搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非热等离子体在能源材料缺陷工程中的应用与展望

解志鹏 张达 梁风

引用本文:
Citation:

非热等离子体在能源材料缺陷工程中的应用与展望

解志鹏, 张达, 梁风

Application and Prospect of Non-thermal Plasma in Defect Engineering of Energy Materials

XIE Zhipeng, ZHANG Da, LIANG feng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 非热等离子体 (Non-Thermal Plasma, NTP) 作为一种在接近室温条件下高效实现材料制备与改性的先进技术, 近年来在能源材料领域备受关注. 由于其电子温度高而整体气体温度低, NTP能够在避免热损伤的前提下, 通过引入空位、杂原子掺杂, 调控孔隙率和表面粗糙程度等多尺度缺陷, 显著改善电极材料的电化学性能. 等离子体-材料表面相互作用是一个复杂的体系, 涉及等离子体与材料之间的相互影响规律, 深入理解该作用机制对实现NTP改性精准调控材料缺陷类型、密度、空间分布至关重要. 本综述系统总结了NTP在能源材料刻蚀和掺杂领域的应用, 重点阐述了缺陷的生成及其对等离子体与材料表面相互作用中的影响. 最后, 分析了NTP技术规模化应用过程中面临的主要挑战并对其未来发展进行了展望.
    Non-Thermal Plasma (NTP), as an advanced technology capable of efficiently synthesizing and modifying materials under near-ambient temperature, has attracted significant attention in the field of energy materials in recent years. Owing to high electron temperature and low bulk gas temperature, NTP can significantly enhance the electrochemical performance of electrode materials by introducing vacancies, enabling heteroatom doping, and regulating multiscale defects such as porosity and surface roughness, while avoiding thermal damage. The plasma-material surface interaction is a complex system involving mutual influences between the plasma and the material. A deep understanding of this mechanism is essential for achieving precise control over defect type, density, and spatial distribution via NTP modification. This review systematically summarizes the applications of NTP in etching and doping processes for energy materials, with a particular emphasis on defect generation and its role in plasma–surface interactions. Finally, the major challenges associated with the large-scale application of NTP technology are discussed, and future perspectives are outlined.
  • [1]

    Zhang H, Chen L, Dong F, Lu Z W, Lv E M, Dong X L, Li H X, Yuan Z Y, Peng X W, Yang S H, Qiu J S, Guo Z X, Wen Z 2024 Energ. Environ. Sci. 17 6435

    [2]

    Do V H, Lee J M 2024 Chem. Soc. Rev. 53 2693

    [3]

    Zhang Y Q, Liu J J, Xu Y F, Xie C, Wang S Y, Yao X D 2024 Chem. Soc. Rev. 53 10620

    [4]

    Muhammad P, Zada A, Rashid J, Hanif S, Gao Y N, Li C C, Li Y Y, Fan K L, Wang Y L 2024 Adv. Funct. Mater. 34 2314686

    [5]

    Zheng J X, Meng D P, Guo J X, Liu X B, Zhou L, Wang Z 2024 Adv. Mater. 36 2405129

    [6]

    Shen C, Ye T L, Yang P X, Chen G Y 2024 Adv. Mater. 36 2401498

    [7]

    Sun L Z, Pan X, Xie Y N, Zheng J G, Xu S H, L L, Zhao G H 2024. Angew. Chem. Int. Edit. 63 e202402176

    [8]

    Zhang Y Q, Tao L, Xie C, Wang D D, Zou Y Q, Chen R, Wang Y R, Jia C K, Wang S Y 2020 Adv. Mater. 32 1905923

    [9]

    Shi F C, Jiang J Q, Wang X, Gao Y, Chen C, Chen G R, Dudko N, Nevar A A, Zhang D S 2024 Chem. Commun. 60 2700

    [10]

    Wang Z, Chen J, Sun S, Huang Z Q, Zhang X Y, Li X Y, Dong H S 2022 Energy Storage Mater, 50 161

    [11]

    Ye Z P, Zhao L, Nikiforov A, Giraudon J M, Chen Y, Wang J D, Tu X 2022 Adv. Colloid Interfac. 308 102755

    [12]

    Morent R, DE G. N, Verschuren J, De C C, Kiekens P, Leys C 2008 Surf. Coat. Tech. 202 3427

