搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三层镍氧化物高温超导研究进展

张明鑫 裴翠颖 齐彦鹏

引用本文:
Citation:

三层镍氧化物高温超导研究进展

张明鑫, 裴翠颖, 齐彦鹏

Research progress of high-temperature superconductivity of trilayer nickelate

ZHANG Mingxin, PEI Cuiying, QI Yanpeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近期, 双层镍氧化物La3Ni2O7在压力下呈现的高温超导电性引发了广泛关注, 进一步推动了镍基超导领域的研究热潮. 对不同非常规超导体开展系统的比较研究, 有助于深化对高温超导机制的理解. 相较于铜基超导体, 镍基体材料在晶体结构、电子结构与物性行为上存在显著差异, 其实验研究亦面临更多挑战, 例如静水性对零电阻、抗磁性测试的影响, 单晶氧空位缺陷以及压力下诱导的结构相变等. 本文针对三层镍氧化物体材料, 总结了高温超导研究进展及相关挑战, 为后续镍氧化物新超导体系的研究提供了参考.
    The recent discovery of high-temperature superconductivity in the bilayer nickelate La3Ni2O7 under high pressure has attracted significant attention, further catalyzing intensive research on nickel-based superconductors. Systematic comparative studies of nontraditional superconductors are essential for advancing the mechanistic understanding of high-Tc superconductivity. In contrast to cuprate superconductors, nickel-based bulk materials show significant differences in crystal structure, electronic properties, and physical behaviors, while their experimental investigation faces additional challenges including the influences of hydrostatic conditions on zero-resistance state and diamagnetic response measurements, oxygen vacancy defects in single crystals, and pressure-induced structural phase transitions. This review comprehensively examines high-temperature superconductivity and the related research challenges in trilayer nickelate bulk materials, and provides important theoretical insights for future studies on nickel-based superconducting systems.
  • 图 1  Ruddlesden-Popper相Lan+1NinO3n+1. 从左至右分别为La2NiO4, La3Ni2O7, La4Ni3O10和LaNiO3; 蓝色、紫色、红色小球分别代表La, Ni和O原子, 虚线框内结构代表不同n值下的层数变化

    Fig. 1.  Ruddlesden-Popper phases Lan+1NinO3n+1. From left to right: La2NiO4, La3Ni2O7, La4Ni3O10 and LaNiO3; the blue, purple and red small balls represent La, Ni, and O atoms, respectively, the structures within the dashed box represent the changes in the layers under different n values.

    图 2  压力下La3Ni2O7单晶的超导电性 (a) 固体传压介质(立方氮化硼)下La3Ni2O7的电阻曲线[2]; (b) 压力下La3Ni2O7的交流磁化率[2]; (c) 液体传压介质(Daphne 7373)下La3Ni2O7的零电阻和奇异金属态[19]; (d) 不同磁场下La3Ni2O7的电阻曲线[19]; (e) La3Ni2O7在压力下的超导相图[20]

    Fig. 2.  Superconductivity of La3Ni2O7 single crystal under pressure: (a) Resistance curves of La3Ni2O7 measured with solid as pressure-transmitting medium (cubic boron nitride)[2]; (b) the a.c. susceptibility of La3Ni2O7 under pressure[2]; (c) the zero resistance and strange metal behavior of La3Ni2O7 with liquid as pressure-transmitting medium (Daphne 7373)[19]; (d) resistance curves of La3Ni2O7 under various magnetic fields[19]; (e) superconductivity phase diagram of La3Ni2O7 under pressure[20].

    图 3  压力下La3Ni2O7 多晶的超导电性 (a)—(d) 固体传压介质(氮化硼)下La3Ni2O7(固相反应)的电阻曲线[22,23]; (e) 液体传压介质(Daphne 7373, 甘油)下La3Ni2O7(溶胶凝胶法)的电阻曲线[24]

    Fig. 3.  Superconductivity of La3Ni2O7 polycrystalline under pressure: (a)–(d) Resistance curves of La3Ni2O7 (solid state reaction) measured with solid as pressure-transmitting medium (cubic boron nitride)[22,23]; (e) resistance curves of La3Ni2O7 (Sol-gel method) under pressure with liquid as pressure-transmitting medium (Daphne 7373, glycerol)[24].

