-
铁电薄膜及其集成的铁电器件受到了极大的关注. 传统铁电薄膜受限于临界尺寸效应, 难以在厚度逐渐变薄至纳米甚至单原子层时保持铁电性, 这为发展相关纳米电子学器件带来了挑战. 二维范德瓦耳斯材料具有天然稳定的层状结构, 具有表面平整无悬挂键、无层间界面陷阱、甚至在原子尺度极限厚度下仍能保持完整的物理化学特性的优点, 逐渐被人们意识到是实现二维铁电性理想的温床. CuInP2S6, α-In2Se3, WTe2等具有本征铁电极化的二维范德瓦耳斯铁电材料先后被报道, 同时人工堆叠的滑移铁电体如t-BN等也逐渐涌现, 极大扩充了二维范德瓦耳斯铁电材料的体系结构, 为进一步实现铁电的电子元器件微型化和柔韧化提供了新的可能. 本文将对近来报道的二维范德瓦耳斯铁电材料的研究进展进行综述, 探讨了它们的组分特征、结构特点及性能调控方法, 并展望此类材料的应用潜力和未来的研究热点.Ferroelectric thin films and their device applications have drawn wide attentions since the 1990s. However, due to the critical size effect, ferroelectric thin films cannot maintain their ferroelectric properties as their thickness decreases to the nanometer size or one atomic layer, posing a significant challenge to the development of related nano-electronic devices. With a naturally stable layered structure, two-dimensional materials possess many advantages such as high-quality and smooth interface without dangling bonds, no interlayer interface defects, and the ability to maintain complete physical and chemical properties even at limited atomic thickness. Thus, it is gradually realized that two-dimensional materials are a good hotbed for the two-dimensional ferroelectricity. CuInP2S6, α-In2Se3, WTe2, and other intrinsic ferroelectric 2D materials have been reported successively while artificially stacked sliding ferroelectrics such as t-BN have also emerged, which expands the types of 2D ferroelectric materials and opens a new avenue for the further miniaturization and flexibility of ferroelectric electronic devices. This article reviews the recent research progress of two-dimensional ferroelectric materials, discusses their compositional characteristics, structural features and property modulation, and also prospects their application potential and future research hotspots.
-
Keywords:
- two-dimensional materials /
- ferroelectrics /
- room temperature two-dimensional ferroelectricity /
- ferroelectric devices
-
图 1 (a) 电介质、压电体、铁电体及热释电体之间的从属关系; (b) 铁电材料铌酸钾钠基无铅压电陶瓷在1 kHz频率下的的介电温度谱(内插图为不同相的结构示意图)[44]; (c) 铁电体电滞回线P-E的示意图; (d) 钙钛矿结构的示意图
Fig. 1. (a) The subordination between dielectric, piezoelectric, ferroelectric and pyroelectric; (b) dielectric temperature spectra of potassium sodium niobate-based lead-free piezoelectric ceramics under 1 kHz (schematic diagrams of different phases are shown in the inner illustration) [44]; (c) schematic diagram of the ferroelectric hysteresis loop P-E; (d) schematic diagram of perovskite structure.
图 2 (a) CuInP2S6的原子结构示意图; (b) CuInP2S6表面形貌(左)、PFM面外振幅分布(中)和PFM面外相位分布(右); (c) 4 nm厚的CuInP2S6薄片在不同直流电场下的PFM压电响应振幅和相位; (d) 100 nm厚的CuInP2S6薄片的二次谐波信号强度随激发光偏振方向的依赖关系; (e) 不同厚度的CuInP2S6薄片的二次谐波信号随温度的依赖关系; (f) 4 nm厚的CuInP2S6薄片被写入回形畴后测试得到的PFM相位分布[31]; (g) CuInP2S6的表面形貌; (h) CuInP2S6的薄片的PFM面外振幅分布; (i) 随CuInP2S6薄片厚度变化的面外振幅的直方图; (k) CuInP2S6薄片的PFM面外振幅分布[60]
Fig. 2. (a) Atomic structure diagram of CuInP2S6; (b) surface morphology (left), piezoelectric response amplitude (middle) and piezoelectric response phase (right) of CuInP2S6 tested by PFM; (c) amplitude and phase of PFM piezoelectric response of CuInP2S6 flake of 4 nm in thickness under different DC fields[31]; (d) the dependence of the second harmonic signal intensity on the polarization direction of the excited light in the CuInP2S6 flake of 100 nm thickness; (e) the temperature dependence of the second harmonic signal of CuInP2S6 flake with different thickness; (f) the obtained PFM phase diagram after CuInP2S6 flake of 4 nm in thickness are written back into the domain[31]; (g) surface morphology of CuInP2S6; (h) piezoelectric response amplitudes at different positions of CuInP2S6 flake; (i) histogram of piezoelectric response as a function of the thickness of CuInP2S6 flake; (k) piezoelectric response phase at different positions of CuInP2S6 flake[60].
图 3 (a) In2Se3的原子结构示意图[71]; (b) In2Se3的表面形貌(左上)、PFM面外相位分布(中上)、中上图中沿红色线处不同畴的PFM相位(右上)、PFM振幅随电场的变化(左下)和PFM面外相位随电场的变化(中下)[37]; (c) In2Se3的PFM面外振幅和相位分布及写畴前后的SHG信号平面扫描结果[72]; (d) In2Se3的In2Se3的PFM面外和面内相位分布[36]
Fig. 3. (a) The diagrams of atomic structure of In2Se3[71]; (b) surface morphology (upper left), piezoelectric response amplitude (upper middle) and phase (upper middle) of In2Se3 tested by PFM[37]; (c) PFM piezoelectric response amplitude and phase of In2Se3, and the mapping of SHG signal before and after domain writing[72]; (d) the out-of-plane and in-plane piezoelectric response phase of In2Se3[36].
图 4 (a) 磷烯等材料具有类铰链状的原子结构示意图; (b) 一个晶胞厚度的SnTe的自发畴结构形貌的STM图及畴壁附近处的Fourier变换[34]; (c) 过渡金属硫族化合物的扭曲1 T结构示意图[77]; (d) 过渡金属硫族化合物的三聚体结构示意图[78]; (e) 2H-MoTe2和d1T-MoTe2薄片的拉曼图谱; (f) 2H-MoTe2 (左)和d1T-MoTe2 (右)的高分辨透射电子显微镜图; (g) 构建回字形畴的d1T-MoTe2薄片的PFM相位分布[79]
Fig. 4. (a) Schematic diagram of atomic structure of materials with hinge-like shape such as phospholene; (b) STM diagram of the spontaneous domain structure of SnTe with cell thickness and Fourier transform near the domain wall[34]; (c) schematic diagram of twisted 1T structure of Transition metal chalcogenides[77]; (d) schematic diagram of trimerized structure of transition metal chalcogenides; (e) Raman spectra of 2H-MoTe2 and d1T-MoTe2 flakes; (f) high-resolution TEM images of 2H-MoTe2 (left) and d1T-MoTe2 (right); (g) piezoelectric response phase of the domain with “loop” shape constructed on the d1T-MoTe2 flake[79].
