-
非热等离子体 (Non-Thermal Plasma, NTP) 作为一种在接近室温条件下高效实现材料制备与改性的先进技术, 近年来在能源材料领域备受关注. 由于其电子温度高而整体气体温度低, NTP能够在避免热损伤的前提下, 通过引入空位、杂原子掺杂, 调控孔隙率和表面粗糙程度等多尺度缺陷, 显著改善电极材料的电化学性能. 等离子体-材料表面相互作用是一个复杂的体系, 涉及等离子体与材料之间的相互影响规律, 深入理解该作用机制对实现NTP改性精准调控材料缺陷类型、密度、空间分布至关重要. 本综述系统总结了NTP在能源材料刻蚀和掺杂领域的应用, 重点阐述了缺陷的生成及其对等离子体与材料表面相互作用中的影响. 最后, 分析了NTP技术规模化应用过程中面临的主要挑战并对其未来发展进行了展望.
-
关键词:
- 非热等离子体 /
- 等离子体-材料表面相互作用 /
- 缺陷 /
- 能源材料
Non-Thermal Plasma (NTP), as an advanced technology capable of efficiently synthesizing and modifying materials under near-ambient temperature, has attracted significant attention in the field of energy materials in recent years. Owing to high electron temperature and low bulk gas temperature, NTP can significantly enhance the electrochemical performance of electrode materials by introducing vacancies, enabling heteroatom doping, and regulating multiscale defects such as porosity and surface roughness, while avoiding thermal damage. The plasma-material surface interaction is a complex system involving mutual influences between the plasma and the material. A deep understanding of this mechanism is essential for achieving precise control over defect type, density, and spatial distribution via NTP modification. This review systematically summarizes the applications of NTP in etching and doping processes for energy materials, with a particular emphasis on defect generation and its role in plasma–surface interactions. Finally, the major challenges associated with the large-scale application of NTP technology are discussed, and future perspectives are outlined.-
Keywords:
- non-thermal plasma /
- plasma-material surface interaction /
- defects /
- energy materials
-
[1] Zhang H, Chen L, Dong F, Lu Z W, Lv E M, Dong X L, Li H X, Yuan Z Y, Peng X W, Yang S H, Qiu J S, Guo Z X, Wen Z 2024 Energ. Environ. Sci. 17 6435
[2] Do V H, Lee J M 2024 Chem. Soc. Rev. 53 2693
[3] Zhang Y Q, Liu J J, Xu Y F, Xie C, Wang S Y, Yao X D 2024 Chem. Soc. Rev. 53 10620
[4] Muhammad P, Zada A, Rashid J, Hanif S, Gao Y N, Li C C, Li Y Y, Fan K L, Wang Y L 2024 Adv. Funct. Mater. 34 2314686
[5] Zheng J X, Meng D P, Guo J X, Liu X B, Zhou L, Wang Z 2024 Adv. Mater. 36 2405129
[6] Shen C, Ye T L, Yang P X, Chen G Y 2024 Adv. Mater. 36 2401498
[7] Sun L Z, Pan X, Xie Y N, Zheng J G, Xu S H, L L, Zhao G H 2024. Angew. Chem. Int. Edit. 63 e202402176
[8] Zhang Y Q, Tao L, Xie C, Wang D D, Zou Y Q, Chen R, Wang Y R, Jia C K, Wang S Y 2020 Adv. Mater. 32 1905923
[9] Shi F C, Jiang J Q, Wang X, Gao Y, Chen C, Chen G R, Dudko N, Nevar A A, Zhang D S 2024 Chem. Commun. 60 2700
[10] Wang Z, Chen J, Sun S, Huang Z Q, Zhang X Y, Li X Y, Dong H S 2022 Energy Storage Mater, 50 161
[11] Ye Z P, Zhao L, Nikiforov A, Giraudon J M, Chen Y, Wang J D, Tu X 2022 Adv. Colloid Interfac. 308 102755
[12] Morent R, DE G. N, Verschuren J, De C C, Kiekens P, Leys C 2008 Surf. Coat. Tech. 202 3427
[13] Ouyang B, Zhang Y, Xia X, Rawat R S, Fan H J 2018 Mater. Today Nano 3 28
[14] Dou S, Tao L, Wang R L, Ei H S, Chen R, Wang S Y 2018 Adv. Mater. 30 1705850
[15] Duan S X, Liu X, Wang Y N, Meng Y D, Alsaedi A, Hayat T, Li J X 2017 Plasma Process. Polym. 14 e1600218
[16] Di L B, Zhang J S, Zhang X L, Wang H Y, Li H, Li Y Q, Bu D C 2021 J. Phys. D Appl. Phys. 54 333001
[17] Wang D D, Zou Y Q, Tao L, Zhang Y Q, Liu Z J, Du S Q, Zang, S Q, Wang S Y 2019 Chinese Chem. Lett. 30 826
[18] Zhang L, Liu X, Scurrell M S 2018 Rev. Chem. Eng. 34 201
[19] Huang Y W, Yu Q F, Li M, Sun S N, Zhao H, Jin S X, Fan J, Wang J G 2021 Plasma Process. Polym. 18 e2000171
[20] Liang X, Liu P, Qiu Z, ShenS H, Cao F, Zhang Y Q, Chen M H, He X P, Xia Y, Wang C, Wan W J, Zhang, J, Huang H, Gan Y P, Xia X H, Zhang W K 2024 Chem. Eur. J. 30 e202304168
[21] Domonkos M, Ticha P 2023 Ieee T. Plasma Sci. 51 1671
[22] Chang J, Chang J P 2017 J. Phys. D Appl. Phys. 50 253001
[23] Levchenko I, Ostrikov K, Keidar M, Vladimirov S V 2007 Phys. Plasmas 14 113504
[24] Baranov O, Bazaka K, Kersten H, Keidar M. Cvelbar U, Xu S, Levchenko I 2017 Appl. Phys. Rev. 4 041302
[25] Levchenko I, Romanov M, Korobov M 2004 Surf. Coat. Tech. 184 356
[26] Woller K, Whyte D, Wright G 2017 Nucl. Fusion 57 066005
[27] Meyyappan M, Lance D, Alan C, David H 2003 Plasma Sources Sci. T. 12 205.
[28] Ghosh S, Polaki S R, Kamruddin M, Jeong S M, Ostrikov K 2018 J. Phys. D Appl. Phys. 51 145303
[29] Islam N, Hoque M N F, LI W Y, Wang S, Warzywoda J, Fan Z Y 2019 Carbon 141 523
[30] Wu Z, Zhao Y, Jin W, Jia B H, Wang J, Ma T Y 2021 Adv. Funct. Mater. 31 2009070
[31] Zhu J, Mu S 2020 Adv. Funct. Mater. 30 2001097
[32] Anders A, Anders S 1995 Plasma Sources Sci. T. 4 571
[33] Levchenko I, Ostrikov K, Keidar M, Xu S 2005 J. Appl. Phys. 98 064304
[34] Levchenko I, Korobov M, Romanov M, Keidar M 2004 J. Phys. D Appl. Phys. 37 1690
[35] Bogaerts A, Zhang QZ, Zhang Y R, Van L K, Wang W Z 2019 Catal. Today 337 3
[36] Adelodun A A 2020 J. Ind. Eng. Chem. 92 41
[37] Liu C J, Wang J X, Yu K L, Eliasson B, Xia Q, Xue B Z, Zhang Y H 2002 J. Electrostat. 54 149
[38] Tu X, Gallon H J, Whitehead J 2011 J. Phys. D Appl. Phys. 44 482003
[39] Roland U, Holzer F, Kopinke F D 2002 Catal. Today 73 315
[40] Cvelbar U, Ostrikov K, Levchenko I, Mozetic M, Sunkara M K 2009 Appl. Phys. Lett. 94 211502
[41] Cvelbar U, Levchenko I, Filipič G, Mozetič M, Ostrikov K 2012 Appl. Phys. Lett. 100 243103
[42] Gruart M, Feldberg N, Gayral B, Bougerol C, Pouget S, Bellet A E, Garro N, Cros A, Okuno H, Daudin B 2020 Nanotechnology 31 115602
[43] Baranov O, Levchenko I, Bell J M, Lim J W M, Huang S, Xu L, Wang B, Aussems D U B, Xu S, Bazaka K 2018 Mater. Horiz. 5 765
[44] Neyts E C, Bogaerts A 2014 J. Phys. D Appl. Phys. 47 224010
[45] Zhang Y R, Van L K, Neyts E C, Bogaerts A 2016 Appl. Catal. B-Environ. Energy 185 56
[46] Zhang Y R, Neyts E C, Bogaerts A 2016 J. Phys. Chem. C 120 25923
[47] Tian Y, Ye Y F, Wang X J, Peng S, Wei Z, Zhang X, Liu W M 2017 Appl. Catal. A-Gen. 529 127
[48] Tian Y, Wei Z, Wang X J, Peng S, Zhang X, Liu W M 2017 Int. J. Hydrogen Energ. 42 4184
[49] Childres I, Jauregui l A, Tian J, Chen Y P 2011 New J Phys. 13 025008
[50] Rao P, Yu Y, Wang S, Zhou Y, Wu X, Li K, Qi A Y, Deng P L, Cheng Y G, Li J, Miao Z P, Tian X L 2024 Exploration 4 20230034
[51] Zhong W, Chen J, Zhang P, Deng L B, Yao L, Ren X Z, Li Y Q, Mi H W, Sun L N 2017 J. Mater. Chem. A 5 16605
[52] Zha D W, Jiang S C, Zhang Q, Li J, Jiang Z J, Qin C, Tian X N, Maiyalagan T, Jiang Z Q 2025 Chem. Eng. J. 522 166892
[53] Li Y H, Hung T H, Chen C W 2009 Carbon 47 850
[54] Pasupathi A, Madhu R, Kundu S, Subramaniam Y 2025 J. Power Sources 630 236144
[55] Zhang D Y, Gao H, Li J Y, Sun Y W, Deng Z S, Yuan X Y, Li C C, Chen T X, Chen T X, Peng X W, Wang C, Xu Y, Yang L C, Guo X, Zhao Y F, Huang P, Wang Y, Wang G X, Liu H 2025 Energy Storage Mater. 77 104231
[56] Li H, Yamaguchi T, Matsumoto S, Hoshikawa H, Kumagai T, Okamoto N L, Ichitsubo T 2020 Nat. Commun. 11 1584
[57] Li Z, Gu G Z, Hu S Z, Zou X, Wu G 2019 Chinese J. Catal. 40 1178
[58] Dong P, Zhang D, Guo Y L, Sun A B, Li F P, Zhou Y J, Hou S P, Ren K, Xie Z P, Wu Y, Xue D F, Yang B, Liang F 2025 Energy Storage Mater. 81 104555
[59] Dey A, Chroneos A, Braithwaite N S J, Gandhiraman R P, Krishnamurthy S 2016 Appl. Phys. Rev. 3 021301
[60] Zhou J, Yue H, Qi F, Wang H Q, Chen Y F 2017 Int. J. Hydrogen Energ. 42 27004
[61] Peng K, Cui P, Miao F 2025 Int. J. Hydrogen Energ. 102 1084
[62] Wu S L, Zhang C, Cui X Y, Zhang S, Yang Q, Shao T 2021 J. Phys. D Appl. Phys. 54 265501
[63] Meng D P, Peng X F, Zheng J X, Wang Z 2023 Phys. Chem. Chem. Phys. 25 22679
[64] Myeong S, Ha S, Lim C, Min C G, Ha N, Kim B K, Lee Y S 2024 Electroanal. Chem. 964 118332
[65] Hatakeyama R 2017 Rev. Mod. Plasma Phy. 1 7
[66] Usachov D, Fedorov A, Vilkov O, Senkovskiy B, Adamchuk V K, Yashina L V, Volykhov A A, Farjam M, Verbitskiy N I, Grüneis A, Laubschat C, Vyalikh D V 2014 Nano Lett. 14 4982
[67] Isac D L, Şoriga Ş G, Man I C 2020 J. Phys. Chem. C 124 23177
[68] Liu Y C, Xie Z P, Lu S Q, Peng H Y, Zhang D, Qin J Q, Wu J J, Yang B, Liang F 2024 Dalton T. 53 11454
[69] Ding D, Song Z L, Cheng Z Q, Liu W N, Nie X K, Bian X, Chen Z, Tan W H 2014 J. Mater. Chem. A 2 472
[70] Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110
[71] Evlashin S A, Fedorov F S, Chernodoubov D A, Maslakov K I, Dubinin O N, Khmelnitsky R A, Bondareva J V, Zhdanov V L, Pilevsky A A, Sukhanova E V, Popov Z I, Suetin N V 2024 Electroanal. Chem. 956 118091
[72] Yue X F, Xiang H Y, Zhang P, Shu S, Zhao Y X, Zhang J C, Liu J W, Yu D P 2024 Plasma Process. Polym. 21 2300140
[73] Li S, Wang Z, Jiang H, Zhang L M, Ren J Z, Zheng M T, Dong L C, Sun L Y 2016 Chem. Commun. 52 10988
[74] Lu P, Kim D W, Park D W 2019 Plasma Sci. Technol. 21 044005
计量
- 文章访问数: 42
- PDF下载量: 1
- 被引次数: 0