搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多参数入射条件下分子碰撞对适应系数的影响研究

胡宇辉 陈琦 张伟 江定武 李锦 乔晨亮

引用本文:
Citation:

多参数入射条件下分子碰撞对适应系数的影响研究

胡宇辉, 陈琦, 张伟, 江定武, 李锦, 乔晨亮

Effects of molecular collisions on accommodation coefficients under multi-Parameter incident conditions

HU Yuhui, CHEN Qi, ZHANG Wei, JIANG Dingwu, LI Jin, QIAO Chenliang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 有效的气体-表面相互作用参数对准确预测气体在稀薄环境中的流动特性至关重要. 然而微观分子碰撞模型中不同分子动力学模拟方法得到的适应系数差异很大. 为了准确描述非平衡环境中分子碰撞与动量、能量适应的关系, 本文采用分子动力学模拟研究了氩与铂表面的相互作用. 通过单个散射(SS)和连续散射(CS)方法系统地讨论了气-气碰撞对适应系数的影响. 比较了两种方法在不同表面形态、表面温度、入射气体分子速度等影响因素下的气体-表面相互作用特性. 得到了适应系数对表面温度、入射速度等参数的依赖关系. 通过分析两种模拟方法的差异, 揭示了多参数入射条件下适应系数变化的物理机制, 为建立更精准的气体-表面相互作用模型提供了重要基础和依据.
    In rarefied gas flows, accommodation coefficients (ACs) serve as core parameters for gas-surface interactions and play a crucial role in the accuracy of mesoscopic model simulations. However, there exist significant discrepancies in the ACs obtained by different molecular dynamics simulation methods. To accurately characterize the momentum and energy accommodation properties of rarefied gases with solid surfaces under non-equilibrium conditions, this study systematically investigates the gas-surface interactions between argon molecules and platinum surfaces using molecular dynamics (MD) methods. By employing single scattering (SS) and continual scattering (CS) approaches, the influence of gas-gas collisions on tangential momentum accommodation coefficients (TMAC), normal momentum accommodation coefficients (NMAC), and energy accommodation coefficients (EAC) is comparatively analyzed, along with the operational laws of parameters such as surface morphology, surface temperature, incident velocity, and mean free path (MFP). The results demonstrate that gas density exerts a dual effect on momentum and energy accommodation: at smaller MFP, the high gas density within the interaction region impedes the accommodation of subsequent incident molecules with the surface, resulting in lower ACs; at moderate MFP, gas-gas collisions promote accommodation by increasing the frequency of gas-surface collisions, thereby enhancing ACs. Within the MFP range of 2.0–60.0 nm, the deviation in ACs between the CS and SS methods ranges from –14.88% to 5.21%, validating the dual role of gas density. Furthermore, at larger MFP, the TMAC and NMAC obtained via the CS method exhibit different trends with increasing MFP across surfaces of varying morphologies. In contrast to gas density, increases in both surface temperature and incident velocity shorten the interaction time, leading to reduced ACs. Notably, the effect of temperature varies across surfaces with different morphologies: elevated temperatures on smooth surfaces enhance the thermal fluctuations of surface atoms, thereby increasing NMAC, while elevated temperatures on rough surfaces cause smoothing of rough structures, thus inhibiting accommodation. Under high-speed incident conditions, gas-gas collisions promote NMAC on smooth surfaces, inhibit both TMAC and NMAC on rough surfaces, and suppress EAC across all surfaces. Additionally, the ACs obtained via both the CS and SS methods decrease with increasing incident velocity across surfaces of different morphologies.
  • 图 1  模拟盒子示意图

    Fig. 1.  MD simulation box schematic.

    图 2  气体分子入射角度示意图

    Fig. 2.  Schematic diagram of the incident angle of gas molecules.

    图 3  不同粗糙形态表面示意图 (a) 1D正弦粗糙表面; (b) 2D正弦粗糙表面; (c) 金字塔形粗糙表面; (d) 随机粗糙表面

    Fig. 3.  Schematic diagrams of surfaces with different roughness morphologies: (a) 1D sinusoidal rough surface; (b) 2D sinusoidal rough surface; (c) pyramidal rough surface; (d) random rough surface.

    图 4  光滑表面下CS与SS方法ACs随样本量的变化 (a) SS方法; (b) CS方法

    Fig. 4.  Variation of ACs with sample size for CS and SS methods on a smooth surface: (a) SS method; (b) CS method.

    图 5  本文和Kammara[28]得到的TMAC结果对比

    Fig. 5.  Comparison of TMAC results obtained in this work and by Kammara[28].