    图 4  La3Ni2O7单晶中的氧空位及压力下La2PrNi2O7多晶的超导电性 (a) La3Ni2O7单晶中的氧空位; (b), (c) 不同氧空位含量下不同氧位点的相位直方图[27]; (d) La3Ni2O7多晶中的堆垛缺陷[43]; (e) La2PrNi2O7多晶中的长程有序[43]; La2PrNi2O7多晶在压力下的零电阻(f)和抗磁性(g)[43]

    Fig. 4.  The oxygen vacancies in La3Ni2O7 single crystals and superconductivity of La2PrNi2O7 polycrystalline under pressure: (a) The oxygen vacancies in La3Ni2O7 single crystals; (b), (c) the phase histograms from distinct oxygen sites with different oxygen vacancy concentrations[27]; (d) the stacking faults of La3Ni2O7 polycrystalline [43]; (e) the long-range orders of La2PrNi2O7 polycrystalline[43]; zero resistance (f) and diamagnetic signals (g) of La2PrNi2O7 polycrystalline under pressure[43].

    图 5  压力下La4Ni3O10单晶的超导电性 (a) 固体传压介质(氯化钠)下La4Ni3O10的电阻曲线[3]; (b) 气体传压介质(氖气)下La4Ni3O10的直流磁化率[3]; (c), (d) 气体传压介质(氦气)下La4Ni3O10的零电阻[4]; (e) 不同磁场下La4Ni3O10的电阻曲线(氦气)[4]

    Fig. 5.  Superconductivity of La4Ni3O10 single crystal under pressure: (a) Resistance curves of La4Ni3O10 measured with solid as pressure-transmitting medium (NaCl)[3]; (b) the d.c. susceptibility curves of La4Ni3O10 measured with gas as pressure-transmitting medium (neon)[3]; (c), (d) the zero resistance of La4Ni3O10 measured with gas as pressure-transmitting medium (helium) [4]; (e) resistance curves as a function of pressure under various magnetic fields (helium)[4].

    图 6  压力下La4Ni3O10单晶的结构相变[3] (a), (b) 压力下La4Ni3O10的同步辐射X射线衍射; 压力下La4Ni3O10的晶胞参数(c)和体积(d)变化; (e) P21/aI4/mmm空间群的焓差随压力的变化

    Fig. 6.  Phase transition of La4Ni3O10 single crystal under pressure[3]: (a), (b) Synchrotron X-ray diffraction patterns of La4Ni3O10; the lattice parameters (c) and cell volume (d) as a function of the pressure in La4Ni3O10; (e) the enthalpy between the space groups P21/a and I4/mmm as a function of pressure.

    图 7  压力下La4Ni3O10单晶的超导相图[3]

    Fig. 7.  Superconductivity phase diagram of La4Ni3O10 single crystal under pressure[3].

    图 8  压力下Pr4Ni3O10多晶的超导电性[52] (a), (b) 压力下Pr4Ni3O10多晶的电阻曲线; (c) 压力下Pr4Ni3O10多晶的超导相图

    Fig. 8.  Superconductivity of Pr4Ni3O10 polycrystalline under pressure [52]: (a), (b) Resistance curves of Pr4Ni3O10 polycrystalline under pressure; (c) superconductivity phase diagram of Pr4Ni3O10 polycrystalline under pressure.

    图 9  压力下Pr4Ni3O10单晶的超导电性[6,53] (a), (b) 液体传压介质(矿物油)下单晶的电阻曲线和直流磁化率[53]; (c), (d) 气体传压介质下单晶的电阻曲线(氦气)[6]和直流磁化率(氖气)[6]; (e), (f) 气体传压介质(氦气)下的零电阻及其在不同磁场下的电阻曲线[5]; (g), (h) 气体传压介质(氖气)下的直流磁化率[5]

    Fig. 9.  Superconductivity of Pr4Ni3O10 single crystal under pressure[6,53]: (a), (b) Resistance curves and d.c. susceptibility of Pr4Ni3O10 single crystal measured with liquid as pressure-transmitting medium (nujol)[53]; (c), (d) resistance curves (helium) and d.c. susceptibility (neon) measured with gas as pressure-transmitting medium[6]; (e), (f) zero resistance and the resistance curves under various magnetic fields measured with gas as pressure-transmitting medium (helium) [5]; (g), (h) the d.c. susceptibility measured with gas as pressure-transmitting medium (neon)[5].

