搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

马赫反射波系冲击诱导平面界面失稳的演化规律与尺度效应

梁正虹 张震 张恩来 邹立勇

引用本文:
Citation:

马赫反射波系冲击诱导平面界面失稳的演化规律与尺度效应

梁正虹, 张震, 张恩来, 邹立勇

Evolution regularity and scale effects of planar interface instability induced by shock of Mach reflection wave configuration

LIANG Zhenghong, ZHANG Zhen, ZHANG Enlai, ZOU Liyong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 针对实际应用中由非均匀激波驱动的界面失稳问题, 开展了马赫反射波系与平面气体界面相互作用的机理研究, 重点探讨了马赫杆尺度效应对界面失稳演化和扰动增长的影响. 结果表明, 马赫反射波系冲击界面时, 通过复杂波系作用在界面上印刻速度扰动, 诱发界面失稳. 随后, 在波后流场非均匀性的影响下, 界面进一步演化形成凹腔和“射流状气泡”结构, 显著区别于经典Richtmyer-Meshkov不稳定性中的尖钉与气泡结构. 扰动振幅的定量分析表明, 界面失稳演化可分为初期线性增长和后期非线性发展两个阶段. 其中, 滑移线弯曲和卷曲射流驱动的界面变形, 是界面演化向非线性阶段转变的关键物理机制. 马赫杆尺度决定了滑移线卷曲和射流形成的特征时间. 在线性阶段, 扰动增长由马赫反射波系的激波强度和入射角度主导, 与马赫杆尺度无关; 而在非线性阶段, 界面扰动增长率随着马赫杆尺度的增大而增大. 基于数值模拟结果对理论模型进行了考察, 结果表明, 现有理论模型可有效地预测马赫反射波系印刻的界面速度扰动, 但无法考虑马赫杆尺度效应和波后非均匀流场的影响. 本研究揭示了界面失稳演化与马赫反射波系激波强度、入射角度及马赫杆尺度之间的内在关系, 对界面扰动增长理论模型的建立具有重要意义.
    In order to better understand and predict the complex interface instability phenomena induced by non-uniform shock waves in practical engineering and scientific applications, a detailed investigation has been conducted on the interaction between a Mach reflection wave configuration and a planar gas interface. Particular attention is paid to the role of the Mach stem scale in governing the evolution of interface instability and the associated mechanisms of perturbation growth. Numerical simulations show that when the Mach reflection wave configuration interacts with the interface, the complex wave structures impart initial velocity perturbations onto the interface, thereby triggering instability. This process is further influenced by the non-uniform post-shock flow field, under which the initially perturbed interface gradually evolves into a concave cavity and subsequently into jet-like bubble structures. These patterns are notably different from the spike and bubble morphologies observed in classical Richtmyer-Meshkov instability. A systematic quantitative analysis of the perturbation amplitude reveals that the instability growth can be divided into two different stages: an initial linear growth stage and a nonlinear development stage. The transition between these stages is governed by interface deformation mechanisms, particularly the bending of the slip line intersecting the interface and the subsequent formation of the curl-up jet. When the shock strength and incidence angle of the Mach reflection configuration are kept constant, the Mach stem scale emerges as the decisive parameter controlling the characteristic time of slip line curling and jet development. The results show that during the linear stage, perturbation growth is primarily determined by shock strength and incidence angle, and is insensitive to the Mach stem scale. In contrast, during the nonlinear stage, the perturbation growth rate increases with the augmentation of Mach stem scales, highlighting the scale-dependent nature of the nonlinear stage. Furthermore, theoretical models are critically examined against numerical simulation results. While existing models can reasonably capture the initial velocity perturbations imprinted on the interface by the Mach reflection configuration, they are unable to combine the effects of Mach stem scale and the sustained driving influence of post-shock flow non-uniformities. This limitation underscores the need for improved theoretical descriptions. Overall, these findings provide new insights into the intrinsic coupling among shock strength, incidence angle, and Mach stem scale in determining the evolution of shock-induced interface instability. These insights not only deepen the fundamental understanding of Richtmyer-Meshkov-type instabilities in non-classical regimes but also provide valuable references for the development of predictive theoretical models and also for engineering applications such as inertial confinement fusion and high-speed propulsion systems.
  • 图 1  计算域示意图

    Fig. 1.  Schematic of the computational domain.

