搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺镱光纤激光器伽马辐照响应特性研究

陶蒙蒙 谌鸿伟 王亚民 王科 邵冲云 李哲 李生武 李乔木 叶景峰

引用本文:
Citation:

掺镱光纤激光器伽马辐照响应特性研究

陶蒙蒙, 谌鸿伟, 王亚民, 王科, 邵冲云, 李哲, 李生武, 李乔木, 叶景峰

Response Characteristics of Yb-doped Fiber Lasers to Gamma-ray Radiation

TAO Mengmeng, CHEN Hongwei, WANG Yamin, WANG Ke, SHAO Chongyun, LI Zhe, LI Sheng-Wu, LI Qiaomu, YE Jingfeng
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 光纤激光器在太空、反应堆、大型加速器等辐射环境中应用时,辐射与光纤的相互作用会给光纤参数带来较大变化,从而影响激光器的输出性能。本文对掺镱光纤激光器的伽马辐照响应特性开展了实验和仿真研究。实验对比了无源光纤、泵浦合束器、光纤光栅、增益光纤等不同光纤器件在辐照环境下的性能变化,通过对比分析明确了增益光纤是激光器系统中对辐射最为敏感的光纤器件。实验研究了泵浦方式、增益光纤长度对掺镱光纤激光器辐射响应特性的影响,并通过理论模拟对实验结果进行了分析验证;结果表明,后向泵浦方式和更短的增益光纤有助于降低光纤激光器系统的辐射敏感性。相关研究结果可为光纤激光器抗辐射优化设计提供技术参考,支撑激光器在辐射环境中的安全使用。
    Exploited in radiation environments, including space, nuclear reactors and large accelerators, fibers would experience significant parameter change induced by the interaction with radiation, including radiation induced attenuation, radiation induced refractive index change, radiation induced lifetime change and radiation induced luminescence, which would then result in severe performance degradation of the fiber laser system. Here, the response characteristics of Yb-doped fiber lasers to gamma-ray radiation are investigated through both experiments and simulations. The performance variation of various fiber components after gamma radiation, including passive fiber, pump combiner, fiber Bragg grating and active fiber, is studied and compared with an accumulated total dose up to 1000 Gy. And, experiments show that, in a fiber laser system, the active fiber is the most sensitive part to gamma radiation, while various passive fiber components show negligible response. Then, impacts of cavity configuration parameters, such as pump scheme and active fiber length, on the response of fiber lasers are explored through series of radiation experiments. It’s shown that, compared to forward pump, backward pump scheme helpful to improve the radiation-resistant capability of fiber lasers. And, lasers with relatively shorter active fiber show smaller power drop when operated in radiation situations. Besides, corresponding simulations are carried out with the previously developed multi-physics thermal model considering hundred-watt level Yb-doped fiber lasers, demonstrating consistent results with the experiments. This research should be instructive for the design optimization of fiber laser systems operated in radiation environments.
  • [1]

    Zhou P, Ma P, Ren S, Chen Y, Liu W, Yao T, Pan Z, Chen J 2023 Inform. Countermeasure Technol. 2 16 (in Chinese) [周朴, 马鹏飞, 任帅, 陈益沙, 刘伟, 姚天甫, 潘志勇, 陈金宝 2023 信息对抗技术 2 16]

    [2]

    Cheng X, Jiang W, Feng Y 2022 Infrared Laser Eng. 51 20220127 (in Chinese) [程鑫, 姜华卫, 冯衍 2022 红外与激光工程 51 20220127]

    [3]

    Liu S, Yu T, He Z, Ye X, Dai B 2023 Mod. Appl. Phys. 14 020104 (in Chinese) [刘树婷, 余婷, 贺振兴, 叶锡生, 戴博 2023 现代应用物理 14 020104]

    [4]

    Chen W, Xu J, Ouyang C 2022 Acta. Phys. Sin. 51 0414003 (in Chinese) [陈文韬, 徐剑秋, 欧阳春梅 2022 光子学报 51 0414003]

    [5]

    Ock J, Shin J, Lim G, Song K, Oh S Y, Yang W, Choi S 2024 J. Hazard. Mater. 480 136274

    [6]

    Qiu M, Hu Y, Wu W, Yin J, Wei H, Sun F, Yang H, Sun J, Lai D, Luo W, Wang L, Li M, Yang S, Zhang T, Jiang X, Zhang P, Wang Z, Sun J, Jiang H, Huang T, Cong P, Chen W, Qiu A 2024 Mod. Appl. Phys. 15 030101 (in Chinese) [邱孟通, 呼义翔, 吴伟, 尹佳辉, 魏浩, 孙凤举, 杨海亮, 孙江, 来定国, 罗维熙, 王亮平, 李沫, 杨实, 张天洋, 姜晓峰, 张鹏飞, 王志国, 孙剑锋, 降宏瑜, 黄涛, 丛培天, 陈伟, 邱爱慈 2024 现代应用物理 15 030101]