图 5 (a) WTe2的原子结构示意图及双层WTe2器件的电输运特性[33]; (b) 单层MXenes的结构示意图和极化翻转过程中的微动弹性带计算分析[106]; (c) 双层二维材料的层间滑移示意图[107]; (d) 羟基化的石墨烯的结构示意图[108,109]
Fig. 5. (a) Atomic structure diagram of WTe2 and electric transport characteristics of two-layer WTe2 devices[33]; (b) schematic diagram of single-layer MXenes and computational analysis of fretting elastic bands in the polarization inversion process[106]; (c) schematic diagram of interlayer slip of two-dimensional bilayer materials[107]; (d) schematic diagram of hydroxylated graphene[108,109].
图 6 (a) Cu1–xIn1+x/3P2S6材料的压电响应(上)和形貌(下)周期性调制[67]; (b) 沿[010]方向拉伸时PbTe的Born有效电荷(BEC, 黑线)和相对原子位移(RAD, 蓝线)变化曲线, 插图展示了P4/nmm空间群中二维波纹状PbTe晶体结构[82]; (c) 零偏压条件下“强光写入-弱光读取”机制: 能带排列及光生载流子传输过程(右图为暗态, 中图为强光写入态, 左图为弱光读取态) [122]; (d) 摩擦电势阱模型(左图)与铁电极化朗道双势阱模型(中图), 当两种材料在机械运动下发生接触起电时, 电荷转移释放能量ET, 当ET远高于朗道势垒EF时, 铁电极化从Pup态切换至Pdown态, 通过改变摩擦电单元连接方式, 可实现双向开关[123]
Fig. 6. (a) Periodic modulation of piezoresponse (upper panels) and topography (lower panels) in Cu1–xIn1+x/3P2S6 compounds[67]; (b) the Born effective charge (BEC, black line) and relative atomic displacement (RAD, blue line) of PbTe along the [010] direction as a function of tension, The inset figure indicates the rippled crystal structures 2D PbTe in the P4/nmm space group[82]; (c) mechanism of “strong-light write and low-light read” under zero bias voltage, band alignment and the photogenerated carrier transport process under in dark condition (right panels) and in illumination condition under zero bias for strong light write operation (middle panels) and mild light read operation (left panels) [122]; (d) potential energy well model for triboelectric effect (right pannel) and Landau double-well energy landscape for ferroelectric polarization (middle pannel), when two materials undergo contact electrification upon applying mechanical motion, charge transfer occurs, emitting energy ET, with the energy ET much higher than the Landau energy barrier EF, ferroelectric polarization switches from Pup to Pdown, note that by changing the connection of the triboelectric unit, bidirectional switching can be achieved[123].
图 7 3R-MoS2的晶体结构和极化起源 (a) AB堆叠构型(顶部为Mo, 底部为S)与BA堆叠构型(顶部为S, 底部为Mo)的原子结构侧视图与俯视图; (b) 两种典型3R-MoS2薄片的形貌与表面电势图, 分别由2—7层和7—13层组成
Fig. 7. Crystal structure and origin of polarization in 3R-MoS2: (a) Side and top views of the atomic structures for AB (Mo on top, S at bottom) and BA (S on top, Mo at bottom) stacking configurations; (b) morphology and surface potential maps of two typical 3R-MoS2 flakes, composed of 2–7 layers and 7–13 layers, respectively.
图 8 MoS2/WS2双层异质结中的铁电性[100] (a) 在无直流电场时, 相位和振幅的回滞曲线; (b) 在直流场下, 相位和振幅的回滞曲线; (c) 直流偏压写入盒中盒图案后的PFM相位图; (d) 写入盒中盒图案后的振幅图
Fig. 8. Ferroelectricity in MoS2/WS2 bilayer heterostructures [100]: (a) Hysteresis loops of phase and amplitude without a DC electric field; (b) hysteresis loops of phase and amplitude under a DC electric field; (c) PFM phase image after writing a “box-in-box” pattern with a DC bias; (d) amplitude image after writing the “box-in-box” pattern.
图 9 滑动铁电的物理机制 (a) BN双层原子排列俯视图, 最上层的原子用较小的圆圈表示[112]; (b) 上面板为AB/BA堆叠构型中极化产生机理其中黑色箭头指向带正电荷的B原子到最近的其他带负电荷层的N原子, 红色箭头表示极化方向, 下面板为层间滑动的铁电翻转路径[144]; (c) 小角度扭转BN双分子层中摩尔超晶格铁电畴[107]
Fig. 9. Physical mechanism of sliding ferroelectricity: (a) Top view of the atomic arrangement in bilayer BN, the topmost atoms are shown as smaller circles [112]; (b) upper panel is polarization-generation mechanism in AB/BA stacking, where black arrows point from positively charged B atoms to the nearest N atoms in the other negatively charged layer, and red arrows indicate the polarization direction, lower panel is ferroelectric-switching path via interlayer sliding [144]; (c) Moiré-superlattice ferroelectric domains in a slightly twisted BN bilayer[107].
图 10 (a) α-In2Se3/Graphene和α-In2Se3/WSe2范德瓦耳斯异质结随α-In2Se3极化翻转引起的能带变化的计算分析[36]; (b) 基于α-In2Se3/Graphene异质结的铁电二极管及其电学特性[37]; (c) CIPS/Si 异质结铁电二极管及其电学特性[31]
Fig. 10. (a) Energy band computation results of α-In2Se3/Graphene and α-In2Se3/WSe2 van der Waals heterojunction with the different polarization of α-In2Se3[36]; (b) ferroelectric diode based on α-In2Se3/Graphene heterostructures and its electrical characteristic [37]; (c) ferroelectric diode based on CIPS/Si heterojunction and its electrical characteristic[31].