    图 10  压力下Pr4Ni3O10单晶的结构相变 (a), (b) 降温与加压过程中Pr4Ni3O10的同步辐射X射线衍射图谱; (c) 压力下Pr4Ni3O10的晶胞体积变化; (d) 压力下Pr4Ni3O10的超导相图

    Fig. 10.  Phase transition of Pr4Ni3O10 single crystal under pressure: (a), (b) Synchrotron X-ray diffraction patterns of Pr4Ni3O10 measured during cooling process and compression process; (c) the cell volume as a function of pressure in Pr4Ni3O10; (d) the superconductivity phase diagram of Pr4Ni3O10 under pressure.

    图 11  镍氧化物的简化电子能级 (a) La3Ni2O7; (b) La4Ni3O10

    Fig. 11.  Simplified electronic energy levels of the nickelates: (a) La3Ni2O7; (b) La4Ni3O10.

  • [1]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [2]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [3]

    Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C H P, Song J, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Jin C Q, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X, Qi Y P 2025 Phys. Rev. X 15 021005

    [4]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [5]

    Pei C, Zhang M, Peng D, Huangfu S, Zhu S, Wang Q, Wu J, Xing Z, Zhang L, Chen Y, Zhao j, Yang W, Suo H, Guo H, Zeng Q, Qi Y 2024 arXiv: 2411.08677

    [6]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008

    [7]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C-T, Wang B Y, Lee Y, Lee K, Lee J-S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [8]

    Shi M, Peng D, Fan K, Xing Z, Yang S, Wang Y, Li H, Wu R, Du M, Ge B, Zeng Z, Zeng Q, Ying J, Wu T, Chen X 2025 Nat. Phys.

    [9]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401Google Scholar

    [10]

    Poirot N, Phuoc V T, Gruener G, Gervais F 2005 Solid State Sci. 7 1157Google Scholar

    [11]

    Kumar Y, Kumar P, Dixit G, Asokan K 2013 AIP Conf. Proc. 1536 1021

    [12]

    Wu G, Neumeier J, Hundley M 2001 Phys. Rev. B 63 245120Google Scholar

    [13]

    Zhang J J, Zheng H, Chen Y S, Ren Y, Yonemura M, Huq A, Mitchell J F 2020 Phys. Rev. Mater. 4 083402Google Scholar

    [14]

    Liu Z, Sun H, Huo M, Ma X, Ji Y, Yi E, Li L, Liu H, Yu J, Zhang Z 2023 Sci. China Phys. Mech. Astron. 66 217411Google Scholar

    [15]

    Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S i, Sato M 1995 J. Phys. Soc. Jpn. 64 1644Google Scholar

    [16]

    Zhang J J, Zheng H, Ren Y, Mitchell J F 2017 Cryst. Growth Des. 17 2730Google Scholar

    [17]

    Sánchez R, Causa M, Caneiro A, Butera A, Vallet-Regi M, Sayagués M, González-Calbet J, Garcia-Sanz F, Rivas J 1996 Phys. Rev. B 54 16574Google Scholar

    [18]

    Zheng H, Wang B X, Phelan D, Zhang J J, Ren Y, Krogstad M, Rosenkranz S, Osborn R, Mitchell J 2020 Crystals 10 557Google Scholar

    [19]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [20]

    Li J Y, Peng D, Ma P Y, Zhang H Y, Xing Z F, Huang X, Huang C X, Huo M W, Hu D Y, Dong Z X, Chen X, Xie T, Dong H L, Sun H L, Zeng Q S, Mao H K, Wang M 2025 Natl. Sci. Rev. 12 nwaf220Google Scholar

    [21]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302Google Scholar

    [22]

    Zhang M X, Pei C Y, Wang Q Y, Zhao Y, Li C H, Cao W Z, Zhu S H, Wu J F, Qi Y P 2024 J. Mater. Sci. Technol. 185 147Google Scholar

    [23]

    Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y, Kuroki K 2024 Phys. Rev. B 109 144511Google Scholar

    [24]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040

    [25]

    Gao R, Jin L, Huyan S Y, Ni D R, Wang H Z, Xu X H, Bud’ko S L, Canfield P, Xie W W, Cava R J 2024 ACS Appl. Mater. Interfaces 16 66857Google Scholar

    [26]

    Zhou Y, Guo J, Cai S, Sun H, Li C, Zhao J, Wang P, Han J, Chen X, Chen Y, Wu Q, Ding Y, Xiang T, Mao H k, Sun L 2025 Matter Radiat. Extrem. 10 027801Google Scholar

    [27]

    Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y, Chen Z 2024 Nature 630 847Google Scholar

    [28]

    Luo Z, Hu X, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [29]

    Shen Y, Qin M, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [30]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [31]

    Zhang Y, Lin L F, Moreo A, Dagotto E 2023 Phys. Rev. B 108 L180510Google Scholar

    [32]

    Luo Z, Lv B, Wang M, Wú W, Yao D X 2024 npj Quantum Mater. 9 61Google Scholar

    [33]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2023 Phys. Rev. B 108 165141Google Scholar

    [34]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [35]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [36]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. B 110 094509Google Scholar

    [37]

    Pan Z M, Lu C, Yang F, Wu C J 2024 Chin. Phys. Lett. 41 087401Google Scholar

    [38]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [39]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121Google Scholar

    [40]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [41]

    Shi L, Luo Y, Wu W, Zhang Y W 2025 Chin. Phys. B 34 077403Google Scholar

    [42]

    Carvalho M, Costa F A, Pereira I S, Bassat J, Grenier J 1997 J. Mater. Chem. 7 2107Google Scholar

    [43]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [44]

    Li F Y, Guo N, Zheng Q, Shen Y, Wang S L, Cui Q H, Liu C, Wang S P, Tao X T, Zhang G M, Zhang J J 2024 Phys. Rev. Mater. 8 053401Google Scholar

    [45]

    Li F Y, Wang S L, Ma C, Wang X L, Liu C, Fan C Y, Han L, Wang S P, Tao X T, Zhang J J 2024 Cryst. Growth Des. 24 347Google Scholar

    [46]

    Chu C W, Deng L Z, Lv B 2015 Physica C 514 290Google Scholar

    [47]

    Rout D, Mudi S R, Hoffmann M, Spachmann S, Klingeler R, Singh S 2020 Phys. Rev. B 102 195144Google Scholar

    [48]

    Obradors X, Martinez B, Batlle X, Rodriguez-Carvajal J, Fernandez-Diaz M T, Martinez J L, Odier P 1991 J. Appl. Phys. 70 6329Google Scholar

    [49]

    Huangfu S, Jakub G D, Zhang X, Blacque O, Puphal P, Pomjakushina E, von Rohr F O, Schilling A 2020 Phys. Rev. B 101 104104Google Scholar

    [50]

    Torrance J B, Lacorre P, Nazzal A I, Ansaldo E J, Niedermayer C 1992 Phys. Rev. B 45 8209

    [51]

    Zheng H, Zhang J, Wang B, Phelan D, Krogstad M J, Ren Y, Phelan W A, Chmaissem O, Poudel B, Mitchell J F 2019 Crystals 9 324Google Scholar

    [52]

    Huang X, Zhang H, Li J, Huo M, Chen J, Qiu Z, Ma P, Huang C, Sun H, Wang M 2024 Chin. Phys. Lett. 41 127403Google Scholar

    [53]

    Chen X, Poldi E H T, Huyan S, Chapai R, Zheng H, Bud'ko S L, Welp U, Canfield P C, Hemley R J, Mitchell J F, Phelan D 2025 Phys. Rev. B 111 094525Google Scholar

    [54]

    Lu C, Pan Z, Yang F, Wu C 2025 Phys. Rev. B 111 134515Google Scholar

    [55]

    Chen C Q, Luo Z, Wang M, Wú W, Yao D X 2024 Phys. Rev. B 110 014503Google Scholar

    [56]

    Yang Q G, Jiang K Y, Wang D, Lu H Y, Wang Q H 2024 Phys. Rev. B 109 L220506Google Scholar

    [57]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. Lett. 133 136001Google Scholar

    [58]

    Zhang M, Sun H, Liu Y B, Liu Q, Chen W Q, Yang F 2024 Phys. Rev. B 110 L180501Google Scholar

    [59]

    Yang Q G, Jiang K Y, Wang D, Lu H Y, Wang Q H 2024 Phys. Rev. B 109 L220506Google Scholar