    图 2  (a) 实验与数值模拟圆柱绕射波系结构对比; (b) 实验与数值模拟圆柱绕射波系三波点轨迹对比

    Fig. 2.  (a) Comparison of the wave configuration of the diffracted shock; (b) comparison of the triple point trajectories of the diffracted shock.

    图 3  数值模拟和实验结果对比 (a) 界面演化图像; (b) 界面纵向高度h

    Fig. 3.  Comparison of the numerical and experimental results: (a) The interface morphology; (b) the interface height h.

    图 4  平面激波绕射刚体圆柱波系结构示意图

    Fig. 4.  Schematic diagram of the planar shock diffracting around the cylinder.

    图 5  三种情形入射马赫反射波系

    Fig. 5.  Incident Mach reflection wave configuration for three cases.

    图 6  马赫反射波系与平面界面作用过程的数值纹影图(左)和波系示意图(右) (a) t = –4 μs; (b) t = –1 μs; (c) t = 0 μs; (d) t = 5 μs

    Fig. 6.  Numerical schlieren images (left) and wave configuration diagrams (right) of the flow field resulting from the interaction between a Mach reflection wave configuration and an interface: (a) t = –4 μs; (b) t = –1 μs; (c) t = 0 μs; (d) t = 5 μs.

    图 7  马赫反射波系冲击诱导的界面法向速度沿界面分布规律

    Fig. 7.  Longitudinal velocity along the interface imparted by the Mach reflection wave configuration.

    图 8  情形Ⅰ界面演化图像

    Fig. 8.  Evolution of the interface for case Ⅰ.

    图 9  情形Ⅰ界面演化定量分析 (a) 界面扰动振幅; (b) 界面扰动增长率; (c) 气泡头部速度; (d) 凹腔肩部和底部的高度

    Fig. 9.  Quantitative analysis of interface evolution for case Ⅰ: (a) Interface perturbation amplitude; (b) interface perturbation growth rate; (c) the velocity of the bubble head; (d) the height of the cavity shoulder and cavity bottom.

    图 10  情形Ⅰ不同时刻的界面涡量云图 (a) t = 70 μs; (b) t = 200 μs; (c) t = 300 μs; (d) t = 400 μs

    Fig. 10.  Contour of vorticity at different evolution time for case Ⅰ: (a) t = 70 μs; (b) t = 200 μs; (c) t = 300 μs; (d) t = 400 μs.

    图 11  三种情形不同时刻的涡量云图

    Fig. 11.  Contour of vorticity at different evolution time for three cases.

    图 12  (a) 三种情形界面扰动振幅变化; (b) 三种情形无量纲扰动振幅变化

    Fig. 12.  (a) Time variations of amplitude for three cases; (b) time variations of dimensionless amplitude for three cases.

    图 13  三种情形界面形态对比 (a) τ = 8.85; (b) τ = 17.70; (c) τ = 26.62; (d) τ = 35.82

    Fig. 13.  Comparison of the interface morphologies at different times for case I, II and III: (a) τ = 8.85; (b) τ = 17.70; (c) τ = 26.62; (d) τ = 35.82.

    图 14  三种情形τ = 17.70时刻流场对称面速度分布

    Fig. 14.  Velocity distribution in cavity symmetric plane at τ = 17.70 for three cases.

    图 15  凹腔肩部、底部的高度变化与理论模型预测对比

    Fig. 15.  Comparison of the height variations of the cavity shoulder and cavity bottom with the theoretical model predictions.

    图 16  情形Ⅰ波后流场的速度非均匀性 (a) 滑移线内外侧速度分布; (b) 波后高速三角区对称面压力分布

    Fig. 16.  Velocity non-uniformity in the post-wave flow field for case Ⅰ: (a) Velocity distribution on both sides of the slip line; (b) pressure distribution on the symmetry axis of the high-speed triangular area.

    表 1  入射马赫反射波系参数

    Table 1.  Parameters of the incident Mach reflection wave configuration.

    Case d/mm l/mm η Msi Msm αi/(°) lm/mm
    5 20 4.0 1.62 1.82 14.2 7.12
    7.5 30 4.0 1.61 1.82 14.3 10.56
    10 40 4.0 1.62 1.82 14.6 14.04
    Num[10] 10 40 4.0 1.62 1.83 14.4 /
    下载: 导出CSV
  • [1]

    Richtmyer R D 1960 Commun. Pure. Appl. Math. 13 297Google Scholar

    [2]

    Meshkov E E 1969 Fluid Dyn. 4 101

    [3]

    Smalyuk V A, Weber C R, Landen O L, et al. 2020 Plasma Phys. Controlled Fusion 62 014007Google Scholar

    [4]

    Chen Z, Yuan Y T, Wang L F, Tu S Y, Miao W Y, Wu J F, Ye W H, Deng K L, Hou L F, Wei M X, Li Y J, Yin C S, Dai Z S, Han X Y, Li Y S, Li Z Y, Zhang C, Pu Y D, Dong Y S, Yang D, Yang J M, Zheng W D, Zou S Y, Wang M, Ding Y K, Zhu S P, Zhang W Y, He X T 2024 Phys. Rev. Lett. 133 135101Google Scholar

    [5]

    孙锦山 2009 力学进展 39 460

    Sun J S 2009 Adv. Mech. 39 460

    [6]

    王裴, 何安民, 邵建立, 孙海权, 陈大伟, 刘文斌, 刘军 2018 中国科学: 物理学 力学 天文学 48 094608Google Scholar

    Wang P, He A M, Shao J L, Sun H Q, Chen D W, Liu W B, Liu J 2018 Sci. Sin. -Phys. Mech. Astron. 48 094608Google Scholar

    [7]

    Ren Z, Wang B, Xiang G, Zhao D, Zhang L 2019 Prog. Aeronaut. Sci. 105 40Google Scholar

    [8]

    Dimotakis P E 2005 Annu. Rev. Fluid Mech. 37 329Google Scholar

    [9]

    邹立勇, 吴强, 李欣竹 2020 中国科学: 物理学 力学 天文学 50 104702Google Scholar

    Zou L Y, Wu Q, Li X Z 2020 Sci. Sin. -Phys. Mech. Astron. 50 104702Google Scholar

    [10]

    Zhang E L, Liao S F, Zou L Y, Zhai Z G, Liu J H, Li X Z 2024 J. Fluid Mech. 984 A49Google Scholar

    [11]

    Zhou Y, Sadler J D, Hurricane O A 2025 Annu. Rev. Fluid Mech. 57 197Google Scholar

    [12]

    Zhou Y 2017 Phys. Rep. 720–722 1

    [13]

    孙贝贝, 叶文华, 张维岩 2023 物理学报 72 194701Google Scholar

    Sun B B, Ye W H, Zhang W Y 2023 Acta Phys. Sin. 72 194701Google Scholar

    [14]

    张升博, 张焕好, 陈志华, 郑纯 2023 物理学报 72 105202Google Scholar

    Zhang S B, Zhang H H, Chen Z H, Zheng C 2023 Acta Phys. Sin. 72 105202Google Scholar

    [15]

    Zhai Z G, Zou L Y, WU Q, Luo X S 2018 Proc. Inst. Mech. Eng. , Part C 232 2830Google Scholar

    [16]

    Xu A G, Zhang D J, Gan Y B 2024 Front. Phys 19 42500Google Scholar

    [17]

    袁永腾, 涂绍勇, 尹传盛, 李纪伟, 戴振生, 杨正华, 侯立飞, 詹夏宇, 晏骥, 董云松, 蒲昱东, 邹士阳, 杨家敏, 缪文勇 2021 物理学报 70 205203Google Scholar

    Yuan Y T, Tu S Y, Yin C S, Li J W, Dai Z S, Yang Z H, Hou L F, Zhan X Y, Yan J, Dong Y S, Pu Y D, Zou S Y, Yang J M, Miao W Y 2021 Acta Phys. Sin. 70 205203Google Scholar

    [18]

    Zhou Y 2024 Hydrodynamic Instabilities and Turbulence: Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz Mixing (Cambridge: Cambridge University Press) pp242–246

    [19]

    Thomas V A, Kares R J 2012 Phys. Rev. Lett. 109 075004Google Scholar

    [20]

    Ishizaki R, Nishihara K, Sakagami H, Ueshima Y 1996 Phys. Rev. E 53 R5592Google Scholar

    [21]

    Wang H, Zhai Z G, Luo X S 2022 J. Fluid Mech. 947 A42Google Scholar

    [22]

    刘金宏, 邹立勇, 曹仁义, 廖深飞, 王彦平 2014 力学学报 46 475

    Liu J H, Zou L Y, Cao R Y, Liao S F, Wang Y P 2014 Chin. J. Theor. Appl. Mech. 46 475

    [23]

    Zou L Y, Liu J H, Liao S F, Zheng X X, Zhai Z G, Luo X S 2017 Phys. Rev. E 95 013107Google Scholar

    [24]

    Liao S F, Zhang W B, Chen H, Zou L Y, Liu J H, Zheng X X 2019 Phys. Rev. E 99 013103Google Scholar

    [25]

    Wang Z, Wang T, Bai J S, Xiao J X 2019 J. Turbul. 20 481

    [26]

    He Y F, Peng N F, Li H F, Tian B L, Yang Y 2023 Phys. Rev. Fluids 8 63402.1

    [27]

    “BlastFoam: A Solver for Compressible Multi-Fluid Flow with Application to High-Explosive Detonation. ” Synthetik Applied Technologies LLC. 2020

    [28]

    Toro E F, Spruce M, Speares W 1994 Shock Waves 4 25Google Scholar

    [29]

    Li L F, Jin T, Zou L Y, Luo K, Fan J R 2023 Phys. Fluids 35 026104Google Scholar

    [30]

    Chen Y F, Jin T, Liang Z H, Zou L Y 2023 Phys. Fluids 35 114103Google Scholar

    [31]

    Bryson A E, Gross R W 1961 J. Fluid Mech. 10 1Google Scholar

    [32]

    张恩来, 廖深飞, 邹立勇, 刘金宏, 李欣竹, 梁正虹 2024 中国科学: 物理学 力学 天文学 54 104704Google Scholar

    Zhang E L, Liao S F, Zou L Y, Liu J H, Li X Z, Liang Z H 2024 Sci. Sin. Phys. Mech. Astron 54 104704Google Scholar

    [33]

    霍新贺, 王立锋, 陶烨晟, 李英骏 2013 物理学报 62 144705Google Scholar

    Huo X H, Wang L F, Tao Y S, Li Y J 2013 Acta Phys. Sin. 62 144705Google Scholar

    [34]

    Gao Y L, Jiang Z L 2009 Explosion and Shock Waves 29 143

    [35]

    Winkler K A, Chalmers J W, Hodson S W, Woodward P R, Zabusky N J 1987 Phys. Today 40 28

    [36]

    Henderson L F, Vasilev E I, Ben-Dor G, Elperin T 2003 J. Fluid Mech. 479 259Google Scholar

    [37]

    Liang Y, Ding J C, Zhai Z G, Si T, Luo X S 2017 Phys. Fluids 29 086101Google Scholar

    [38]

    Zhai Z G, Liang Y, Liu L L, Ding J C, Luo X S, Zou L Y 2018 Phys. Fluids 30 046104Google Scholar

    [39]