图 11 (a) p型半导体 In:SnSe/铁电SnSe/n型半导体Sb:SnSe的二维铁电隧穿结器件[160]; (b) 基于SnTe水平极化控制的铁电隧穿的非易失性铁电存储器及其电学输运特[34]; (c) α-In2Se3受电场调控的电学特性和基于α-In2Se3的场效应晶体管的阻变记忆器件示意图[36]
Fig. 11. (a) Two-dimensional ferroelectric tunneling junction device based on P-type semiconductor In:SnSe/ferroelectric SnSe/ N-type semiconductor Sb:SnSe[160]; (b) non-volatile ferroelectric random access memory based on ferroelectric tunneling controlled by SnTe in-plane polarization and its electrical transportation characteristic[34]; (c) the electrical characteristic of α-In2Se3 regulated by the electric field and schematic diagram of the memristor based on the α-In2Se3 FET[36].
图 12 (a) 基于CIPS/MoS2异质结的负电容场效应晶体管示意图; (b), (c) 背栅和顶栅调控下器件的转移特性曲线Ids-Vbg(红色), 栅极漏电流(蓝色)以及相应的亚阈值摆幅SS; (d) 不同背栅电压扫描范围下器件的电回滞窗口电压与亚阈值摆幅; (e) 不同CIPS铁电介质层厚度器件的转移特性曲线; (f) 亚阈值摆幅(顶部)和电回滞窗口电压(底部)与CIPS厚度的依赖关系[170]
Fig. 12. (a) Schematic diagram of negative capacitance FET based on CIPS/MoS2 heterojunctions; (b), (c) the transfer characteristic Ids-Vbg (red curve), leakage current (blue curve) and the corresponding subthreshold swing controlled by back-gate and top-gate, respectively; (d) the hysteresis voltage and subthreshold swing at different back-gate voltage scanning ranges; (e) the transfer characteristic curves of devices with different CIPS ferroelectric thickness; (f) the CIPS flake thickness dependence of subthreshold swing (top) and hysteresis voltage (bottom) [170].
表 1 典型的二维范德瓦耳斯铁电材料的铁、压电性能
Table 1. Typical ferroelectric and piezoelectric properties of two-dimensional van der Waals ferroelectric materials.
材料 居里温度Tc/K 矫顽场Ec/(kV·cm–1) 剩余极化强度Pr/(μC·cm–2) 压电常数/(pm·V–1) 参考文献 CuInP2S6 ~320 25—30 ~4 d33 = –95 [31,32,60–63] α-In2Se3 473 1000—4000 0.4 d33 = 1.17 [74,92] SnTe 270 — — — [34] MoTe2 >300 — — — [79] WTe2 350 — 0.051 — [93] β-InSe >300 1500 0.375 — [94,95] GaSe >350 — 0.0619 d11 = 2.3 [96,97] SnS >300 — 0.018—0.048 d33 = 2.2 [98,99] 3R-MoS2 >650 1000—1900 ~0.02 d33 = 2.09 [100,101] Twisted BN 620 3000 0.68 d33 = 0.5 [102] Sc2CO2 300—600 2500 1.6 — [103,104] Bi2O2Se 508 ~8000 — 4.4 [87,105] NbOI2 ~462.42 ~8.5 1.43 0.6 [88] -
[1] Rabe K M, Ahn C H, Triscone J M 2007 Physics of Ferroelectrics: A Modern Perspective (Heidelberg: Springer Berlin) p11
[2] Zhong W L 1996 Physics of Ferroelectrics (Beijing: Science Press) p22
[3] Haertling G H 1999 J. Am. Ceram. Soc. 82 797
Google Scholar
[4] Cross L E 1987 Ferroelectrics 76 241
Google Scholar
[5] Cross L E 1994 Ferroelectrics 151 305
Google Scholar
[6] Valasek J 1921 Phys. Rev. 17 475
Google Scholar
[7] Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H, Thompson C 2004 Science 304 1650
Google Scholar
[8] Junquera J, Ghosez P 2003 Nature 422 506
Google Scholar
[9] Gao P, Zhang Z Y, Li M Q, Ishikawa R, Feng B, Liu H J, Huang Y L, Shibata N, Ma X M, Chen S L, Zhang J M, Liu K H, Wang E G, Yu D P, Liao L, Chu Y H, Ikuhara Y 2017 Nat. Commun. 8 15549
Google Scholar
[10] Mehta R, Silverman B, Jacobs J 1973 J. Appl. Phys. 44 3379
Google Scholar
[11] Gruverman A, Wu D, Lu H, Wang Y, Jang H, Folkman C, Zhuravlev M Y, Felker D, Rzchowski M, Eom C B 2009 Nano Lett. 9 3539
Google Scholar
[12] Sang X, Grimley E D, Schenk T, Schroeder U, LeBeau J M 2015 Appl. Phys. Lett. 106 162905
Google Scholar
[13] Tybell T, Ahn C, Triscone J M 1999 Appl. Phys. Lett. 75 856
Google Scholar
[14] Ghosez P, Rabe K 2000 Appl. Phys. Lett. 76 2767
Google Scholar
[15] Chen I W, Wang X H 2000 Nature 404 168
Google Scholar
[16] Cui C J, Xue F, Hu W J, Li L J 2018 npj 2D Mater. Appl. 2 18
Google Scholar
[17] Bune A V, Fridkin V M, Ducharme S, Blinov L M, Palto S P, Sorokin A V, Yudin S, Zlatkin A 1998 Nature 391 874
Google Scholar
[18] Fridkin V, Ducharme S, Bune A, Palto S, Yudin S, Blinov L 2000 Ferroelectrics 236 1
Google Scholar
[19] Muller J, Boscke T S, Schroder U, Mueller S, Brauhaus D, Bottger U, Frey L, Mikolajick T 2012 Nano Lett. 12 4318
Google Scholar
[20] Mittmann T, Materano M, Lomenzo P D, Park M H, Stolichnov I, Cavalieri M, Zhou C, Chung C C, Jones J L, Szyjka T 2019 Adv. Mater. Interfaces 6 1900042
Google Scholar
[21] Ferrari A C, Bonaccorso F, Fal'ko V, Novoselov K S, Roche S, Bøggild P, Borini S, Koppens F H L, Palermo V, Pugno N, Garrido J A, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman J N, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider G F, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko A N, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams G M, Hee Hong B, Ahn J H, Min Kim J, Zirath H, van Wees B J, van der Zant H, Occhipinti L, Di Matteo A, Kinloch I A, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil S R T, Tannock Q, Löfwander T, Kinaret J 2015 Nanoscale 7 4598
