搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂应力状态下单硼化铬的力学响应及微结构演化的第一性原理研究

沈绪 付涛 王世怡 胡浩 翁莎缘 彭向和

引用本文:
Citation:

复杂应力状态下单硼化铬的力学响应及微结构演化的第一性原理研究

沈绪, 付涛, 王世怡, 胡浩, 翁莎缘, 彭向和

First-principles study on the mechanical response and structural evolution of chromium monoboride under complex stress states

Shen Xu, Fu Tao, Wang Shiyi, Hu Hao, Weng Shayuan, Peng Xianghe
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 随着高端制造、航空航天与核能等领域对在极端服役环境下的材料需求的不断提升,开发兼具高强度、高硬度和热稳定性的材料具有重要意义。单硼化铬因其独特晶体结构和优异力学性能而备受关注,但其在复杂应力条件下的变形与失效机制尚不清晰。本文基于第一性原理计算研究了单硼化铬在单轴拉伸、纯剪切及法向应力耦合剪切下的力学响应及微观结构演化,结果表明,该材料具有显著的拉伸各向异性:拉伸强度在[100]方向最高(69.92 GPa),[010]方向最低(44.69 GPa)。最低的纯剪切强度(35.68 GPa)出现在(010)[100]方向。进一步分析表明,法向应力对剪切强度的作用呈非单调特征:在低压下随压力升高而增强,在高压下则出现软化。不同晶向对法向压力的敏感性差异显著,且各向异性随压力的增加而加剧。研究揭示了单硼化铬在多轴应力下的失效机制,可为其在极端环境中的应用提供理论支撑与设计参考。
    With the increasing demand for materials capable of withstanding extreme service environments in fields such as advanced manufacturing, aerospace, and nuclear energy, the development of materials combining high strength, hardness, and thermal stability has become highly significant. Chromium monoboride(CrB), owing to its unique crystal structure and excellent mechanical properties, has attracted considerable attention; however, its deformation and failure mechanisms under complex stress states remain unclear. In this work, first-principles calculations are employed, combined with electronic structure analysis, to investigate the mechanical response and microstructural evolution of CrB under uniaxial tension, pure shear, and shear coupled with normal stress. The results reveal pronounced tensile anisotropy: the tensile strength is highest along the [100] direction (69.92 GPa) and lowest along the [010] direction (44.69 GPa). The minimum pure shear strength (35.68 GPa) occurs along the (010)[100] direction. Under pure shear and low normal stress, the Cr-Cr bimetallic layers undergo interlayer slip at the critical shear strain, leading to a sudden stress drop. In contrast, under high normal compressive stress coupled with shear, the interlayer spacing between Cr-Cr bimetallic layers is significantly reduced, which enhances interlayer bonding and suppresses interlayer slip. As a result, strain energy accumulates within the crystal lattice, eventually causing an abrupt structural collapse and catastrophic failure. Further analysis shows that the effect of normal stress on shear strength is non-monotonic: it increases with pressure at low stresses but softens under high pressures. The sensitivity to normal stress varies significantly with crystallographic orientation, and the anisotropy is further amplified as pressure increases. This study elucidates the instability mechanisms of CrB under multiaxial stress, providing theoretical guidance and design reference for its applications in extreme environments.
  • [1]

    Griza S D, Matar S F, Weihrich R, Eyert V 2025 Journal of Solid State Chemistry 350 125466

    [2]

    Du J, Sun W, Li X, Su X 2025 Materials 18 3125

    [3]

    Liu S Y, Qin L, Zhang H, Liu C, Liu S, Li D-J, Yadav T, Shah D, Wang S 2024 Ceramics International 50 17977

    [4]

    Zhao P, Zhu J, Li M, Shao G, Lu H, Wang H, He J 2023 Journal of the European Ceramic Society 43 2320

    [5]

    Kong Q, Liu Q, Chen L, Huo S, Li K, Mao M, Sun W, Wang Y, Kang S-J L, Zhou Y 2025 Journal of Materials Science & Technology 234 102

    [6]

    Xu B, Tian Y-J 2017 Acta Physica Sinica 66 036201[徐波,田永君2017 物理学报 66 036201]

    [7]

    Kapadia B M 1987 Journal of Heat Treating 5 41

    [8]

    Li B, Sun H, Zang C, Chen C 2013 Physical Review B 87 174106

    [9]

    Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268

    [10]

    Chung H Y, Weinberger M B, Levine J B, Cumberland R W, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436

    [11]

    Gou H, Li Z, Niu H, Gao F, Zhang J, Ewing R C, Lian J 2012 Applied Physics Letters 100 111907

    [12]

    Paul B, Okamoto N L, Kusakari M, Chen Z, Kishida K, Inui H, Otani S 2021 Acta Materialia 211 116857

    [13]

    Liu C, Gu X, Zhang K, Zheng W, Ma Y, Chen C 2022 Physical Review B 105 024105

    [14]

    Miao N, Duan Z, Wang S, Cui Y, Feng S, Wang J 2024 Acs Applied Materials & Interfaces 16 5792

    [15]

    Pan Y, Zhu J 2024 Materials Today Communications 38 108428

    [16]

    Zhang Y-t, Chen G-h, Shi X-h, Li N, Li H-j 2024 Corrosion Science 236 112218

    [17]

    Uzunok H Y, Sichula H, Tütüncü H M, Bagci S 2025 International Journal of Refractory Metals & Hard Materials 131 107190

    [18]

    Tao Q, Ma S-L, Cui T, Zhu P-W 2017 Acta Physica Sinica 66 036103(in Chinese) [陶强,马帅领,崔田,朱品文 2017 物理学报 66 036103]