    [13]

    Ouyang B, Zhang Y, Xia X, Rawat R S, Fan H J 2018 Mater. Today Nano 3 28

    [14]

    Dou S, Tao L, Wang R L, Ei H S, Chen R, Wang S Y 2018 Adv. Mater. 30 1705850

    [15]

    Duan S X, Liu X, Wang Y N, Meng Y D, Alsaedi A, Hayat T, Li J X 2017 Plasma Process. Polym. 14 e1600218

    [16]

    Di L B, Zhang J S, Zhang X L, Wang H Y, Li H, Li Y Q, Bu D C 2021 J. Phys. D Appl. Phys. 54 333001

    [17]

    Wang D D, Zou Y Q, Tao L, Zhang Y Q, Liu Z J, Du S Q, Zang, S Q, Wang S Y 2019 Chinese Chem. Lett. 30 826

    [18]

    Zhang L, Liu X, Scurrell M S 2018 Rev. Chem. Eng. 34 201

    [19]

    Huang Y W, Yu Q F, Li M, Sun S N, Zhao H, Jin S X, Fan J, Wang J G 2021 Plasma Process. Polym. 18 e2000171

    [20]

    Liang X, Liu P, Qiu Z, ShenS H, Cao F, Zhang Y Q, Chen M H, He X P, Xia Y, Wang C, Wan W J, Zhang, J, Huang H, Gan Y P, Xia X H, Zhang W K 2024 Chem. Eur. J. 30 e202304168

    [21]

    Domonkos M, Ticha P 2023 Ieee T. Plasma Sci. 51 1671

    [22]

    Chang J, Chang J P 2017 J. Phys. D Appl. Phys. 50 253001

    [23]

    Levchenko I, Ostrikov K, Keidar M, Vladimirov S V 2007 Phys. Plasmas 14 113504

    [24]

    Baranov O, Bazaka K, Kersten H, Keidar M. Cvelbar U, Xu S, Levchenko I 2017 Appl. Phys. Rev. 4 041302

    [25]

    Levchenko I, Romanov M, Korobov M 2004 Surf. Coat. Tech. 184 356

    [26]

    Woller K, Whyte D, Wright G 2017 Nucl. Fusion 57 066005

    [27]

    Meyyappan M, Lance D, Alan C, David H 2003 Plasma Sources Sci. T. 12 205.

    [28]

    Ghosh S, Polaki S R, Kamruddin M, Jeong S M, Ostrikov K 2018 J. Phys. D Appl. Phys. 51 145303

    [29]

    Islam N, Hoque M N F, LI W Y, Wang S, Warzywoda J, Fan Z Y 2019 Carbon 141 523

    [30]

    Wu Z, Zhao Y, Jin W, Jia B H, Wang J, Ma T Y 2021 Adv. Funct. Mater. 31 2009070

    [31]

    Zhu J, Mu S 2020 Adv. Funct. Mater. 30 2001097

    [32]

    Anders A, Anders S 1995 Plasma Sources Sci. T. 4 571

    [33]

    Levchenko I, Ostrikov K, Keidar M, Xu S 2005 J. Appl. Phys. 98 064304

    [34]

    Levchenko I, Korobov M, Romanov M, Keidar M 2004 J. Phys. D Appl. Phys. 37 1690

    [35]

    Bogaerts A, Zhang QZ, Zhang Y R, Van L K, Wang W Z 2019 Catal. Today 337 3

    [36]

    Adelodun A A 2020 J. Ind. Eng. Chem. 92 41

    [37]

    Liu C J, Wang J X, Yu K L, Eliasson B, Xia Q, Xue B Z, Zhang Y H 2002 J. Electrostat. 54 149

    [38]

    Tu X, Gallon H J, Whitehead J 2011 J. Phys. D Appl. Phys. 44 482003

    [39]

    Roland U, Holzer F, Kopinke F D 2002 Catal. Today 73 315

    [40]

    Cvelbar U, Ostrikov K, Levchenko I, Mozetic M, Sunkara M K 2009 Appl. Phys. Lett. 94 211502

    [41]

    Cvelbar U, Levchenko I, Filipič G, Mozetič M, Ostrikov K 2012 Appl. Phys. Lett. 100 243103