Google Scholar
[22] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[23] Zeng G Y, Fang Z Y, He W B, Wang Z X, Li Y J, Xiao L T, Jia S T, Qin C B, Zhang R Y 2024 Chin. Opt. Lett. 22 091601
[24] Wang J Q, Xu Y Q, Mao Z J, Wu G X, Guo R X, Li X, Du Y, Geng Y F, Li X J, Tsang H K, Cheng Z Z 2024 Chin. Opt. Lett. 22 091301
Google Scholar
[25] 闻雨, 韩素婷, 周晔 2025 物理学报 74 178502
Google Scholar
Wen Y, Han S T, Zhou Y 2025 Acta Phys. Sin. 74 178502
Google Scholar
[26] Wu M, Jena P 2018 Wires Comput. Mol. Sci. 8 e1365
Google Scholar
[27] Bandurin D A, Tyurnina A V, Geliang L Y, Mishchenko A, Zólyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S 2017 Nat. Nanotechnol. 12 223
Google Scholar
[28] Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F C, Chen Y T, Gao X P 2015 Nano Lett. 15 3815
Google Scholar
[29] Yang S L, Liu C S, Yu S H, Jiang P, Hao H, Zhang L, Liu Y S, Zheng X H 2025 Chin. Phys. Lett. 42 090705
Google Scholar
[30] Feder J 1976 Ferroelectrics 12 71
Google Scholar
[31] Liu F C, You L, Seyler K L, Li X B, Yu P, Lin J H, Wang X W, Zhou J D, Wang H , He H Y, Pantelides S T, Zhou W, Sharma P, Xu X D, Ajayan P M, Wang J L, Liu Z 2016 Nat. Commun. 7 12357
[32] Simon A, Ravez J, Maisonneuve V, Payen C, Cajipe V 1994 Chem. Mater. 6 1575
[33] Fei Z Y, Zhao W J, Palomaki T A, Sun B S, Miller M K, Zhao Z Y, Yan J Q, Xu X D, Cobden D H 2018 Nature 560 336
Google Scholar
[34] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W 2016 Science 353 274
Google Scholar
[35] Zhou Y, Wu D, Zhu Y H, Cho Y J, He Q, Yang X, Herrera K, Chu Z D, Han Y, Downer M C, Peng H L, Lai K J 2017 Nano Lett. 17 5508
Google Scholar
[36] Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P 2018 Nano Lett. 18 1253
Google Scholar
[37] Wan S Y, Li Y, Li W, Mao X Y, Zhu W G, Zeng H L 2018 Nanoscale 10 14885
Google Scholar
[38] Xue F, Hu W J, Lee K C, Lu L S, Zhang J W, Tang H L, Han A L, Hsu W T, Tu S B, Chang W H, Lien C H, He J H, Zhang Z D, Li L J, Zhang X X 2018 Adv. Funct. Mater. 28 1803738
Google Scholar
[39] Wang C Y, Zhang Y X, Zhang D C, Sun Y, Zhang T, Li J 2025 Small 21 2408375
Google Scholar
[40] Zhao H Y, Yun J N, Li Z, Liu Y, Zheng L, Kang P 2024 Mater. Sci. Eng. R 161 100873
Google Scholar
[41] Wang H, Tang Y S, Han X, Yang J L, Zhang X, Yan X B 2024 Appl. Phys. Rev. 11 021330
Google Scholar
[42] Fan Z W, Qu J Y, Wang T, Wen Y, An Z W, Jiang Q T, Xue W H, Zhou P, Xu X H 2023 Chin. Phys. B 32 128508
Google Scholar
[43] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱 2022 物理学报 71 127305
Google Scholar
Jin X, Tao L, Zhang Y Y, Pan J B, Du S X 2022 Acta Phys. Sin. 71 127305
Google Scholar
[44] Li J F, Wang K, Zhu F Y, Cheng L Q, Yao F Z 2013 J. Am. Ceram. Soc. 96 3677
Google Scholar
[45] Zhang F X, Wang L K 2001 Modern Piezoelectricity (Vol. 1) (Beijing: Science Press) p170 (in Chinese) 张福学, 王丽坤 2001 现代压电学(上册)(北京: 科学出版社) 第170页
[46] Zhong W L 1996 Physics of Ferroelectrics (Beijing: Science Press) p50 (in Chinese) 钟维烈 1996 铁电物理学 (北京: 科学出版社) 第50页
[47] Neumayer S M, Si M, Li J, Liao P Y, Tao L, O’Hara A, Pantelides S T, Ye P D, Maksymovych P, Balke N 2022 ACS Appl. Mater. Interfaces 14 3018
Google Scholar
[48] Zhang Y, Taniguchi R, Masubuchi S, Moriya R, Watanabe K, Taniguchi T, Sasagawa T, Machida T 2022 Appl. Phys. Lett. 120
[49] Kwon O, Seol D, Qiao H, Kim Y 2020 Adv. Sci. 7 1901391
Google Scholar
[50] Checa M, Neumayer S, Susner M A, McGuire M A, Maksymovych P, Collins L 2021 Appl. Phys. Lett. 119
[51] Su S Q, Zhao J, Ly T H 2024 Small Methods 8 2400211
Google Scholar
[52] Guo Y, Kakimoto K I, Ohsato H 2004 Appl. Phys. Lett. 85 4121
Google Scholar
[53] Onsager L 1944 Phys. Rev. 65 117
Google Scholar
[54] Liang L, Pan E, Cao G M, Chen J G, Wang R X, Dong B, Liu Q, Chen X, Luo X, Kong Y F, Liu F C 2025 Nat. Commun. 16 4462
Google Scholar
[55] Zhou S, You L, Chaturvedi A, Morris S A, Herrin J S, Zhang N, Abdelsamie A, Hu Y Z, Chen J Q, Zhou Y, Dong S, Wang J L 2020 Mater. Horiz. 7 263
Google Scholar
[56] Wu Y Y, Zhang T J, Guo D P, Li B C, Pei K, You W B, Du Y Q, Xing W C, Lai Y X, Ji W, Zhao Y D, Che R C 2024 Nat. Commun. 15 10481
Google Scholar