    图 6  不同形态表面下CS方法随MFP变化得到的ACs与SS方法的ACs对比 (a) 光滑表面; (b) 2D正弦粗糙表面; (c) 随机粗糙表面

    Fig. 6.  Comparison of ACs obtained by the CS method with varying MFP and by the SS method on surfaces with different morphologies: (a) smooth surface; (b) 2D sinusoidal rough surface; (c) random rough surface.

    图 7  不同形态表面和MFP下的平均气体-表面相互作用时间

    Fig. 7.  Average gas-surface interaction time on surfaces with different morphologies at varying MFP.

    图 8  不同形态表面和MFP下气体分子的吸附概率

    Fig. 8.  Sticking probability of gas molecules on surfaces with different morphologies at varying MFP.

    图 9  不同形态表面和表面温度下CS与SS方法得到的ACs对比图 (a) 光滑表面; (b) 1D正弦粗糙表面; (c) 2D正弦粗糙表面; (d) 金字塔形粗糙表面; (e) 随机粗糙表面

    Fig. 9.  Comparison of ACs obtained by CS and SS methods on surfaces with different morphologies at varying surface temperatures: (a) smooth surface; (b) 1D sinusoidal rough surface; (c) 2D sinusoidal rough surface; (d) pyramidal rough surface; (e) random rough surface.

    图 10  不同形态表面下CS与SS方法吸附概率随表面温度的变化

    Fig. 10.  Variation of sticking probabilities for CS and SS methods with surface temperature on surfaces with different morphologies.

    图 11  光滑及2D正弦粗糙表面下CS与SS方法平均气体-表面相互作用时间随表面温度的变化

    Fig. 11.  Variation of average gas-surface interaction time with surface temperature for CS and SS methods on smooth and 2D sinusoidal rough surfaces.

    图 12  CS方法入射气体分子的典型碰撞轨迹图

    Fig. 12.  Typical collision trajectories of incident gas molecules under the CS method.

    图 13  不同形态表面和入射速度下CS与SS方法得到的ACs对比图 (a) 光滑表面; (b) 1D正弦粗糙表面; (c) 2D正弦粗糙表面; (d) 金字塔形粗糙表面; (e) 随机粗糙表面

    Fig. 13.  Comparison of ACs obtained by CS and SS methods on surfaces with different morphologies at varying incident velocities: (a) smooth surface; (b) 1D sinusoidal rough surface; (c) 2D sinusoidal rough surface; (d) pyramidal rough surface; (e) random rough surface.

    图 14  光滑表面YOZ平面势能分布示意图

    Fig. 14.  Schematic diagram of potential energy distribution in the YOZ plane on a smooth surface.

    图 15  不同形态表面和入射速度下CS与SS方法的平均气体-表面相互作用时间

    Fig. 15.  Average gas-surface interaction time for CS and SS methods on surfaces with different morphologies at varying incident velocities.

    图 16  不同入射速度下光滑表面CS与SS方法的总气-固碰撞次数和平均单次碰撞能量损失值

    Fig. 16.  Total gas-solid collision counts and average energy loss per collision for CS and SS methods on a smooth surface at varying Incident velocities.

    图 17  不同形态表面和入射速度下CS与SS方法的ACs的相对偏差平均值

    Fig. 17.  Average relative deviations of ACs between CS and SS methods on surfaces with different morphologies at varying incident velocities.

    表 1  光滑表面下MFP为2.0、1.0、0.5、0.2 nm时得到的ACs

    Table 1.  Accommodation coefficients obtained on a smooth surface at MFP equal to 2.0, 1.0, 0.5, and 0.2 nm.

    MFP/nmTMACNMACEAC
    2.00.6690.5330.538
    1.00.6370.4460.498
    0.50.6120.4080.425
    0.20.4910.2690.278
    下载: 导出CSV

    表 2  不同形态表面和MFP下CS与SS方法ACs的正负最大差值

    Table 2.  Maximum positive and negative differences in ACs between CS and SS methods on surfaces with different morphologies at varying MFP.

    表面形态 正负最大差值 TMAC NMAC EAC
    Smooth 正差值 0.007 0.002 0.028
    负差值 –0.028 –0.070 –0.004
    2Dsin 正差值 0.020 0.024 0.018
    负差值 –0.143 –0.052 –0.013
    Random 正差值 0.018 0.017 0.017
    负差值 –0.064 –0.080 –0.022
    下载: 导出CSV

    表 3  不同形态表面下SS方法在300 K和900 K表面温度得到的ACs的差值

    Table 3.  Differences in ACs obtained by the SS method on surfaces with different morphologies at surface temperatures of 300 K and 900 K.

    表面形态TMACNMACEAC
    Smooth0.2130.0090.140
    1Dsin0.3250.1240.270
    2Dsin0.3350.1410.249
    Pyramid0.2860.1070.226
    Random0.2360.1110.224
    下载: 导出CSV
  • [1]

    Chen Y Y, Chen D X, Liang S Z, Dai Y G, Bai X, Song B, Zhang D Y, Chen H W, Feng L 2022 Adv.Intell.Syst. 4 2100116Google Scholar

    [2]

    Zang H F, Zhang Z Y, Huang Z T, Lu Y H, Wang P 2024 Sci.Adv. 10 eadk2265Google Scholar

    [3]

    Song B W, Wang C W, Fan S Y, Zhang L R, Zhang C C, Xiong W, Hu Y L, Chu J R, Wu D, Li J W 2024 Adv.Funct.Mater. 34 2305245Google Scholar

    [4]

    Li B, Li H J, Yao X Y, Zhu X F, Liu N K 2022 Appl.Surf.Sci. 584 152617Google Scholar

    [5]

    Maxwell J C 1997 Philos.Trans.R.Soc.Lond. 170 231

    [6]

    Rooholghdos S A, Roohi E 2014 Comput.Math.Appl. 67 2029Google Scholar

    [7]

    Burnett D 1935 Proc.Lond.Math.Soc. s2-39 385Google Scholar

    [8]

    Shavaliyev M 1993 J.Appl.Math.Mech. 57 573Google Scholar

    [9]

    Lord R G 1995 Phys.Fluids 7 1159Google Scholar

    [10]

    Cercignani C, Lampis M 1971 Transp.Theory Stat.Phys. 1 101Google Scholar

    [11]

    Liang T F, Li Q, Ye W J 2018 J.Comput.Phys. 352 105Google Scholar

    [12]

    Yamamoto K 2001 RAREFIED GAS DYNAMICS: 22nd International Symposium Sydney, Australia, July 9–14, 2000 339

    [13]

    Park J H, Baek S W 2004 Int.J.Heat Mass Transf. 47 1313Google Scholar

    [14]

    Liang Z, Keblinski P 2014 Int.J.Heat Mass Transf. 78 161Google Scholar

    [15]

    Yamaguchi H, Matsuda Y, Niimi T 2017 Phys.Rev.E 96 013116Google Scholar

    [16]

    Yousefi-Nasab S, Safdari J, Karimi-Sabet J, hasan Mallah M 2021 Vacuum 183 109864Google Scholar

    [17]

    Agrawal A, Prabhu S V 2008 J.Vac.Sci.Technol.A 26 634Google Scholar

    [18]

    Mohammad Nejad S, Nedea S, Frijns A, Smeulders D 2020 Micromachines 11

    [19]

    Rappe A K, Casewit C J, Colwell K S, Goddard W A I, Skiff W M 1992 J.Am.Chem.Soc. 114 10024Google Scholar

    [20]

    C T Rettner 1998 IEEE Trans.Magn. 34 2387Google Scholar

    [21]

    Minton T K, Tagawa M, Nathanson G M 2004 J.Spacecr.Rockets 41 389Google Scholar

    [22]

    Tekasakul P, Bentz J A, Tompson R V, Loyalka S K 1996 J.Vac.Sci.Technol.A 14 2946Google Scholar

    [23]

    Jousten K 2002 J.Vac.Sci.Technol.A 21 318

    [24]

    Arya G, C Hsueh-Chia, Maginn E J 2003 Mol.Simul. 29 697Google Scholar

    [25]

    Yamamoto K, Takeuchi H, Hyakutake T 2006 Phys.Fluids 18 046103Google Scholar

    [26]

    Prabha S K, Sathian S P 2012 Phys.Rev.E 85 041201

    [27]

    Cao B Y, Chen M, Guo Z Y 2005 Appl.Phys.Lett. 86 091905Google Scholar

    [28]

    Peddakotla S A, Kammara K K, Kumar R 2019 Microfluid.Nanofluid. 23 79Google Scholar

    [29]

    Sipkens T A, Daun K J 2018 J.Phys.Chem.C 122 20431Google Scholar

    [30]

    V Chirita, B A Pailthorpe, R E Collins 1993 J.Phys.D Appl.Phys. 26 133Google Scholar

    [31]

    Finger G W, Kapat J S, Bhattacharya A 2006 J.Fluids Eng. 129 31

    [32]

    Ozhgibesov M, Leu T, Cheng C, Utkin A 2012 J.Mol.Graph.Model. 38 375Google Scholar

    [33]

    Xiao C, Shi P F, Yan W M, Chen L, Qian L M, Kim S H 2019 Colloids Interfaces 3

    [34]

    Skoulidas A I, Sholl D S, Johnson J K 2006 J.Chem.Phys. 124 054708Google Scholar

    [35]

    Moe K, Moe M M 2011 27TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS Pacific Grove, California, USA, July 10–15, 2010 1313

    [36]

    Miao Q, Li L Q, Pi X C, Qiu Y, Fang M 2023 Phys.Fluids 35 082113Google Scholar

    [37]

    Mohammad Nejad S, Nedea S, Frijns A, Smeulders D 2022 Phys.Fluids 34 117122Google Scholar

    [38]

    Wang Z J, Song C Q, Qin F H, Luo X S 2021 J.Fluid Mech. 928 A34Google Scholar

    [39]

    Liang T F, Zhang J, Li Q 2021 Phys.Fluids 33 082005Google Scholar

    [40]

    Liang T F, Li Q 2019 J.Appl.Phys. 126 084304Google Scholar

    [41]

    TAO R L, WANG Z H 2024 Chin.J.Aeronaut. 37 228Google Scholar

    [42]

    Minkowycz W, Sparrow E 2018 Advances in Numerical Heat Transfer, Volume 2. 0th edn. (Routledge). Pp200

    [43]

    Paterlini M, Ferguson D M 1998 Chem.Phys. 236 243Google Scholar

    [44]

    Tully J C 1980 J.Chem.Phys. 73 1975Google Scholar

    [45]

    Adelman S A, Doll J D 1976 J.Chem.Phys. 64 2375Google Scholar

    [46]

    Kimura T, Maruyama S 2002 Microscale Thermophys.Eng. 6 3Google Scholar

    [47]

    Maruyama S, Kimura T 1999 Therm.Sci.Eng 7 63

    [48]

    Foiles S M, Baskes M I, Daw M S 1986 Phys.Rev.B 33 7983Google Scholar

    [49]

    Spijker P, Markvoort A J, Nedea S V, Hilbers P A J 2010 Phys.Rev.E 81 011203Google Scholar

    [50]

    Pham T T, To Q D, Lauriat G, Léonard C, Hoang V V 2012 Phys.Rev.E 86 051201Google Scholar

    [51]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int.J.Mol.Sci. 10 4638Google Scholar

    [52]

    Borisov S F, Litvinenko S A, Semenov Y G, Suetin P E 1978 J.Eng.Phys. 34 603Google Scholar

    [53]

    Reinhold J, Veltzke T, Wells B, Schneider J, Meierhofer F, Colombi Ciacchi L, Chaffee A, Thöming J 2014 Comput.Fluids 97 31Google Scholar

    [54]

    张冉, 常青, 李桦 2018 物理学报 67 223401Google Scholar

    Zhang R, Chang Q, Li H 2018 Acta Phys. Sin. 67 223401Google Scholar

  • [1] 黄永峰, 曹智建, 孟胜. 非极性固体表面纳米液滴内离子结晶的分子动力学模拟. 物理学报, doi: 10.7498/aps.74.20251231
    [2] 龚路远, 魏鑫鼎, 韩韬, 郭亚丽, 沈胜强. 微结构表面几何特性对水蒸气凝结影响的分子动力学研究. 物理学报, doi: 10.7498/aps.74.20250324
    [3] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究. 物理学报, doi: 10.7498/aps.72.20221332
    [4] 于航, 张冉, 杨帆, 李桦. 气体-表面相互作用中动量和能量分量间转化机制的分子动力学研究. 物理学报, doi: 10.7498/aps.70.20201192
    [5] 张烨, 张冉, 赖剑奇, 李桦. 宏观速度对适应系数的影响规律研究. 物理学报, doi: 10.7498/aps.68.20190987
    [6] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.086102
    [7] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.103104
    [8] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用. 物理学报, doi: 10.7498/aps.62.165203
    [9] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.045209
    [10] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.095203
    [11] 宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A., 苟富君. 样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.7225
    [12] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.58.67
    [13] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, doi: 10.7498/aps.58.53
    [14] 刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.58.199
    [15] 张 超, 王永亮, 颜 超, 张庆瑜. 替位杂质对低能Pt原子与Pt(111)表面相互作用影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.55.2882
    [16] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.54.4836
    [17] 谢国锋, 王德武, 应纯同. 分子动力学模拟Gd原子在Cu(110)表面的扩散过程. 物理学报, doi: 10.7498/aps.52.2254
    [18] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.1388
    [19] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.2386
    [20] 张超, 吕海峰, 张庆瑜. 低能Pt原子与Pt(111)表面相互作用的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.2329
计量
  • 文章访问数:  372
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-17

/

返回文章
返回