    [7]

    Chen W, Zhang L, Xue Y, Chen L, Ding L, Zhang W, Guo X, Liu W, Wu W, Su C, Liu Y, Jin X, Bai X 2024 Mod. Appl. Phys. 15 040401 (in Chinese) [陈伟, 张良, 薛院院, 陈立新, 丁李利, 张文首, 郭晓强, 刘文旭, 吴伟, 苏春磊, 刘岩, 金晓明, 白小燕 2024 现代应用物理 15 040401]

    [8]

    Li H, Han J, Cai M, Ma Y, Han R, Tao M, Kou B, Hu Z, Zhang L, Xu Z 2024 Mod. Appl. Phys. 15 040410 (in Chinese) [李宏伟, 韩建伟, 蔡明辉, 马英起, 韩瑞龙, 陶孟泽, 寇彬, 胡紫楠, 张龙龙, 徐振宇 2024 现代应用物理 15 040410]

    [9]

    Girard S, Kuhnhenn J, Gusarov A, Brichard B, Uffelen M V, Ouerdan Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015

    [10]

    Shao C Y, Yu C L, Hu L L 2020 Chin. J. Lasers 47 0500006 (in Chinese) [邵冲云, 于春雷, 胡丽丽 2020 中国激光 47 0500006]

    [11]

    Girard S, Alessi A, Richard N, Martin-Samos L, Michele V D, Giacomazzi L, Agnello S, Francesca D D, Morana A, Winkler B, Reghioua I, Paillet P, Cannas M, Robin T, Boukenter A, Ouerdane Y 2019 Rev. Phys. 4 100032

    [12]

    Liu F H, Wang P, Liu W P, Xie H G, Feng G, Chen S W, Wu J J 2015 Mod. Appl. Phys. 6 202 (in Chinese) [刘福华, 王平, 刘卫平, 谢红刚, 冯刚, 陈绍武, 武俊杰 2015 现代应用物理 6 202]

    [13]

    Yang F, Mao J, Chen L, Mao Y, Zhang X, Peng N, Wang T, Peng H 2022 Mod. Appl. Phys. 13 010602 (in Chinese) [杨帆, 卯江江, 陈丽婷, 茆亚南, 张晓阳, 彭乃卫, 王铁山, 彭海波 2022 现代应用物理 13 010602]

    [14]

    Li Y, Li K, Jin J. 2017 Chin. J. Lasers 44 1206003 (in Chinese) [李彦, 黎珂钦, 金靖2017 中国激光 44 1206003]

    [15]

    Chi J J, Jiang S Q, Zhang L, Yu M, Wang J L 2018 Laser&Optoelectronics Progress 55 061406 (in Chinese) [池俊杰, 姜诗琦, 张琳, 于淼, 王军龙 2018 激光与光电子学进展55 061406]

    [16]

    Chen H, Tao M, Zhao H, Zhao L, Shen Y, Huang K, Feng G 2019 Chin. J. Lasers 46 1201005 (in Chinese) [谌鸿伟, 陶蒙蒙, 赵海川, 赵柳, 沈炎龙, 黄珂, 冯国斌 2019 中国激光 46 1201005]

    [17]

    Chen H, Tao M, Zhao H, Zhao L, Luan K, Shen Y, Huang K, Feng G 2020 Chin. J. Lasers 47 0401004 (in Chinese) [谌鸿伟, 陶蒙蒙, 赵海川, 赵柳, 栾昆鹏, 沈炎龙, 黄珂, 冯国斌 2020 中国激光 47 0401004]

    [18]

    Gusarov A, Hoeffgen S 2013 IEEE Trans. Nucl. Sci. 60 2037

    [19]

    Ladaci A, Girard S, Mescia L, Robin T, Laurent A, Cadier B, Boutillier M, Morana A, Francesca D D, Ouerdane Y, Boukenter A 2018 J. Lumin. 195 402

    [20]

    Gusarov A, Uffelen M V, Hotoleanu M, Thienpont H, Berghmans F 2009 J. Lightwave Technol 27 1540

    [21]

    Li M, Ma J, Tan L Y, Zhou Y P, Yu S Y, Yu J J, Che C 2009 Laser Phys. 19 138

    [22]