[57] Sui F R, Li H Y, Qi R J, Jin M, Lv Z W, Wu M H, Liu X C, Zheng Y F, Liu B T, Ge R, Wu Y N, Huang R, Yue F Y, Chu J H, Duan C G 2024 Nat. Commun. 15 3799
Google Scholar
[58] Yang Z, Wu M 2025 Appl. Phys. Rev. 12 021417
Google Scholar
[59] Brehm J A, Neumayer S M, Tao L, O’Hara A, Chyasnavichus M, Susner M A, McGuire M A, Kalinin S V, Jesse S, Ganesh P, Pantelides S T, Maksymovych P, Balke N 2020 Nat. Mater. 19 43
Google Scholar
[60] Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808
Google Scholar
[61] Si M W, Saha A K, Liao P Y, Gao S J, Neumayer S M, Jian J, Qin J K, Balke Wisinger N, Wang H Y, Maksymovych P, Wu W Z, Gupta S K, Ye P D 2019 ACS Nano 13 8760
Google Scholar
[62] Qi J S, Wang H, Chen X F, Qian X F 2018 Appl. Phys. Lett. 113 043102
Google Scholar
[63] Studenyak I, Mitrovcij V, Kovacs G S, Gurzan M, Mykajlo O, Vysochanskii Y M, Cajipe V 2003 Phys. Status Solidi (b) 236 678
Google Scholar
[64] Hu Y Q, Zhang J J, Zhou Z, Wang S, Li Q K, Hou Y F, Ying T H, Yang L L, Zhang J Y, Yin S Z, Weng Y Y, Dong S, Yao J L, Fang L, You L 2025 Chin. Phys. Lett. 42 120805
Google Scholar
[65] You L, Zhang Y, Zhou S, Chaturvedi A, Morris S A, Liu F C, Chang L, Ichinose D, Funakubo H, Hu W J, Wu T, Liu Z, Dong S, Wang J L 2019 Sci. Adv. 5 eaav3780
Google Scholar
[66] Maisonneuve V, Evain M, Payen C, Cajipe V, Molinie P 1995 J. Alloys Compd. 218 157
Google Scholar
[67] Susner M A, Belianinov A, Borisevich A, He Q, Chyasnavichyus M, Demir H, Sholl D S, Ganesh P, Abernathy D L, McGuire M A 2015 ACS Nano 9 12365
Google Scholar
[68] Zhang D W, Luo Z D, Yao Y, Schoenherr P, Sha C H, Pan Y, Sharma P, Alexe M, Seidel J 2021 Nano Lett. 21 995
Google Scholar
[69] Guo C J, Zhu J J, Liang X L, Wen C F, Xie J Y, Gu C D, Hu W B 2024 Nat. Commun. 15 10152
Google Scholar
[70] Jiang X G, Wang T J, Zhang Y X, Deng Z Y, Zhang X P, Zhu R X, Kang J Q, Yang X D, Chen X, Wang X L, Gao P, Huang H B, Duan X D, Cheong S W, Wang X Y, Yang W Y, Hong J W 2025 Nat. Mater. 24 1942
Google Scholar
[71] Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G 2017 Nat. Commun. 8 14956
Google Scholar
[72] Xiao J, Zhu H Y, Wang Y, Feng W, Hu Y X, Dasgupta A, Han Y M, Wang Y, Muller D A, Martin L W, Hu P A, Zhang X 2018 Phys. Rev. Lett. 120 227601
Google Scholar
[73] Abrahams S 1990 Ferroelectrics 104 37
Google Scholar
[74] Wan S Y, Li Y, Li W, Mao X Y, Wang C, Chen C, Dong J Y, Nie A M, Xiang J Y, Liu Z Y, Zhu W G, Zeng H L 2019 Adv. Funct. Mater. 29 1808606
Google Scholar
[75] Lu H, Masood S B, Loes M, Acharya K, Hossain M S, Khurana R K, Bagheri S, Paudel T R, Lipatov A, Tsymbal E Y 2024 Adv. Funct. Mater. 34 2403537
Google Scholar
[76] Jiang Y X, Ning X K, Liu R H, Song K P, Ali S, Deng H Y, Li Y Z, Huang B H, Qiu J H, Zhu X F, Fan Z, Li Q K, Qin C B, Xue F, Yang T, Li B, Liu G, Hu W J, Li L J, Zhang Z D 2025 Nat. Commun. 16 7364
Google Scholar
[77] Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601
Google Scholar
[78] Bruyer E, Di Sante D, Barone P, Stroppa A, Whangbo M H, Picozzi S 2016 Phys. Rev. B 94 195402
Google Scholar
[79] Yuan S G, Luo X, Chan H L, Xiao C C, Dai Y W, Xie M H, Hao J H 2019 Nat. Commun. 10 1775
Google Scholar
[80] Yin H B, Liu C, Zheng G P, Wang Y X, Ren F Z 2019 Appl. Phys. Lett. 114 192903
Google Scholar
[81] Wan W Z, Liu C, Xiao W, Yao Y 2017 Appl. Phys. Lett. 111 132904
Google Scholar
[82] Zhang X L, Yang Z X, Chen Y 2017 J. Appl. Phys. 122 064101
Google Scholar
[83] You H L, Jia Y M, Wu Z, Wang F F, Huang H T, Wang Y 2018 Nat. Commun. 9 2889
Google Scholar
[84] Zhu H Y, Wang Y, Xiao J, Liu M, Xiong S M, Wong Z J, Ye Z L, Ye Y, Yin X B, Zhang X 2015 Nat. Nanotechnol. 10 151
Google Scholar
[85] Hu T, Wu H P, Zeng H B, Deng M K, Kan E J 2016 Nano Lett. 16 8015
Google Scholar
[86] Okugawa R, Tanaka J, Koretsune T, Saito S, Murakami S 2015 Phys. Rev. Letters 115 156601
Google Scholar
[87] Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, Sheet G, Biswas K 2019 Nano Lett. 19 5703
Google Scholar
[88] Wu Y Z, Abdelwahab I, Kwon K C, Verzhbitskiy I, Wang L, Liew W H, Yao K, Eda G, Loh K P, Shen L, Quek S Y 2022 Nat. Commun. 13 1884
Google Scholar
[89] Yang T, Li X, Wang L M, Liu Y M, Chen K J, Yang X, Liao L, Dong L, Shan C X 2019 J. Mater. Sci. 54 14742
Google Scholar
[90] Hung T P, Chen W H, Chen Y J, Tu Y H, Huang Z H, Chueh Y L, Yeh C H, Chen C W, Jhang Y Y, Chu Y H 2025 ACS Appl. Mater. Interfaces 17 26931
Google Scholar