    Zou L Y, Al-Marouf M, Cheng W, Samtaney R, Ding J C, Luo X S 2019 J. Fluid Mech. 879 448Google Scholar

  • [1] 王曦, 彭建祥, 胡晓棉, 俞宇颖, 胡建波, 殷建伟, 潘昊, 吴子辉. 金属锡Richtmyer-Meshkov不稳定性的高应变率强度行为. 物理学报, doi: 10.7498/aps.74.20250699
    [2] 张升博, 张焕好, 张军, 毛勇建, 陈志华, 石启陈, 郑纯. 激波与轻质气柱作用过程的磁场抑制特性. 物理学报, doi: 10.7498/aps.73.20231916
    [3] 张升博, 张焕好, 陈志华, 郑纯. 不同界面组分分布对Richtmyer-Meshkov不稳定性的影响. 物理学报, doi: 10.7498/aps.72.20222090
    [4] 党子涵, 郑纯, 张焕好, 陈志华. 汇聚激波诱导具有正弦扰动双层重气柱界面的演化机理. 物理学报, doi: 10.7498/aps.71.20221012
    [5] 袁永腾, 涂绍勇, 尹传盛, 李纪伟, 戴振生, 杨正华, 侯立飞, 詹夏宇, 晏骥, 董云松, 蒲昱东, 邹士阳, 杨家敏, 缪文勇. 冲击波波后辐射效应对Richtmyer-Meshkov不稳定性增长影响的实验研究. 物理学报, doi: 10.7498/aps.70.20210653
    [6] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理. 物理学报, doi: 10.7498/aps.69.20200363
    [7] 董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎. 不同磁场构型下Richtmyer-Meshkov不稳定性的数值研究及动态模态分解. 物理学报, doi: 10.7498/aps.68.20190410
    [8] 董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎. 磁控条件下激波冲击三角形气柱过程的数值研究. 物理学报, doi: 10.7498/aps.67.20181127
    [9] 李冬冬, 王革, 张斌. 激波作用不同椭圆氦气柱过程中流动混合研究. 物理学报, doi: 10.7498/aps.67.20180879
    [10] 李俊涛, 孙宇涛, 胡晓棉, 任玉新. 激波冲击V形界面重气体导致的壁面与旋涡作用及其对湍流混合的影响. 物理学报, doi: 10.7498/aps.66.235201
    [11] 吕明, 宁智, 阎凯. 线性与非线性稳定性理论下液体射流空间发展的对比研究. 物理学报, doi: 10.7498/aps.65.166801
    [12] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究. 物理学报, doi: 10.7498/aps.64.024701
    [13] 陈喆, 吴九汇, 陈鑫, 雷浩, 侯洁洁. 流经矩形喷嘴的超音速射流啸叫模式切换的实验研究. 物理学报, doi: 10.7498/aps.64.054703
    [14] 沙莎, 陈志华, 张庆兵. 激波与SF6球形气泡相互作用的数值研究. 物理学报, doi: 10.7498/aps.64.015201
    [15] 沙莎, 陈志华, 薛大文, 张辉. 激波与SF6梯形气柱相互作用的数值模拟. 物理学报, doi: 10.7498/aps.63.085205
    [16] 张强, 陈鑫, 何立明, 荣康. 矩形喷口欠膨胀超声速射流对撞的实验研究. 物理学报, doi: 10.7498/aps.62.084706
    [17] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究. 物理学报, doi: 10.7498/aps.62.144705
    [18] 沙莎, 陈志华, 薛大文. 激波冲击R22重气柱所导致的射流与混合研究. 物理学报, doi: 10.7498/aps.62.144701
    [19] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究. 物理学报, doi: 10.7498/aps.61.075207
    [20] 何枫, 杨京龙, 沈孟育. 激波和剪切层相互作用下的超音速射流. 物理学报, doi: 10.7498/aps.51.1918
计量
  • 文章访问数:  420
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-06
  • 修回日期:  2025-09-30
  • 上网日期:  2025-10-10

/

返回文章
返回