    Ma J, Li M, Tan L, Zhou Y, Yu S, Ran Q 2009 Opt. Express 17 15571

    [23]

    Ma J, Li M, Tan L Y, Yu S Y, Zhou Y P, Yu J J, Che C, Chang G L, Lu C. L 2009 J. Astronaut. 30 250 (in Chinese) [马晶, 李密, 谭立英, 于思源, 周彦平, 俞建杰, 车驰, 常国龙, 卢春莲 2009 宇航学报 30 250]

    [24]

    Cai Y, Liu H, Liu B, Lin W, Zhang H, Qiao Y 2022 Appl. Opt. 61 995

    [25]

    Xing Y, Huang H, Zhao N, Liao L, Li J, Dai N 2015 Opt. Lett. 40 681

    [26]

    Xing Y, Zhao N, Liao L,Wang Y, Li H, Peng J, Yang L, Dai N, Li J 2015 Opt. Express 23 24236

    [27]

    Xing Y, Liu Y, Cao R, Liao L, Chu Y, Wang Y, Peng J, Li H, Yang L, Dai N, Li J 2018 OSA Contin. 1 987

    [28]

    Chen Y, Xu H, Xing Y, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430

    [29]

    Wang Y, Gao C, Peng K, Ni L, Wang X, Zhan H, Li Y, Jiang L, Lin A, Wang J, Jing F 2018 Proceedings of 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) Hong Kong, China, July 29-August 3, 2018 p. F1B.2

    [30]

    Li F F, Zhou X Y, Zhang K B, Chen J Z, Gao C, Zhang L H, Shi Z H, Xia H D, Ye X, Wu W D, Li B 2020 High Power Laser and Particle Beams 32 081003 (in Chinese) [李奋飞, 周晓燕, 张魁宝, 陈进湛, 高聪, 张立华, 石兆华, 夏汉定, 叶鑫, 吴卫东, 李波 2020 强激光与粒子束 32 081003]

    [31]

    Zhang H W, Wang X L, Tang F, Liu W G, Liu P Y, Xu X J, Xiao Y Z, Chen J B 2020 Laser&Optoelectronics Progress 57 011406 (in Chinese) [张汉伟, 王小林, 唐峰, 刘文广, 刘鹏宇, 许晓军, 肖余之, 陈金宝 2020 激光与光电子学进展 57 011406]

    [32]

    Cao J, Zhou S, Liu P, Huang Z, Wang Z, Si L, Chen J 2024 Acta. Phys. Sin. 73 204202 (in Chinese) [曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝 2024 物理学报73 204202]

    [33]

    Zheng Y, Ma Z, Zhu J, Yu M, Li S, Zhang L, Wang J, Wang X 2023 High Power Laser and Particle Beams 34 041003 (in Chinese) [郑也, 马梓洋, 朱嘉婧, 于淼, 李思源, 张琳, 王军龙, 王学锋 2022 强激光与粒子束 34 041003]

    [34]

    Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Opt. 20 093001

    [35]

    Wang B, Cao C, Xing Y B, Chen G, Dai N L, Li H Q, Peng J G, Li J Y 2021 Laser & Optoelectronic Progress 58 1516012 (in Chinese) [王博, 曹驰, 邢颍滨, 陈瑰, 戴能利, 李海清, 彭景刚, 李进延 2021 激光与光电子学进展 58 1516012]

    [36]

    Shao C, Yu C, Zhu Y, Zhou Q, Boulon G, Guzik M, Chen W, Hu L 2022 J. Lumin. 248 118939

    [37]

    Wang Y, Li H, Hao Z 2013 Laser & Optoelectronic Progress 50 070601 (in Chinese) [王岩, 李洪祚, 郝子强. 2013 激光与光电子学进展 50 070601]

    [38]

    Shao C, Yu C, Jiao Y, Boulon G, Guzik M, Zhang L, Lou F, Wang M, Chen W, Hu L 2022 Int. J. Appl. Glass Sci. 13 457

    [39]

    Li L, Chen Z, Wen J, Dong Y, Wang T 2022 Flight Control & Detection 5 58 (in Chinese) [李凌乐, 陈子睿, 文建湘, 董艳华, 王廷云 2022 飞控与探测 5 58]

    [40]

    Likhachev M E, Bubnov M M, Zotov K V, Tomashuk A L, Denis S L, Yashkov M V, Guryanov A N 2013 J. Lightwave Technol. 31 749

    [41]

    Shao C, Ren J, Wang F, Ollier N, Xie F, Zhang X, Zhang L, Yu C, Hu L 2018 J. Phys. Chem. B 122 2809