[91] Khan U, Xu R Z, Nairan A, Han M J, Wang X S, Kong L G, Gao J K, Tang L 2024 Adv. Funct. Mater. 34 2315522
Google Scholar
[92] Si M W, Saha A K, Gao S J, Qiu G, Qin J K, Duan Y Q, Jian J, Niu C, Wang H Y, Wu W Z, Gupta S K, Ye P D 2019 Nat. Electron. 2 580
Google Scholar
[93] Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal E Y, Hamilton A R, Seidel J 2019 Sci. Adv. 5 eaax5080
Google Scholar
[94] Hu H W, Sun Y L, Chai M S, Xie D, Ma J, Zhu H W 2019 Appl. Phys. Lett. 114 252903
Google Scholar
[95] Zhang Q, Fan A Q, Wang Y S, Wu F, Li L, Meng H, Geng D H 2025 npj 2D Mater. Appl. 9 76
Google Scholar
[96] Errandonea D, Segura A, Munoz V, Chevy A 1999 Phys. Rev. B 60 15866
Google Scholar
[97] Li W B, Li J 2015 Nano Res. 8 3796
Google Scholar
[98] Fei R X, Kang W, Yang L 2016 Phys. Rev. Letters 117 097601
Google Scholar
[99] Higashitarumizu N, Kawamoto H, Lee C J, Lin B H, Chu F H, Yonemori I, Nishimura T, Wakabayashi K, Chang W H, Nagashio K 2020 Nat. Commun. 11 2428
Google Scholar
[100] Rogée L, Wang L, Zhang Y, Cai S, Wang P, Chhowalla M, Ji W, Lau S P 2022 Science 376 973
Google Scholar
[101] Bian R J, He R, Pan E, Li Z F, Cao G M, Meng P, Chen J G, Liu Q, Zhong Z C, Li W W, Liu F C 2024 Sicence 385 57
Google Scholar
[102] Pan E, Yang F, Liu Q, Wang R X, Luo X, Dong B, Li Z F, Liang L, Chen J G, Liu F C 2025 Mater. Sci. Eng. R 166 101065
Google Scholar
[103] Ding W T, Lu J, Tang X, Kou L Z, Liu L 2023 ACS Omega 8 6164
Google Scholar
[104] Lu Y, Fei R X, Lu X B, Zhu L H, Wang L, Yang L 2020 ACS Appl. Mater. Interfaces 12 6243
Google Scholar
[105] Wang W J, Meng Y, Zhang Y X, Zhang Z M, Wang W, Lai Z X, Xie P S, Li D J, Chen D, Quan Q, Yin D, Liu C T, Yang Z B, Yip S, Ho J C 2023 Adv. Mater. 35 e2210854
Google Scholar
[106] Chandrasekaran A, Mishra A, Singh A K 2017 Nano Lett. 17 3290
Google Scholar
[107] Li L, Wu M H 2017 ACS Nano 11 6382
Google Scholar
[108] Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena P 2013 Phys. Rev. B 87 081406
Google Scholar
[109] Wu M, Dong S, Yao K, Liu J, Zeng X C 2016 Nano Lett. 16 7309
Google Scholar
[110] Bhowal S, Spaldin N A 2023 Annu. Rev. Mater. Res. 53 53
Google Scholar
[111] Yasuda K, Wang X, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Science 372 1458
Google Scholar
[112] Vizner Stern M, Waschitz Y, Cao W, Nevo I, Watanabe K, Taniguchi T, Sela E, Urbakh M, Hod O, Ben Shalom M 2021 Science 372 1462
Google Scholar
[113] Liu Y L, Liu G, Xi X X 2025 Chin. Phys. B 34 017701
Google Scholar
[114] Huang C X, Du Y P, Wu H P, Xiang H J, Deng K M, Kan E J 2018 Phys. Rev. Letters 120 147601
Google Scholar
[115] Dziaugys A, Banys J, Macutkevic J, Sobiestianskas R, Vysochanskii Y 2010 Phys. Status Solidi (b) 207 1960
Google Scholar
[116] Vysochanskii Y M, Beley L, Perechinskii S, Gurzan M, Molnar O, Mykajlo O, Tovt V, Stephanovich V 2004 Ferroelectrics 298 361
[117] Dziaugys A, Shvartsman V, Macutkevic J, Banys J, Vysochanskii Y, Kleemann W 2012 Phys. Rev. B 85 134105
Google Scholar
[118] Samulionis V, Banys J, Vysochanskii Y 2010 Mater. Sci Forum. 636 398
[119] Layegh M, Bennett J W 2025 Dalton Transactions 54 14384
Google Scholar
[120] Yang Q, Meng S 2024 Phys. Rev. Letters 133 136902
Google Scholar
[121] Zhang J, Yang K, Yu J X, Wan H H, Zhang J, Fu H X, Ding Z J, Shi X H, Meng S 2025 Phys. Rev. B 111 104111
Google Scholar
[122] Zhang K, Li H Z, Mu H R, Li Y, Wang P, Wang Y, Chen T S, Yuan J, Chen W Q, Yu W Z, Zhang G Y, Bao Q L, Lin S H 2024 Adv. Mater. 36 2405233
Google Scholar
[123] Wang B Y, He X, Luo J J, Chen Y T, Zhang Z X, Wang D, Lan S G, Wang P J, Han X, Zhao Y D, Li Z, Hu H, Xu Y, Luo Z D, Hu W J, Zhu B W, Sun J, Liu Y, Han G Q, Zhang X X, Yu B, Chang K, Xue F 2025 Sci. Adv. 11 eadr5337
Google Scholar
[124] Cowley R A, Gvasaliya S N, Lushnikov S G, Roessli B, Rotaru G M 2011 Adv. Phys. 60 229
Google Scholar
[125] Ahart M, Somayazulu M, Cohen R E, Ganesh P, Dera P, Mao H K, Hemley R J, Ren Y, Liermann P, Wu Z 2008 Nature 451 545
Google Scholar
[126] Li F, Zhang S J, Damjanovic D, Chen L Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504
Google Scholar
[127] Li F, Zhang S J, Xu Z, Chen L Q 2017 Adv. Funct. Mater. 27 1700310
Google Scholar
[128] Yang Q, Wu M H, Li J 2018 J. Phys. Chem. Lett. 9 7160
Google Scholar
[129] Deb S, Cao W, Raab N, Watanabe K, Taniguchi T, Goldstein M, Kronik L, Urbakh M, Hod O, Ben Shalom M 2022 Nature 612 465
Google Scholar
