>Mn Ti>Mn>Mo Mo>Ti>Mn
    下载: 导出CSV

    表 4  Fe16-x-y-zMnxTiyMoz的独立弹性常数和力学稳定性

    Table 4.  Independent elastic constants and mechanical stability of Fe16-x-y-zMnxTiyMoz.

    试样C11C12C44C11-C12C11+2C12
    Fe16296.273159.033126.763137.240614.339
    Fe13Ti2Mo1292.506158.281117.403134.225609.068
    Fe13Mn2Ti2Mo2293.869148.470116.251145.399590.809
    Fe13Ti1Mo2210.409103.67592.415106.734417.759
    Fe13Mn1Ti1Mo1291.402158.680123.704132.722608.762
    Fe13Mn1Ti2275.790150.536112.712125.254576.862
    下载: 导出CSV

    表 5  Fe16-x-y-zMnxTiyMoz的力学性能参数

    Table 5.  Mechanical property parameters of Fe16-x-y-zMnxTiyMoz.

    超胞 B/GPa G/GPa E/GPa K v HV
    BV BR BH GV GR GH
    Fe16 204.779 204.779 204.779 103.506 94.675 99.091 255.983 2.067 0.292 13.737
    Fe13Ti2Mo1 210.383 210.383 210.383 103.675 92.403 98.039 254.573 2.146 0.298 13.206
    Fe10Mn2Ti2Mo2 196.401 196.401 196.401 98.830 91.632 95.231 245.942 2.062 0.291 13.272
    Fe13Ti1Mo2 202.961 202.961 202.961 97.287 90.163 93.725 243.667 2.165 0.300 12.496
    Fe13Mn1Ti1Mo1 202.921 202.921 202.921 100.767 91.929 96.348 249.548 2.106 0.295 13.168
    Fe13Mn1Ti2 192.287 192.287 192.287 92.678 85.395 89.036 231.393 2.159 0.299 11.933
    下载: 导出CSV
  • [1]

    刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋 2017 物理学报 66 107501Google Scholar

    Liu Q Y, Luo X, Zhu H Y, Han Y W, Liu J X 2017 Acta Phys. Sin. 66 107501Google Scholar

    [2]

    杨宇贤, 王镇华, 王清, 唐才宇, 万鹏, 曹达华, 董闯 2025 物理学报 74 058101Google Scholar

    Yang Y X, Wang Z H, Wang Q, Tang C Y, Wan P, Cao D H, Dong C 2025 Acta Phys. Sin. 74 058101Google Scholar

    [3]

    段修刚, 蔡庆伍, 武会宾 2011 金属学报 47 251

    Duan X G, Cai Q W, Wu H B 2011 Acta Metall Sin. 47 251

    [4]

    Zhu Y Y, Ning L K, Duan C H, Liu E Z, Tong J, Tan Z, Li H Y, Zhao L, Wang Z R, Zheng Z 2025 Rare Metal Materials and Engineering. 51 1845 [祝洋洋, 宁礼奎, 段超辉, 刘恩泽, 佟健, 谭政, 李海英, 赵磊, 王增睿, 郑志 2025 稀有金属与材料 51 1845]

    Zhu Y Y, Ning L K, Duan C H, Liu E Z, Tong J, Tan Z, Li H Y, Zhao L, Wang Z R, Zheng Z 2025 Rare Metal Materials and Engineering. 51 1845

    [5]

    王坤, 徐鹤嫣, 郑雄, 张海丰 2025 物理学报 74 137101Google Scholar

    Wang K, Xu H Y, Zheng X, Zhang H F 2025 Acta Phys. Sin. 74 137101Google Scholar

    [6]

    Qiu S H, Xiao Q Q, Tang H Z, Xie Q 2024 Chin. J. Inorg. Chem. 40 2250

    [7]

    丁璨, 王成豪, 张露露, 孙华斌, 田浩博, 刘骐诺 2025 稀有金属 49 389

    Ding C, Wang C H, Zhang L L, Sun H B, Tian H B, Liu Q N 2025 Chin. J. Rare Metals 49 389

    [8]

    Ito K, Sawada H, Ogata S 2019 Phys. Rev. Mater. 3 013609Google Scholar

    [9]

    Zhang H, Sun M, Liu Y, Ma D, Xu B, Huang M X, Li D Z, Li Y 2021 Acta Mater. 211 116878Google Scholar

    [10]

    Uemori R, Chijiiwa R, Tamehiro H 1994 Appl. Surf. Sci. 76 255

    [11]

    Guo X, Zhou J T, Zhang X X, Yang P, Ren J Q, Lu X F 2022 Comp. Mater. Sci. 214 111673Google Scholar

    [12]

    Li K M, Schuler T, Fu CC, Nastar M 2024 Acta Mater. 281 120355Google Scholar

    [13]

    Neugebauer J, Hickel T 2013 Wires Comput. Mol. Sci. 3 438Google Scholar

    [14]

    Singh A, Wang J, Henkelman G, Li L 2024 J. Chem. Theory Comput. 20 10022Google Scholar

    [15]

    Forslund A, Jung J H, Srinivasan P, Grabowski B 2023 Phys. Rev. B 107 174309Google Scholar

    [16]

    Fedorov M, Wróbel J S, Fernández-Caballero A, Kurzydłowski K J, Nguyen-Manh D 2020 Phys. Rev. B 101 174416Google Scholar

    [17]

    Wang H Y, Hu Q K, Yang W P, Li X S 2025 Acta Phys. Sin. 65 077101 [王海燕, 胡前库, 杨文朋, 李旭升 2025 物理学报 65 077101]

    Wang H Y, Hu Q K, Yang W P, Li X S 2025 Acta Phys. Sin. 65 077101

    [18]

    Błachowski A, Ruebenbauer K, Żukrowski J 2009 J. Alloys Compd. 482 23Google Scholar

    [19]

    Medvedeva N I, Park M S, Van Aken D C, Medvedeva J E 2014 J. Alloys Compd. 582 475Google Scholar

    [20]

    Hao P D, Chen P, Deng L, Li F X, Yi J H, Şopu D, Eckert J, Tao J M, Liu Y C, Bao R 2020 J. Mater. Res. Technol. 9 3488Google Scholar

    [21]

    Toriyama M Y, Ganose A M, Dylla M, Anand S, Park J, Brod M K, Munro J M, Persson K A, Jain A, Snyder G J 2022 Mater. Today Electron. 1 100002Google Scholar

    [22]

    Zhao W B, Guo E J, Zhang K, Tian X H, Tan C L 2021 Scripta Mater. 199 113863Google Scholar

    [23]

    Hu Y J, Shang S L, Wang Y, Darling K A, Butler B G, Kecskes L J, Liu Z K 2016 J. Alloys Compd. 671 267Google Scholar

    [24]

    Luo Y H 2022 Materials 15 5656Google Scholar

    [25]

    Nasir M T, Hadi M A, Rayhan M A, Ali M A, Hossain M M, Roknuzzaman M, Naqib S H, Islam A K M A, Uddin M M, Ostrikov K 2017 Phys. Status Solidi (b) 254 1700336Google Scholar

    [26]

    Li H, Wang Z J, Sun G D, Yu P F, Zhang W X 2016 Solid State Commun. 237 24

    [27]

    Ye D 2005 Mater. Chem. Phys. 93 495Google Scholar

    [28]

    Wang G, Schönecker S, Hertzman S, Hu Q M, Johansson B, Kwon S K, Vitos L 2015 Phys. Rev. B 91 224203Google Scholar

    [29]

    Lee C, Song G, Gao M C, Feng R, Chen P, Brechtl J, Chen Y, An K, Guo W, Poplawsky J D, Li S, Samaei A T, Chen W, Hu A, Choo H, Liaw P K 2018 Acta Mater. 160 158Google Scholar

  • [1] 胡庭赫, 李直昊, 张千帆. 元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20231735
    [2] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20172290
    [3] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, doi: 10.7498/aps.67.20172356
    [4] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, doi: 10.7498/aps.66.146101
    [5] 樊涛, 曾庆丰, 于树印. Hf-N体系的晶体结构预测和性质的第一性原理研究. 物理学报, doi: 10.7498/aps.65.118102
    [6] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究. 物理学报, doi: 10.7498/aps.65.157201
    [7] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, doi: 10.7498/aps.65.077101
    [8] 石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利. H掺杂α-Fe2O3的第一性原理研究. 物理学报, doi: 10.7498/aps.64.116301
    [9] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.64.207101
    [10] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.64.087101
    [11] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, doi: 10.7498/aps.62.187102
    [12] 王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺. 新型稀磁半导体Mn掺杂LiZnAs的第一性原理研究. 物理学报, doi: 10.7498/aps.62.137101
    [13] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, doi: 10.7498/aps.62.103102
    [14] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究. 物理学报, doi: 10.7498/aps.61.087101
    [15] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.60.047104
    [16] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, doi: 10.7498/aps.58.216
    [17] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算. 物理学报, doi: 10.7498/aps.57.1054
    [18] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.56.1585
    [19] 金 灿, 朱 骏, 毛翔宇, 何军辉, 陈小兵. Mo掺杂SrBi4Ti4O15陶瓷的铁电介电性能. 物理学报, doi: 10.7498/aps.55.3716
    [20] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, doi: 10.7498/aps.54.4395
计量
  • 文章访问数:  275
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-04
  • 修回日期:  2025-09-24
  • 上网日期:  2025-10-14

/

返回文章
返回