    [60]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. Lett. 133 136001Google Scholar

    [61]

    Qin Q, Wang J, Yang Y F 2024 The Innovation Materials 2 100102Google Scholar

    [62]

    Huang J K, Zhou T 2024 Phys. Rev. B 110 L060506Google Scholar

    [63]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [64]

    Liu Y, Ko E K, Tarn Y, Bhatt L, Li J, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y, Hwang H Y 2025 Nat. Mater. 24 1221Google Scholar

    [65]

    陈卓昱, 黄浩亮, 薛其坤 2025 物理学报 74 097401Google Scholar

    Chen Z Y, Huang H L, Xue Q K 2025 Acta Phys. Sin. 74 097401Google Scholar

  • [1] 陈卓昱, 黄浩亮, 薛其坤. 常压下双层结构镍氧化物薄膜高温超导电性的发现与研究展望. 物理学报, doi: 10.7498/aps.74.20250331
    [2] 薛子威, 袁登鹏, 谭世勇. 新型非常规超导体UTe2的单晶生长方法研究进展. 物理学报, doi: 10.7498/aps.74.20241778
    [3] 张铭, 刘玉波, 邵芷嫣, 杨帆. Ruddlesden-Popper相层状镍基超导配对机理及相关物性的弱耦合理论研究. 物理学报, doi: 10.7498/aps.74.20251179
    [4] 沈瑶. 镍基超导体中电荷序的实验研究进展. 物理学报, doi: 10.7498/aps.73.20240898
    [5] 胡江平. 探索非常规高温超导体. 物理学报, doi: 10.7498/aps.70.20202122
    [6] 李建新. 自旋涨落与非常规超导配对. 物理学报, doi: 10.7498/aps.70.20202180
    [7] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, doi: 10.7498/aps.69.20191627
    [8] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球. 重费米子材料与物理. 物理学报, doi: 10.7498/aps.68.20190801
    [9] 程金光. 高压调控的磁性量子临界点和非常规超导电性. 物理学报, doi: 10.7498/aps.66.037401
    [10] 方明虎, 林杨帆, 鲁俊生, 张国芳, 贺 青, 王杭栋. EuSr2Ru1-xTaxCu2O8中Ta替代效应. 物理学报, doi: 10.7498/aps.53.927
    [11] 陈镇平, 张金仓, 曹桂新, 曹世勋. La系收缩效应对RBa2Cu3Q7-δ体系局域电子结构和超导电性的影响. 物理学报, doi: 10.7498/aps.51.2150
    [12] 刘丽华, 董成, 邓冬梅, 陈镇平, 张金仓. Fe掺杂YBCO体系结构变化与团簇效应的正电子实验研究. 物理学报, doi: 10.7498/aps.50.769
    [13] 施大宁. BCS-van Hove方案与高温超导电性. 物理学报, doi: 10.7498/aps.45.1212
    [14] 余超凡, 陈斌, 何国柱. 非含Cu氧化物超导体的超导电性机制. 物理学报, doi: 10.7498/aps.43.1152
    [15] 曾文生, 张光寅. 晶格振动、载流子与高温超导电性的关系. 物理学报, doi: 10.7498/aps.42.205
    [16] 汪汉廷, 熊诗杰. 层状横波光学声子的非简谐性对高温超导电性的影响. 物理学报, doi: 10.7498/aps.41.506
    [17] 闻海虎, 李宏成, 戚振中, 曹效文. 高温超导薄膜中的涨落超导电性及其维度. 物理学报, doi: 10.7498/aps.39.1811
    [18] 王炜, 余正, 孙元善, 姚希贤. 二维颗粒膜超导电性. 物理学报, doi: 10.7498/aps.35.1081
    [19] 罗棨光, 金铎, 刘志毅, 冉启泽, 金作文, 马明荣, 赵忠贤, 倪泳明. Ti-Pd系超导电性的研究. 物理学报, doi: 10.7498/aps.32.534
    [20] 朱宰万, 姜文植. 金属氢高温超导电性. 物理学报, doi: 10.7498/aps.30.271
计量
  • 文章访问数:  207
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-09
  • 修回日期:  2025-09-09
  • 上网日期:  2025-10-23

/

返回文章
返回