[130] Yang D Y, Wu J D, Zhou B T, Liang J, Ideue T, Siu T, Awan K M, Watanabe K, Taniguchi T, Iwasa Y, Franz M, Ye Z L 2022 Nat. Photonics 16 469
Google Scholar
[131] Meng P, Wu Y, Bian R, Pan E, Dong B, Zhao X, Chen J, Wu L, Sun Y, Fu Q 2022 Nat. Commun. 13 7696
Google Scholar
[132] Wan Y, Hu T, Mao X Y, Fu J, Yuan K, Song Y, Gan X T, Xu X L, Xue M Z, Cheng X, Huang C X, Yang J B, Dai L, Zeng H L, Kan E J 2022 Phys. Rev. Lett. 128 067601
Google Scholar
[133] Xue W H, Wang P, Ci W J, Guo Y, Qu J Y, Zeng Z T, Liu T Q, He R, Cheng S B, Xu X H 2025 Nat. Commun. 16 6313
Google Scholar
[134] Yang D Y, Liang J, Wu J D, Xiao Y H, Dadap J I, Watanabe K, Taniguchi T, Ye Z L 2024 Nat. Commun. 15 1389
Google Scholar
[135] de la Barrera S C, Cao Q, Gao Y, Gao Y, Bheemarasetty V S, Yan J, Mandrus D G, Zhu W, Xiao D, Hunt B M 2021 Nat. Commun. 12 5298
Google Scholar
[136] Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S Q, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X F, Zhang X, Lindenberg A M 2020 Nat. Phys. 16 1028
Google Scholar
[137] Sui F R, Jin M, Zhang Y Y, Qi R J, Wu Y N, Huang R, Yue F Y, Chu J H 2023 Nat. Commun. 14 36
Google Scholar
[138] Weng X C, Gui J B, Chen W J, Tan J Y, Li S N, Tang L, Zhang R J, Wei Q, Xu J C, Teng C J, Zhao S L, Liu B L 2025 Adv. Funct. Mater. 35 e03780
Google Scholar
[139] Zhang L, Tang C, Zhang C M, Du A J 2020 Nanoscale 12 21291
Google Scholar
[140] Cordero F, Pazniak H, Ouisse T, Gonzalez-Julian J, Di Carlo A, Soprunyuk V, Schranz W 2024 Phys. Rev. B 109 024105
[141] Miao L P, Ding N, Wang N, Shi C, Ye H Y, Li L, Yao Y F, Dong S, Zhang Y 2022 Nat. Mater. 21 1158
Google Scholar
[142] Wang D D, Gao X Y, Guo Y D, Guo Y T, Huan Z P, Lin L Y, Jiang Y, Gu Z Y, Zeng H L, Yan X H 2025 Nanoscale 17 13489
Google Scholar
[143] Hou C S, Shen Y H, Wang Q 2025 Adv. Funct. Mater. 35 2421311
Google Scholar
[144] Wu M H, Li J 2021 Proc. Natl. Acad. Sci. 118 e2115703118
Google Scholar
[145] Woods C R, Ares P, Nevison-Andrews H, Holwill M J, Fabregas R, Guinea F, Geim A K, Novoselov K S, Walet N R, Fumagalli L 2021 Nat. Commun. 12 347
Google Scholar
[146] Sung J, Zhou Y, Scuri G, Zolyomi V, Andersen T I, Yoo H, Wild D S, Joe A Y, Gelly R J, Heo H, Magorrian S J, Berube D, Valdivia A M M, Taniguchi T, Watanabe K, Lukin M D, Kim P, Fal'ko V I, Park H 2020 Nat. Nanotechnol. 15 750
Google Scholar
[147] Wang X R, Yasuda K, Zhang Y, Liu S, Watanabe K, Taniguchi T, Hone J, Fu L, Jarillo-Herrero P 2022 Nat. Nanotechnol. 17 367
Google Scholar
[148] Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S, Corte-Leon H, Wu Z, Clark N, Summerfield A, Hashimoto T, Gao Y, Wang W, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Fal'ko V I, Gorbachev R 2022 Nat. Nanotechnol. 17 390
Google Scholar
[149] Ko K, Yuk A, Engelke R, Carr S, Kim J, Park D, Heo H, Kim H M, Kim S G, Kim H, Taniguchi T, Watanabe K, Park H, Kaxiras E, Yang S M, Kim P, Yoo H 2023 Nat. Mater. 22 992
Google Scholar
[150] Hou C S, Shen Y H, Wang Q, Yoshikawa A, Kawazoe Y, Jena P 2024 ACS Nano 18 16923
Google Scholar
[151] Zheng Z R, Ma Q, Bi Z, de la Barrera S, Liu M H, Mao N N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y, Jarillo-Herrero P 2020 Nature 588 71
Google Scholar
[152] Zhou C J, Chai Y 2017 Adv. Electron. Mater. 3 1600400
Google Scholar
[153] Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2014 ACS Nano 8 1102
Google Scholar
[154] Wan T Q, Shao B J, Ma S J, Zhou Y, Li Q, Chai Y 2023 Adv. Mater. 35 2203830
Google Scholar
[155] Li W, Liu H, Zeng H L 2025 Chin. Phys. Lett. 42 057501
Google Scholar
[156] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263
Google Scholar
[157] Ayari A, Cobas E, Ogundadegbe O, Fuhrer M S 2007 J. Appl. Phys. 101 014507
Google Scholar
[158] Sarkar S, Han Z R, Ghani M A, Strkalj N, Kim J H, Wang Y, Jariwala D, Chhowalla M 2024 Nano Lett. 24 13232
Google Scholar
[159] Wang B Y, Chen W Y, Zou L R, Wang T, Li Z W, Wang Z Y, Xu H R, Xu L J, Lan S G, Feng P, Ma Y D, Zheng D X, He X, Xu Y, Luo Z D, Wu Z H, Liu Y, Han G Q, Zhang X X, Yu B, Xue F 2025 Nano Lett. 25 10699
Google Scholar
[160] Shen X W, Fang Y W, Tian B B, Duan C G 2019 ACS Appl. Electron. Mater. 1 1133
Google Scholar
[161] Kang L L, Jiang P, Hao H, Zhou Y H, Zheng X H, Zhang L, Zeng Z 2020 Phys. Rev. B 101 014105
Google Scholar
[162] Dai M Z, Tang Z Y, Luo X, Zheng Y 2023 Nanoscale 15 9171
Google Scholar
[163] Wu J B, Chen H Y, Yang N, Cao J, Yan X D, Liu F X, Sun Q B, Ling X, Guo J, Wang H 2020 Nat. Electron. 3 466