    [42]

    Wang F, Shao C, Yu C, Wang S, Zhang L, Gao G, Hu L 2019 J. Appl. Phys. 125 173104

    [43]

    Wen X, Wang G, Gao X, Feng Zh, An H, Yin H, Wang J, Zhe S, Hou Ch, Yang S 2023 Infraed Laser Eng. 52 20220871 (in Chinese) [文轩, 王根成, 高欣, 冯展祖, 安恒, 银鸿, 王俊, 折胜飞, 侯超奇, 杨生胜 2023 红外与激光工程 52 20220871]

    [44]

    Cao C, Chen Y, Li W, Chu Y, Xing Y, Liao L, Dai N, Li J 2022 Chin. J. Lasers 49 2215001 (in Chinese) [曹驰, 陈阳, 李文臻, 褚应波, 邢颖滨, 廖雷, 戴能利, 李进延 2022 中国激光 49 2215001].

    [45]

    Cao C, Wang B, Chu Y, Xing Y, Liao L, Dai N, Li J 2021 Chin. J. Lasers 48 2015001 (in Chinese) [曹驰, 王博, 褚应波, 邢颖滨, 廖雷, 戴能利, 李进延 2021 中国激光 48 2015001]

    [46]

    Shao Y, Wang Y, Ju X 2023 Phys. Chem. Chem. Phys. 25 15929

    [47]

    Jiao Y, Yang Q, Zhu Y, Wang F, Zhang L, Wang M, Wang S, Shao C, Yu C, Hu L 2022 Opt. Express 30 6236

    [48]

    Shao C, Jiao Y, Lou F, Wang M, Zhang L, Feng S, Wang S, Chen D, Yu C, Hu L 2020 Opt. Mater. Express 10 408

    [49]

    Wang X, Sun S, Zheng Y, Yu M, Li S, Cao Y, Wang J 2023 Appl. Sci. 13 6146

    [50]

    Aubry M, Mescia L, Morana A, Robin T, Laurent A, Mekki J, Marin E, Ouerdane Y, Girard S, Boukenter A 2021 Phys. Status. Solidi. A 218 2100002

    [51]

    Mady F, Guttilla A, Benabdesselam M, Blanc W 2019 Opt. Mat. Express 9 2466

    [52]

    Chen J 2020 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [陈进湛 2020 硕士学位论文 (成都: 电子科技大学)]

    [53]

    Zhang Y, Wang G, Zhao T, Zhang Y, Gao S, Cui X, Zhu Z, Li Z, She S, Hou C, Guo H 2025 J. Lightwave Technol. 43 3899

    [54]

    Xiang G, Wu J, Zhang H, Zhang J, Chen H, Wang Y, Wang X, Hua W 2025 IEEE Trans. Nucl. Sci. 72 11

    [55]

    Xiang G, Zhang H, Wang X, Zhang J, Chen H, Lin C, Ye Y, Hua W, Chen J 2025 Photonics Res. 13 2362

    [56]

    Xiang G, Chen J, Wang X, Ye Y, Zhang H, Zhang J, Hua W 2024 Opt. Lett. 49 6301

    [57]

    Girard S, Mescia L, Vivona M, Laurent A, Ouerdane Y, Marccandella C, Prudenzano F, Boukenter A, Robin T, Paillet P, Goiffon V, Gaillardin M, Cadier B, Pinsard E, Cannas M, Boscaino R 2013 J. Lightwave Technol. 31 1247

    [58]

    Mescia L, Girard S, Bia P, Robin T, Laurent A, Prudenzano F, Boukenter A, Ouerdane Y 2014 IEEE J. Sel. Topics Quantum Electron. 20 3100108

    [59]

    Ladaci A, Girard S, Mescia L, Robin T, Laurent A, Cadier B, Boutillier M, Ouerdane Y, Boukenter A 2017 J. Appl. Phys. 121 163104

    [60]

    Mescia L, Bia P, Girard S, Ladaci A, Chiapperino M A, Robin T, Laurent A, Cadier B, Boutillier M, Ouerdane Y, Boukenter A 2018 J. Lightwave Technol. 36 3594

    [61]

    Campanella C, Mescia L, Bia P, Chiapperino M A, Girard S, Robin T, Mekki J, Marin E, Boukenter A, Ouerdane Y 2018 Phys. Status Solidi A 1800582.

    [62]

    Tao M, Chen H, Feng G, Luan K, Wang F, Huang K, Ye X 2020 Opt. Express 28 10104

    [63]

    Tao M, Chen H, Feng G, Wang L, Ye J, Wang Y, Ye X, Chen W 2022 Laser Phys. 32 055101

    [64]

    Tao M, Wang Y, Wang K, Chen H, Ye J, Shen Y, Wang D, Ye X 2025 J. Opt. 54 867

    [65]

    Chen W, Guo X, Yao Z, Luo Y, Ding L, He B, Wang Z, Wang C, Wang Z, Cong P 2017 Mod. Appl. Phys. 8 020101 (in Chinese) [陈伟, 郭晓强, 姚志斌, 罗尹虹, 丁李利, 何宝平, 王祖军, 王晨辉, 王忠明, 丛培天 2017 现代应用物理, 8 020101]

  • [1] 谢金辰, 陶曦, 续瑞瑞, 田源, 邢康, 葛智刚, 牛一斐. 基于变分自编码器的伽马单中子出射反应截面实验数据离群点研究. 物理学报, doi: 10.7498/aps.74.20241775
    [2] 田榕赫, 杨东, 于伟翔, 黄小龙, 李小安, 石明松. 探测器高能伽马效率刻度用放射性核素56Co的衰变数据. 物理学报, doi: 10.7498/aps.74.20250743
    [3] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 马鹏飞, 王泽锋, 司磊, 陈金宝. 辐致损耗对单频单模掺镱光纤放大器功率提升的影响. 物理学报, doi: 10.7498/aps.74.20250418
    [4] 陶蒙蒙, 王亚民, 王科, 谌鸿伟, 邵冲云, 李乔木, 叶景峰. 掺镱光纤激光器自漂白波长探究. 物理学报, doi: 10.7498/aps.74.20251017
    [5] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝. 辐照效应对于掺镱光纤放大器模式不稳定阈值影响的理论研究. 物理学报, doi: 10.7498/aps.73.20240816
    [6] 文榆钧, 王鹏, 奚小明, 张汉伟, 黄良金, 杨欢, 闫志平, 杨保来, 史尘, 潘志勇, 王小林, 王泽锋, 许晓军. 激光二极管直接后向泵浦的高光束质量万瓦光纤激光器. 物理学报, doi: 10.7498/aps.71.20221433
    [7] 李奋飞, 周晓燕, 张魁宝, 石兆华, 陈进湛, 叶鑫, 吴卫东, 李波. 中子辐照对掺镱光纤材料光学特性的影响. 物理学报, doi: 10.7498/aps.70.20210083
    [8] 朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展. 物理学报, doi: 10.7498/aps.70.20202224
    [9] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, doi: 10.7498/aps.64.194205
    [10] 王玉宝, 齐晓辉, 沈阳, 姚繄蕾, 徐志敬, 潘玉寨. 超长腔碳纳米管锁模多波长掺镱光纤激光器. 物理学报, doi: 10.7498/aps.64.204205
    [11] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究. 物理学报, doi: 10.7498/aps.63.084202
    [12] 黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利. γ射线辐照对掺Yb光纤材料性能的影响. 物理学报, doi: 10.7498/aps.63.200201
    [13] 刘宇安, 庄奕琪, 杜磊, 苏亚慧. 氮化镓基蓝光发光二极管伽马辐照的1/f噪声表征. 物理学报, doi: 10.7498/aps.62.140703
    [14] 徐中巍, 张祖兴. 全正色散多波长被动锁模耗散孤子掺镱光纤激光器. 物理学报, doi: 10.7498/aps.62.104210
    [15] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器. 物理学报, doi: 10.7498/aps.61.214208
    [16] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究. 物理学报, doi: 10.7498/aps.61.114204
    [17] 盛于邦, 杨旅云, 栾怀训, 刘自军, 李进延, 戴能利. 辐照对掺Er硅酸盐玻璃吸收和发光特性的影响. 物理学报, doi: 10.7498/aps.61.116301
    [18] 刘越, 张巍, 冯雪, 刘小明. 损耗调制型掺铒光纤环形激光器混沌现象的实验研究. 物理学报, doi: 10.7498/aps.58.2971
    [19] 王勇刚, 马骁宇, 付圣贵, 范万德, 李 强, 袁树忠, 董孝义, 宋晏蓉, 张志刚. 离子注入GaAs实现双包层掺镱光纤激光器被动调Q锁模. 物理学报, doi: 10.7498/aps.53.1810
    [20] 胡恺生, 李宗祥, 宁鼎, 李浩, 周建平, 刘全民. 电子辐照对掺铒单模光纤损耗特性的影响. 物理学报, doi: 10.7498/aps.40.560
计量
  • 文章访问数:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-18

/

返回文章
返回