搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连续变量纠缠态的多用户量子隐形传态网络分析

闫捷利 闫智辉 贾晓军

引用本文:
Citation:

基于连续变量纠缠态的多用户量子隐形传态网络分析

闫捷利, 闫智辉, 贾晓军

Analysis of a Multi-user Quantum Teleportation Network Based on Continuous-Variable Entangled States

Jieli Yan, Zhihui Yan, Xiaojun Jia
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 量子隐形传态可以实现未知量子态在用户之间的安全传递,是量子信息科学中的关键技术。连续变量纠缠态光场能够用于构建量子隐形传态网络,扩展城域范围量子隐形传态的用户数。本文分析了基于三种连续变量纠缠态( EPR纠缠态、GHZ纠缠态和线性cluster纠缠态)的量子隐形传态网络方案。结果表明,由于不同类型纠缠态具有不同的关联特性,这些量子隐形传态网络在量子隐形传态的保真度、传输距离和压缩资源消耗量等方面各具优势。该研究为多用户的城域量子隐形传态网络提供了参考。
    Quantum teleportation enables the secure transfer of unknown quantum states between remote users and is a key technology in quantum information science. Networks based on continuous-variable entangled states can extend both the user capacity and the transmission distance of quantum teleportation. This paper analyzes quantum teleportation network schemes based on three types of continuous-variable entangled states (EPR entangled state, GHZ entangled state, and linear cluster entangled state). The results show that due to the correlation properties of different types of entangled states, different quantum teleportation networks have advantages in terms of fidelity, transmission distance, and quantum resource consumption of quantum teleportation. For low-error-rate applications such as quantum computing, EPR states provide the highest fidelity. When parallel teleportation of multiple states is required, networks based on EPR or cluster entangled states provide the necessary throughput performance. In scenarios where quantum resources are severely limited, the GHZ-based teleportation protocols minimize the number of entangled modes while preserving acceptable fidelity. For applications demanding controlled teleportation, both GHZ and cluster states supply the essential multi-party correlations. Notably, cluster states offer a practical trade-off between fidelity and resource overhead, rendering them attractive for certain implementations. This study provides a reference for the design of multi-user metropolitan quantum teleportation networks.
  • [1]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621

    [2]

    Cheng J, Liang S, Qin J, Li J, Yan Z, Jia X, Xie C, Peng K 2024 npj Quantum Inf. 10 20

    [3]

    Yan Z, Jia X 2025 Light: Sci. Appl. 14 126

    [4]

    Liang S, Cheng J, Qin J, Li J, Shi Y, Yan Z, Jia X, Xie C, Peng K 2024 Phys. Rev. Lett. 132 140802

    [5]

    Lei X, Li J, Zhou X, Yan J, Ji M, Yan Z, Jia X, Xie C, Peng K 2025 Phys. Rev. Lett. 135 130806

    [6]

    Malia B K, Wu Y, Martínez-Rincón J, Kasevich M A 2022 Nature 612 661

    [7]

    Huo M, Qin J, Cheng J, Yan Z, Qin Z, Su X, Jia X, Xie C, Peng K 2018 Sci. Adv. 4 eaas9401

    [8]

    An Y Y, He Q, Xue W, Jiang M H, Yang C, Lu Y Q, Zhu S, Ma X S 2025 Phys. Rev. Lett. 135 010804

    [9]

    Hu X M, Guo Y, Liu B H, Li C F, Guo G C 2023 Nat. Rev. Phys. 5 339

    [10]

    Zhang Z, Guo Z, Qiu Z 2025 Chin. Phys. B 34 040301

    [11]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [12]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [13]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [14]

    Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 70

    [15]

    Shen S, Yuan C, Zhang Z, Yu H, Zhang R, Yang C, Li H, Wang Z, Wang Y, Deng G, Song H, You L, Fan Y, Guo G, Zhou Q 2023 Light: Sci. Appl. 12 115

    [16]

    Yonezawa H, Aoki T, Furusawa A 2004 Nature 431 430

    [17]

    Hermans S L N, Pompili M, Beukers H K C, Baier S, Borregaard J, Hanson R 2022 Nature 605 663

    [18]

    Yan J, Zhou X, Qin Y, Yan Z, Jia X, Xie C, Peng K 2024 Phys. Rev. Res. 6 L032062

    [19]

    Liu D, Jin Z, Liu J, Zou X, Ren X, Li H, You L, Feng X, Liu F, Cui K, Huang Y, Zhang W 2025 Light: Sci. Appl. 14 243

    [20]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [21]

    Azuma K, Economou S E, Elkouss D, Hilaire P, Jiang L, Lo H K, Tzitrin I 2023 Rev. Mod. Phys. 95 045006

    [22]

    Wang S, Dou M, Wu Y, Guo G, Guo G 2024 Chin. J. Quantum Electron. 41 1 (in chinese) [王升斌,窦猛汉,吴玉椿,郭国平,郭光灿 2024 量子电子学报 41 1]