Google Scholar
[164] Gao Y Z, Weston A, Enaldiev V, Li X, Wang W, Nunn J E, Soltero I, Castanon E G, Carl A, De Latour H, Summerfield A, Hamer M, Howarth J, Clark N, Wilson N R, Kretinin A V, Fal’ko V I, Gorbachev R 2024 Nat. Commun. 15 4449
Google Scholar
[165] Luo Y J, Chen J W, Abbas A, Li W B, Sun Y Y, Sun Y H, Yi J X, Lin X K, Qiu G T, Wen R L, Chai Y, Liang Q J, Zhou C J 2024 Adv. Funct. Mater. 34 2407253
Google Scholar
[166] Li Y, Yang Y L, Zhao H Z, Duan H X, Yang C, Min T, Li T 2025 Nano Lett. 25 1680
Google Scholar
[167] Luo K F, Ma Z, Sando D, Zhang Q, Valanoor N 2025 ACS Nano 19 6622
Google Scholar
[168] Wang X J, Feng Z Y, Cai J W, Tong H, Miao X S 2023 Sci. China Inform. Sci. 66 182401
Google Scholar
[169] Huang Y N, Wang L K, Zhang F Y, Ming W J, Liu Y X, Zhu S L, Li Y, Wang W, Li C J 2025 ACS Appl. Mater. Interfaces 17 40623
Google Scholar
[170] Wang X W, Yu P, Lei Z D, Zhu C, Cao X, Liu F C, You L, Zeng Q S, Deng Y, Zhou J D, Fu Q D, Wang J L, Huang Y Z, Liu Z 2019 Nat. Commun. 10 3037
Google Scholar
[171] Garcia V, Bibes M 2014 Nat. Commun. 5 4289
Google Scholar
[172] Salahuddin S, Datta S 2008 Nano Lett. 8 405
Google Scholar
[173] McGuire F A, Cheng Z, Price K, Franklin A D 2016 Appl. Phys. Lett. 109 093101
Google Scholar
[174] Appelbaum I, Huang B, Monsma D J 2007 Nature 447 295
Google Scholar
[175] Wunderlich J, Park B G, Irvine A C, Zârbo L P, Rozkotová E, Nemec P, Novák V, Sinova J, Jungwirth T 2010 Science 330 1801
Google Scholar
[176] Kobayashi M 2018 Appl. Phys. Express 11 110101
Google Scholar
[177] Mulaosmanovic H, Ocker J, Müller S, Schroeder U, Müller J, Polakowski P, Flachowsky S, van Bentum R, Mikolajick T, Slesazeck S 2017 ACS Appl. Mater. Interfaces 9 3792
Google Scholar
[178] Yap W C, Jiang H, Liu J L, Xia Q F, Zhu W J 2017 Appl. Phys. Lett. 111 013103
Google Scholar
[179] Laudari A, Pickett A, Shahedipour-Sandvik F, Hogan K, Anthony J E, He X, Guha S 2019 Adv. Mater. Interfaces 6 1801787
Google Scholar
[180] Lin J J, Tao J H, Wu Y L 2019 Crystals 9 673
Google Scholar
[181] Si M W, Liao P Y, Qiu G, Duan Y Q, Ye P D 2018 ACS Nano 12 6700
Google Scholar
[182] Li W Y, Guo Y M, Luo Z P, Wu S H, Han B, Hu W J, You L, Watanabe K, Taniguchi T, Alava T, Chen J Z, Gao P, Li X Y, Wei Z M, Wang L W, Liu Y Y, Zhao X X, Zhan X P, Han Z V, Wang H W 2023 Adv. Mater. 35 2208266
Google Scholar
[183] Liu L, Li T T, Gong X S, Wen H D, Zhou L Q, Feng M W, Zhang H T, Zou N N, Wu S Q, Li Y H, Zhu S T, Zhuo F L, Zou X L, Hu Z H, Ding Z Y, Fang S S, Xu W G, Hou X G, Zhang K, Long G, Tang L, Jiang Y C, Yu Z H, Ma L, Wang J L, Wang X R 2025 Nat. Mater. 24 1195
Google Scholar
[184] Baek S, Yoo H H, Ju J H, Sriboriboon P, Singh P, Niu J, Park J H, Shin C, Kim Y, Lee S 2022 Adv. Sci. 9 2200566
Google Scholar
[185] Li Y, Fu J, Mao X Y, Chen C, Liu H, Gong M, Zeng H L 2021 Nat. Commun. 12 5896
Google Scholar
[186] Yang J, Wang F, Guo J F, Wang Y R, Jiang C X, Li S H, Cai Y C, Zhan X Y, Liu X F, Cheng Z H, He J, Wang Z X 2022 Adv. Funct. Mater. 32 2205468
Google Scholar
[187] Wang Y F, Zeng Z X S, Tian Z Q, Li C, Braun K, Huang L Y, Li Y, Luo X Y, Yi J L, Wu G C, Liu G X, Li D, Zhou Y, Chen M X, Wang X, Pan A L 2024 Adv. Mater. 36 2410696
Google Scholar
[188] Liu J, Wang Q Q, Feng H, Wu Y Y, Li Y, Hou F Y, Min T, Li T 2025 Nanoscale 17 17294
Google Scholar
[189] Liu K Q, Zhang T, Dang B J, Bao L, Xu L Y, Cheng C D, Yang Z, Huang R, Yang Y C 2022 Nat. Electron. 5 761
Google Scholar
[190] Guo F, Song M L, Wong M C, Ding R, Io W F, Pang S Y, Jie W J, Hao J H 2022 Adv. Funct. Mater. 32 2108014
Google Scholar
[191] Wang H, Lu W H, Hou S H, Yu B X, Zhou Z Y, Xue Y L, Guo R, Wang S F, Zeng K Y, Yan X B 2020 Nanoscale 12 21913
Google Scholar
[192] Wan X, Wang X, Yu Y D, Liu T A, Zhang M K, Chen E Z, Chen K, Wang S T, Shao F, Gu X F, Xu J B 2025 ACS Appl. Nano Mater. 8 2260
Google Scholar
[193] Sun W, Wang W X, Hu R M, Yang C H, Huang S F, Li X N, Cheng Z X 2023 Nano Lett. 23 11280
Google Scholar
[194] Wu G J, Zhang X M, Feng G D, Wang J L, Zhou K J, Zeng J H, Dong D N, Zhu F D, Yang C K, Zhao X M, Gong D N, Zhang M R, Tian B B, Duan C G, Liu Q, Wang J L, Chu J H, Liu M 2023 Nat. Mater. 22 1499
Google Scholar
[195] Zhong Z P, Zhuang Y Z, Cheng X, Zheng J T, Yang Q Y, Li X, Chen Y, Shen H, Lin T, Shi W, Meng X J, Chu J H, Huang H, Wang J L 2025 Nat. Commun. 16 7096
Google Scholar
计量
- 文章访问数: 223
- PDF下载量: 13
- 被引次数: 0








下载: