搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

M(Mn、Ti、Mo)掺杂α-Fe稳定性、电子结构和力学性能的第一性原理计算

华孙铭樯 孔得通 胡晓 厍旭 王枭 王远

引用本文:
Citation:

M(Mn、Ti、Mo)掺杂α-Fe稳定性、电子结构和力学性能的第一性原理计算

华孙铭樯, 孔得通, 胡晓, 厍旭, 王枭, 王远

First-Principles Investigation of the Stability, Electronic Structure, and Mechanical Properties of M (Mn, Ti, Mo)-Doped α -Fe

HUA Sunmingqiang, KONG Detong, HU Xiao, SHE Xu, WANG Xiao, Wang Yuan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 针对目前钢铁材料掺杂合金元素改性主要从细晶、弥散强化两方面入手,涉及铁素体基体相本身性能改善的研究不足。本文结合第一性原理计算和正交试验法,构建Fe16-x-y-zMnxTiyMoz (xyz=0、1或2)三元掺杂超胞模型,系统研究M (Mn、Ti、Mo)掺杂对其稳定性、力学性能和电子结构的影响。形成热(Hform)计算表明,所有固溶体均能自发形成,且Ti掺杂最利于固溶体形成,Mn次之,Mo最不利;结合能(Ecoh)计算表明,所有固溶体均具有结构稳定性,且Mo掺杂对其结构稳定性的影响最大,Ti掺杂次之,Mn掺杂最小;电子结构分析表明,掺杂原子Mn 3d,Ti 3d和Mo 4d与Fe 3d态重叠增加和出现明显的杂化现象,导致费米能级降低,且Fe13Ti1Mo2费米能级最低,稳定性最好,与结合能判定结果一致。力学性能计算表明,M掺杂降低了固溶体的抗拉压变形能力和硬度,但却提升了其塑性,这为韧塑性铁素体基钢铁材料的设计提供了理论借鉴与技术参考。
    Ferrite (α-Fe), as the fundamental phase of steel materials, plays a decisive role in determining their macroscopic mechanical behavior through its microscopic properties—particularly in engineering applications involving resistance to plastic deformation and fracture, fatigue resistance, wear resistance, and low-temperature toughness. Therefore, alloying elements are commonly introduced to improve the performance of steel via mechanisms such as grain refinement strengthening and precipitation strengthening. However, these strengthening mechanisms have not thoroughly investigated the effects of doped alloying elements on the stability, electronic structure, and mechanical properties of ferrite itself. In this study, orthogonal experimental design and first-principles calculations were employed to investigate the effects of ternary alloy doping with M (Mn, Ti, Mo) on the stability, electronic structure, and mechanical properties of a ferrite-based supercell model Fe16-x-y-zMnxTiyMoz (x, y, or z = 0, 1, or 2). The aim is to provide both theoretical insight and experimental reference for improving the comprehensive performance of ferrite-based steels by modifying the properties of the matrix phase. The results of the formation enthalpy (Hform) calculations indicate that all solid solutions have negative formation enthalpies, suggesting that they can form spontaneously. Among them, Ti doping is the most favorable for solid solution formation, followed by Mn, while Mo is the least favorable. The Fe13Ti1Mo2 configuration is the easiest to form spontaneously. The cohesive energy (Ecoh) results demonstrate that all solid solutions exhibit structural stability.Fe13Ti1Mo2 has the largest (most negative) cohesive energy of -477.96 eV, indicating it possesses the highest structural stability. Mo doping contributes the most to stability enhancement, followed by Ti, while Mn has the least effect. Electronic structure calculations reveal that M doping consistently reduces the density of states (DOS) at the Fermi level for Fe16-x-y-zMnxTiyMoz. The lowest DOS at the Fermi level, 4.294, is found inFe13Ti1Mo2, indicating enhanced hybridization and overlap between Mn 3d, Ti 3d, Mo 4d, and Fe 3d states. This strong hybridization leads to a lowering of the Fermi level and contributes to the high stability of theFe13Ti1Mo2 phase. Mechanical property calculations suggest that M doping reduces the Young’s modulus (E) and Vickers hardness (Hv) of the solid solutions. However, the K values (K=GH/BH) are all greater than 1.75, and Poisson’s ratios (ν) exceed 0.26, implying that while stiffness and hardness decrease, the ductility of the materials is improved. This provides valuable guidance for the design of ductile and tough ferrite-based steel materials.
  • [1]

    Liu Q Y, Luo X, Zhu H Y, Han Y W, Liu J X 2017 Acta Phys. Sin. 66107501(in Chinese) [刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋2025物理学报66058101]

    [2]

    Yang Y X, Wang Z H, Wang Q, Tang C Y, Wan P, Cao D H, Dong C 2025 Acta Phys. Sin. 74058101(in Chinese) [杨宇贤, 王镇华, 王清, 唐才宇, 万鹏, 曹达华, 董闯2025物理学报74058101]

    [3]

    Duan X G, Cai Q W, Wu H B 2011 Acta Metall Sin. 47251(in Chinese) [段修刚, 蔡庆伍, 武会宾2011金属学报47251]

    [4]

    Zhu Y Y, Ning L K, Duan C H, Liu E Z, Tong J, Tan Z, Li H Y, Zhao L, Wang Z R, Zheng Z 2025 Rare Metal Materials and Engineering. 511845(in Chinese) [祝洋洋, 宁礼奎, 段超辉, 刘恩泽, 佟健, 谭政, 李海英,赵磊,王增睿,郑志2022稀有金属与材料511845]

    [5]

    Wang K, Xu H Y, Zheng X, Zhang H F 2025 Acta Phys. Sin. 74137101(in Chinese) [王坤, 徐鹤嫣, 郑雄, 张海丰2025物理学报74137101]

    [6]

    Qiu S H, Xiao Q Q, Tang H Z, Xie Q 2024 Chinese Journal of Inorganic Chemistry. 402250

    [7]

    Zhu Y Y, Ning L K, Duan C H, Liu E Z, Tong J, Tan Z, Li H Y, Zhao L, Wang Z R, Zheng Z 2025 Chinese Journal of Rare Metals. 49389(in Chinese) [丁璨, 王成豪, 张露露, 孙华斌, 田浩博, 刘骐诺2025稀有金属49389]

    [8]

    Ito K, Sawada H, Ogata S 2019 Physical Review Materials. 3013609

    [9]

    Zhang H, Sun M, Liu Y, Ma D, Xu B, Huang M X, Li D Z, Li Y 2021 Acta Materialia. 211116878

    [10]

    Uemori R, Chijiiwa R, Tamehiro H 1994 Applied Surface Science. 76255

    [11]

    Guo X, Zhou J, Zhang, X, Yang P, Ren J, Lu, X 2021 Computational Materials Science.

    [12]

    Li K, Schuler T, Fu CC, Nastar M 2024 Acta Materialia. 281120355

    [13]

    Neugebauer J, Hickel T 2013 Wiley Interdisciplinary Reviews: Computational Molecular Science. 3438

    [14]

    Singh A, Wang J, Henkelman G, Li L 2024 Journal of Chemical Theory and Computation. 2010022

    [15]

    Forslund A, Jung J H, Srinivasan P, Grabowski B 2023 Journal of Physical Review B. 107174309

    [16]

    Fedorov M, Wróbel J S, Fernández-Caballero A, Kurzydłowski K J, Nguyen-Manh D 2020 Physical Review B. 101174416

    [17]

    Wang H Y, Hu Q K, Yang W P, Li X S 2025 Acta Phys. Sin. 65077101(in Chinese) [王海燕, 胡前库, 杨文朋, 李旭升2016物理学报65077101]

    [18]

    Błachowski A, Ruebenbauer K, Żukrowski J 2009 Journal of alloys and compounds. 482

    [19]

    Medvedeva N I, Park M S, Van Aken D C, Medvedeva J E 2014 Journal of alloys and compounds. 582475

    [20]

    Hao P D, Chen P, Deng L, Li F X, Yi J H, Şopu D, Eckert J, Tao J M, Liu Y C, Bao R 2020 Journal of Materials Research and Technology. 93488

    [21]

    Toriyama M Y, Ganose A M, Dylla M, Anand S, Park J, Brod M K, Munro J M, Persson K A, Jain A, Snyder G J 2022 Materials Today Electronics. 1100002

    [22]

    Zhao W, Guo E, Zhang K, Tian X, Tan C 2021 Scripta Materialia. 199113863

    [23]

    Hu Y J, Shang S L, Wang Y, Darling K A, Butler B G, Kecskes L J, Liu Z K 2016 Journal of Alloys and Compounds. 671267

    [24]

    Luo, Y 2022 Materials. 155656

    [25]

    Nasir M T, Hadi M A, Rayhan M A, Ali M A, Hossain M M, Roknuzzaman M, Naqib S H, Islam A K M A, Uddin M M, Ostrikov K 2017 Physica status solidi (b). 2541700336

    [26]

    Li H, Wang Z, Sun G, Yu P, Zhang W 2016 Solid State Communications. 23724

    [27]

    Ye D 2005 Materials chemistry and physics. 93495

    [28]

    Wang G, Schönecker S, Hertzman S, Hu Q M, Johansson B, Kwon S K, Vitos L 2015 Physical Review B. 91224203

    [29]

    Lee C, Song G, Gao M C, Feng R, Chen P, Brechtl J, Chen Y, An K, Guo W, Poplawsky J D, Li S, Samaei A T, Chen W, Hu A, Choo H, Liaw P K 2018 Acta Materialia. 160158

  • [1] 胡庭赫, 李直昊, 张千帆. 元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20231735
    [2] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20211241
    [3] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20172290
    [4] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, doi: 10.7498/aps.66.196101
    [5] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, doi: 10.7498/aps.66.146101
    [6] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, doi: 10.7498/aps.65.176201
    [7] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究. 物理学报, doi: 10.7498/aps.65.157201
    [8] 樊涛, 曾庆丰, 于树印. Hf-N体系的晶体结构预测和性质的第一性原理研究. 物理学报, doi: 10.7498/aps.65.118102
    [9] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, doi: 10.7498/aps.65.077101
    [10] 石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利. H掺杂α-Fe2O3的第一性原理研究. 物理学报, doi: 10.7498/aps.64.116301
    [11] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.64.087101
    [12] 李宗宝, 王霞, 贾礼超. N/Fe共掺杂锐钛矿TiO2(101)面协同作用的第一性原理研究. 物理学报, doi: 10.7498/aps.62.203103
    [13] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, doi: 10.7498/aps.62.036801
    [14] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, doi: 10.7498/aps.62.103102
    [15] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, doi: 10.7498/aps.60.086802
    [16] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, doi: 10.7498/aps.60.047104
    [17] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, doi: 10.7498/aps.58.8002
    [18] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, doi: 10.7498/aps.58.216
    [19] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, doi: 10.7498/aps.56.1585
    [20] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, doi: 10.7498/aps.54.4395
计量
  • 文章访问数:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-14

/

返回文章
返回