    [42]

    Gruart M, Feldberg N, Gayral B, Bougerol C, Pouget S, Bellet A E, Garro N, Cros A, Okuno H, Daudin B 2020 Nanotechnology 31 115602

    [43]

    Baranov O, Levchenko I, Bell J M, Lim J W M, Huang S, Xu L, Wang B, Aussems D U B, Xu S, Bazaka K 2018 Mater. Horiz. 5 765

    [44]

    Neyts E C, Bogaerts A 2014 J. Phys. D Appl. Phys. 47 224010

    [45]

    Zhang Y R, Van L K, Neyts E C, Bogaerts A 2016 Appl. Catal. B-Environ. Energy 185 56

    [46]

    Zhang Y R, Neyts E C, Bogaerts A 2016 J. Phys. Chem. C 120 25923

    [47]

    Tian Y, Ye Y F, Wang X J, Peng S, Wei Z, Zhang X, Liu W M 2017 Appl. Catal. A-Gen. 529 127

    [48]

    Tian Y, Wei Z, Wang X J, Peng S, Zhang X, Liu W M 2017 Int. J. Hydrogen Energ. 42 4184

    [49]

    Childres I, Jauregui l A, Tian J, Chen Y P 2011 New J Phys. 13 025008

    [50]

    Rao P, Yu Y, Wang S, Zhou Y, Wu X, Li K, Qi A Y, Deng P L, Cheng Y G, Li J, Miao Z P, Tian X L 2024 Exploration 4 20230034

    [51]

    Zhong W, Chen J, Zhang P, Deng L B, Yao L, Ren X Z, Li Y Q, Mi H W, Sun L N 2017 J. Mater. Chem. A 5 16605

    [52]

    Zha D W, Jiang S C, Zhang Q, Li J, Jiang Z J, Qin C, Tian X N, Maiyalagan T, Jiang Z Q 2025 Chem. Eng. J. 522 166892

    [53]

    Li Y H, Hung T H, Chen C W 2009 Carbon 47 850

    [54]

    Pasupathi A, Madhu R, Kundu S, Subramaniam Y 2025 J. Power Sources 630 236144

    [55]

    Zhang D Y, Gao H, Li J Y, Sun Y W, Deng Z S, Yuan X Y, Li C C, Chen T X, Chen T X, Peng X W, Wang C, Xu Y, Yang L C, Guo X, Zhao Y F, Huang P, Wang Y, Wang G X, Liu H 2025 Energy Storage Mater. 77 104231

    [56]

    Li H, Yamaguchi T, Matsumoto S, Hoshikawa H, Kumagai T, Okamoto N L, Ichitsubo T 2020 Nat. Commun. 11 1584

    [57]

    Li Z, Gu G Z, Hu S Z, Zou X, Wu G 2019 Chinese J. Catal. 40 1178

    [58]

    Dong P, Zhang D, Guo Y L, Sun A B, Li F P, Zhou Y J, Hou S P, Ren K, Xie Z P, Wu Y, Xue D F, Yang B, Liang F 2025 Energy Storage Mater. 81 104555

    [59]

    Dey A, Chroneos A, Braithwaite N S J, Gandhiraman R P, Krishnamurthy S 2016 Appl. Phys. Rev. 3 021301

    [60]

    Zhou J, Yue H, Qi F, Wang H Q, Chen Y F 2017 Int. J. Hydrogen Energ. 42 27004

    [61]

    Peng K, Cui P, Miao F 2025 Int. J. Hydrogen Energ. 102 1084

    [62]

    Wu S L, Zhang C, Cui X Y, Zhang S, Yang Q, Shao T 2021 J. Phys. D Appl. Phys. 54 265501

    [63]

    Meng D P, Peng X F, Zheng J X, Wang Z 2023 Phys. Chem. Chem. Phys. 25 22679

    [64]

    Myeong S, Ha S, Lim C, Min C G, Ha N, Kim B K, Lee Y S 2024 Electroanal. Chem. 964 118332

    [65]

    Hatakeyama R 2017 Rev. Mod. Plasma Phy. 1 7

    [66]

    Usachov D, Fedorov A, Vilkov O, Senkovskiy B, Adamchuk V K, Yashina L V, Volykhov A A, Farjam M, Verbitskiy N I, Grüneis A, Laubschat C, Vyalikh D V 2014 Nano Lett. 14 4982

    [67]

    Isac D L, Şoriga Ş G, Man I C 2020 J. Phys. Chem. C 124 23177

    [68]

    Liu Y C, Xie Z P, Lu S Q, Peng H Y, Zhang D, Qin J Q, Wu J J, Yang B, Liang F 2024 Dalton T. 53 11454

    [69]

    Ding D, Song Z L, Cheng Z Q, Liu W N, Nie X K, Bian X, Chen Z, Tan W H 2014 J. Mater. Chem. A 2 472

    [70]

    Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110

    [71]

    Evlashin S A, Fedorov F S, Chernodoubov D A, Maslakov K I, Dubinin O N, Khmelnitsky R A, Bondareva J V, Zhdanov V L, Pilevsky A A, Sukhanova E V, Popov Z I, Suetin N V 2024 Electroanal. Chem. 956 118091

    [72]

    Yue X F, Xiang H Y, Zhang P, Shu S, Zhao Y X, Zhang J C, Liu J W, Yu D P 2024 Plasma Process. Polym. 21 2300140

    [73]

    Li S, Wang Z, Jiang H, Zhang L M, Ren J Z, Zheng M T, Dong L C, Sun L Y 2016 Chem. Commun. 52 10988

    [74]

    Lu P, Kim D W, Park D W 2019 Plasma Sci. Technol. 21 044005

  • [1] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, doi: 10.7498/aps.73.20231631
    [2] 曹振, 郝大鹏, 唐刚, 寻之朋, 夏辉. 团簇状缺陷对纤维束断裂过程的影响. 物理学报, doi: 10.7498/aps.70.20210310
    [3] 崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹. 宽带隙钙钛矿材料及太阳电池的研究进展. 物理学报, doi: 10.7498/aps.69.20200822
    [4] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, doi: 10.7498/aps.69.20200656
    [5] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, doi: 10.7498/aps.68.20191258
    [6] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, doi: 10.7498/aps.66.100502
    [7] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, doi: 10.7498/aps.64.247802
    [8] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, doi: 10.7498/aps.62.117103
    [9] 陈雪琼, 陈子阳, 蒲继雄, 朱健强, 张国文. 平顶光束经表面有缺陷的厚非线性介质后的光强分布. 物理学报, doi: 10.7498/aps.62.044213
    [10] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究. 物理学报, doi: 10.7498/aps.60.097101
    [11] 路广霞, 张辉, 张国英, 梁婷, 李丹, 朱圣龙. LiNH2储氢材料中间隙H与掺杂原子交互作用对其释氢性能影响机理研究. 物理学报, doi: 10.7498/aps.60.117101
    [12] 张洪亮, 雷海乐, 唐永建, 罗江山, 李恺, 邓晓臣. 纳米结构Cu固体材料的低温热容性能研究. 物理学报, doi: 10.7498/aps.59.471
    [13] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响. 物理学报, doi: 10.7498/aps.56.400
    [14] 郝小鹏, 王宝义, 于润升, 魏 龙. 锆离子注入锆-4合金缺陷的慢正电子研究. 物理学报, doi: 10.7498/aps.56.6543
    [15] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, doi: 10.7498/aps.56.1603
    [16] 吴师岗, 邵建达, 范正修. 负离子元素杂质破坏模型. 物理学报, doi: 10.7498/aps.55.1987
    [17] 郑 晴, 赵晓鹏, 李明明, 赵 晶. 缺陷对左手材料负折射的调控行为. 物理学报, doi: 10.7498/aps.55.6441
    [18] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, doi: 10.7498/aps.55.4353
    [19] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响. 物理学报, doi: 10.7498/aps.51.2139
    [20] 汤学峰, 顾 牡, 童宏勇, 梁 玲, 姚明珍, 陈玲燕, 廖晶莹, 沈炳浮, 曲向东, 殷之文, 徐炜新, 王景成. 掺镧PbWO4闪烁晶体的缺陷研究. 物理学报, doi: 10.7498/aps.49.2007
计量
  • 文章访问数:  42
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-10

/

返回文章
返回