    [23]

    Kimble H J 2008 Nature 453 1023

    [24]

    Collins O A, Jenkins S D, Kuzmich A, Kennedy T A B 2007 Phys. Rev. Lett. 98 060502

    [25]

    Su X, Tian C, Deng X, Li Q, Xie C, Peng K 2016 Phys. Rev. Lett. 117 240503

    [26]

    Takeda S, Takase K, Furusawa A 2019 Sci. Adv. 5 eaaw4530

    [27]

    Wang Z, Li K, Wang Y, Zhou X, Cheng Y, Jing B, Sun F, Li J, Li Z, Wu B, Gong Q, He Q, Li B B, Yang Q F 2025 Light: Sci. Appl. 14, 164

    [28]

    Wang M H, Hao S H, Qin Z Z, Su X L 2022 Acta Phys. Sin. 71 060312 (in chinese) [王美红,郝树宏,秦忠忠,苏晓龙 2022 物理学报 71 060312]

    [29]

    Yan Z, Wu L, Jia X, Liu Y, Deng R, Li S, Wang H, Xie C, Peng K 2017 Nat. Commun. 8 718

    [30]

    Bartlett S D, Munro W J 2003 Phys. Rev. Lett. 90 117901

    [31]

    Li Y Q, Lu L H, Zhu Q H 2023 Chin. Phys. Lett. 40 110304

    [32]

    Silberhorn C, Korolkova N, Leuchs G 2002 Phys. Rev. Lett. 88 167902

    [33]

    Wang Y, Tian C, Su Q, Wang M, Su X 2019 Sci. China Inf. Sci. 62 072501

    [34]

    Zhao R, Zhou J, Shi R, Shi J, He G 2025 Phys. Rev. A 111 012613

    [35]

    Gregory T, Moreau P A, Toninelli E, Padgett M J 2020 Sci. Adv. 6 eaay2652

    [36]

    Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828

    [37]

    Lee S M, Lee S W, Jeong H, Park H S 2020 Phys. Rev. Lett. 124 060501

    [38]

    Zhou Y Y, Mei P X, Liu Y H, W L, Li Y X, Yan Z H, Jia X J 2024 Chin. Phys. B 33 034209

    [39]

    Wang Y, Su X, Shen H, Tan A, Xie C, Peng K 2010 Phys. Rev. A 81 022311

    [40]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801

    [41]

    Pirandola S, Eisert J, Weedbrook C, Furusawa A, Braunstein S L 2015 Nat. Photon. 9 641

  • [1] 李涛, 王雪琦, 解志浩. 量子多模下的非局域量子纠缠制备研究进展. 物理学报, doi: 10.7498/aps.74.20250589
    [2] 刘圆凯, 侯云龙, 杨宜霖, 侯刘敏, 李渊华, 林佳, 陈险峰. 基于超纠缠的三用户全连接量子网络. 物理学报, doi: 10.7498/aps.74.20250458
    [3] 张乐, 袁训锋, 谭小东. 退相位环境下Werner态在石墨烯基量子通道中的隐形传输. 物理学报, doi: 10.7498/aps.71.20211881
    [4] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, doi: 10.7498/aps.71.20212341
    [5] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储. 物理学报, doi: 10.7498/aps.68.20182207
    [6] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, doi: 10.7498/aps.67.20180330
    [7] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用. 物理学报, doi: 10.7498/aps.65.220302
    [8] 马鸿洋, 秦国卿, 范兴奎, 初鹏程. 噪声情况下的量子网络直接通信. 物理学报, doi: 10.7498/aps.64.160306
    [9] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议. 物理学报, doi: 10.7498/aps.64.240304
    [10] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案. 物理学报, doi: 10.7498/aps.63.130301
    [11] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用. 物理学报, doi: 10.7498/aps.63.140302
    [12] 乔盼盼, 艾合买提·阿不力孜, 蔡江涛, 路俊哲, 麦麦提依明·吐孙, 日比古·买买提明. 利用热平衡态超导电荷量子比特实现量子隐形传态. 物理学报, doi: 10.7498/aps.61.240303
    [13] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度. 物理学报, doi: 10.7498/aps.60.090303
    [14] 何锐, Bing He. 量子隐形传态的新方案. 物理学报, doi: 10.7498/aps.60.060302
    [15] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解. 物理学报, doi: 10.7498/aps.59.2739
    [16] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解. 物理学报, doi: 10.7498/aps.58.2713
    [17] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送. 物理学报, doi: 10.7498/aps.57.7447
    [18] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度. 物理学报, doi: 10.7498/aps.56.4331
    [19] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨. 物理学报, doi: 10.7498/aps.56.1881
    [20] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态. 物理学报, doi: 10.7498/aps.55.2275
计量
  • 文章访问数:  49
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2026-01-06

/

返回文章
返回