    [19]

    Zhao L-K, Zhao E-J, Wu Z-J 2013 Acta Physica Sinica 62 046201 (in Chinese) [赵立凯,赵二俊,武志坚 2013 物理学报 62 046201]

    [20]

    Frueh A J 1951 Acta Crystallographica 4 66

    [21]

    Mnisi B O 2025 Vacuum 234 114094

    [22]

    Han L, Wang S, Zhu J, Han S, Li W, Chen B, Wang X, Yu X, Liu B, Zhang R, Long Y, Cheng J, Zhang J, Zhao Y, Jin C 2015 Applied Physics Letters 106 221902

    [23]

    Ding B X, Li S Y, Zhang X, Jiang J Y, Lian X J, Wang L 2025 Japanese Journal of Applied Physics 64 036501

    [24]

    Wang Y S, Wang S, Song N H, Wu X W, Xu J, Luo S J, Xu B, Wang F 2024 Computational Materials Science 233 112710

    [25]

    Tan X Y, Na Z M, Zhuo R, Wang D B, Zhang Y F, Wu P 2023 Chemosensors 11 371

    [26]

    Li X Q, Schönecker S, Li W, Varga L K, Irving D L, Vitos L 2018 Physical Review B 97 094102

    [27]

    Shang S L, Shimanek J, Qin S P, Wang Y, Beese A M, Liu Z K 2020 Physical Review B 101 024102

    [28]

    Yizhong G, Zhanxin W, Bin Z, Jiao T, Weijing Z, Yufeng Z, Libo F, Dongwei L, Yan M, Wenxiong S, Liu L 2022 Cell Reports Physical Science 3 100736

    [29]

    Li C Y, Fu T, Li X L, Hu H, Peng X H 2023 Physical Review B 107 224106

    [30]

    Zhang L, Li J, Zhang J, Liu Y, Lin L 2023 Metals 13 1569

    [31]

    Umeno Y, Kitamura T 2002 Materials Science and Engineering: B 88 79

    [32]

    Cerny M, Pokluda J 2008 Computational Materials Science 44 127

    [33]

    Černý M, Pokluda J 2010 Acta Materialia 58 3117

    [34]

    Tschopp M A, McDowell D L 2008 Journal of the Mechanics and Physics of Solids 56 1806

    [35]

    Kitamura R, Kageyama T, Koyanagi J, Ogihara S 2018 Advanced Composite Materials 28 135

    [36]

    Li J, Li J, Chen Y, Chen J 2022 Nanomaterials 12 4381

    [37]

    Kumar A, Kumar A, Kumar S 2025 Journal of Materials Engineering and Performance 34 24542

    [38]

    Kresse G, Furthmuller J 1996 Phys Rev B 54 11169

    [39]

    Blochl P E 1994 Phys Rev B 50 17953

    [40]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys Rev Lett 77 3865

    [41]

    Monkhorst H J, Pack J D 1976 Physical Review B 13 5188

    [42]

    Li R-Y, Duan Y-H 2016 Philosophical Magazine 96 972

    [43]

    Chong X, Jiang Y, Zhou R, Feng J 2014 Journal of Alloys and Compounds 610 684

  • [1] 肖羽, 柯强, 雷雪玲. 第一性原理研究缺陷石墨烯负载Sm单原子催化剂对Li2O2分子氧化反应的催化机理. 物理学报, doi: 10.7498/aps.75.20251108
    [2] 李祗烁, 曹欣睿, 吴顺情, 吴建洋, 文玉华, 朱梓忠. 单层Janus MoSSe在不同手性角单轴拉伸应变下力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250437
    [3] 刘兆圣, 张桥, 宁勇祺, 符秀交, 邹代峰, 王俊年, 赵宇清. 基于机器学习与第一性原理计算的高居里温度Janus预测. 物理学报, doi: 10.7498/aps.74.20251026
    [4] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理. 物理学报, doi: 10.7498/aps.73.20240066
    [5] 南瑞华, 武春燕, 刘腾, 罗家欣, 魏永星, 坚增运. 大尺寸高质量CH3NH3PbCl3钙钛矿单晶的生长机理、相转变与光学性能. 物理学报, doi: 10.7498/aps.72.20230097
    [6] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20212254
    [7] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强. 物理学报, doi: 10.7498/aps.70.20202196
    [8] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20210268
    [9] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, doi: 10.7498/aps.69.20200234
    [10] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, doi: 10.7498/aps.68.20191258
    [11] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究. 物理学报, doi: 10.7498/aps.67.20181402
    [12] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, doi: 10.7498/aps.66.246801
    [13] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, doi: 10.7498/aps.62.246301
    [14] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, doi: 10.7498/aps.62.083102
    [15] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究. 物理学报, doi: 10.7498/aps.61.236301
    [16] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算. 物理学报, doi: 10.7498/aps.60.036104
    [17] 丁航晨, 施思齐, 姜平, 唐为华. BiFeO3 结构性质与相转变的第一性原理研究. 物理学报, doi: 10.7498/aps.59.8789
    [18] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算. 物理学报, doi: 10.7498/aps.56.1598
    [19] 孙 博, 刘绍军, 祝文军. Fe在高压下第一性原理计算的芯态与价态划分. 物理学报, doi: 10.7498/aps.55.6589
    [20] 徐 洲, 王秀喜, 梁海弋, 吴恒安. 纳米单晶与多晶铜薄膜力学行为的数值模拟研究. 物理学报, doi: 10.7498/aps.53.3637
计量
  • 文章访问数:  15
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-19

/

返回文章
返回