Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic and electrical properties of K2NiF4-type Sr2CrO4

Cao Li-Peng Wang Xian-Cheng Liu Qing-Qing Pan Li-Qing Gu Chang-Zhi Jin Chang-Qing

Citation:

Magnetic and electrical properties of K2NiF4-type Sr2CrO4

Cao Li-Peng, Wang Xian-Cheng, Liu Qing-Qing, Pan Li-Qing, Gu Chang-Zhi, Jin Chang-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Sr2CrO4 with a K2NiF4 structure can be synthesized by different methods under ambient pressure and high pressure, while the properties reported are quite different. In this paper, pure phase Sr2CrO4 with K2NiF4 structure is obtained by one-step solid state reaction under high pressure and high temperature. Powders of SrO and CrO2 are used as the starting materials. The Sr2CrO4 structure at room temperature is determined by powder XRD measurement and GSAS Rietveld refinement. Sr2CrO4 crystal is of tetragonal symmetry with space group I4/mmm and its lattice parameters a = 3.8191 Å and c=12.5046 Å. There are two oxygen sites, apical O1 and equatorial O2. The CrO6 octahedron is slightly elongated along the c-axis, forming a longer bond Cr–O1=1.9180 Å and a shorter bond Cr–O2=1.9096 Å. Temperature dependence of the magnetic susceptibility is measured in the temperature range of 2-300 K under the magnetic field 1 T. A weak antiferromagnetic transition can be seen at TN=95 K. Above TN, the susceptibility obeys Curie-Weiss law. The Curie-Weiss fitting gives the Weiss constant θ =-364 K and the effective magnetic moment μeff=2.9 μB, in good agreement with the theoretical value of localized Cr4+, indicating the localized electronic state. Field dependence of susceptibility has been measured at different temperatures. The magnetic properties here are different from those in the previous reports, and this discrepancy is attributed to the quite different sample synthesis methods. Temperature dependence of electrical resistivity of Sr2CrO4 shows insulating behavior. Activation energy Δ is estimated by the relation ρ ∝ exp(Δ/kBT) at temperature range 150-300 K. In the temperature range 150-200 K and 200-300 K the activation energies are ΔL=0.134 eV and ΔH=0.168 eV, respectively. The insulating behavior is consistent with the previous experiment reports and the theoretical calculation, which is possibly attributed to the suppression of orbital degree of freedom, resulting from the elongation of CrO6 octahedron and the narrow band width induced by the two-dimensional crystal structure.
      Corresponding author: Jin Chang-Qing, Jin@iphy.ac.cn
    • Funds: Project by the Major Program of the National Natural Science Foundation of China (Grant No. 91122035).
    [1]

    Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, Lichtenberg F 1994 Nature 372 532

    [2]

    Chu C W, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q 1987 Phys. Rev. Lett. 58 405

    [3]

    Liu Q Q, Yang H, Qin X M, Yu Y, Yang L X, Li F Y, Yu R C, Jin C Q, Uchida S 2006 Phys. Rev. B 74 100506

    [4]

    Arita R, Yamasaki A, Held K, Matsuno J, Kuroki K 2007 Phys. Rev. B 75 174521

    [5]

    Zhou H D, Conner B S, Balicas L, Wiebe C R 2007 Phys. Rev. Lett. 99 136403

    [6]

    Dun Z L, Garlea V O, Yu C, Ren Y, Choi E S, Zhang H M, Dong S, Zhou H D 2014 Phys. Rev. B 89 235131

    [7]

    Ortega-San-Martin L, Williams A J, Rodgers J, Attfield J P, Heymann G, Huppertz H 2007 Phys. Rev. Lett. 99 255701

    [8]

    Komarek A C, Moller T, Isobe M, Drees Y, Ulbrich H, Azuma M, Fernandez-Diaz M T, Senyshyn A, Hoelzel M, Andre G, Ueda Y, Gruninger M, Braden M 2011 Phys. Rev. B 84 125114

    [9]

    Zhou J S, Jin C Q, Long Y W, Yang L X, Goodenough J B 2006 Phys. Rev. Lett. 96 046408

    [10]

    Long Y W, Yang L X, Lv Y X, Liu Q Q, Jin C Q, Zhou J S, Goodenough J B 2011 J. Phys.: Condens. Matter 23 355601

    [11]

    Yang L X, Long Y W, Jin C Q, Yu R C, Zhou J S, Goodenough J B, Liu H Z, Shen G Y, Mao H K 2008 Joint 21st Airapt and 45th Ehprg International Conference on High Pressure Science and Technology 121 022017

    [12]

    Rani M, Sakurai H, Okubo S, Takamoto K, Nakata R, Sakurai T, Ohta H, Matsuo A, Kohama Y, Kindo K, Ahmad J 2013 J. Phys.: Condens. Matter 25 226001

    [13]

    Castillo-Martinez E, Alario-Franco M A 2007 Solid State Sciences 9 564

    [14]

    Matsuno J, Okimoto Y, Kawasaki M, Tokura Y 2005 Phys. Rev. Lett. 95 176404

    [15]

    Baikie T, Ahmad Z, Srinivasan M, Maignan A, Pramana S S, White T J 2007 J. Solid State Chem. 180 1538

    [16]

    Sakurai H 2014 J. Phys. Soc. Jpn. 83 123701

    [17]

    Weng H M, Kawazoe Y, Wan X G, Dong J M 2006 Phys. Rev. B 74 205112

    [18]

    Sugiyama J, Nozaki H, Umegaki I, Higemoto W, Ansaldo E J, Brewer J H, Sakurai H, Kao T H, Yang H D, Mansson M 2014 Phys. Rev. B 89 020402

    [19]

    Imai Y, Solovyev I, Imada M 2005 Phys. Rev. Lett. 95 176405

    [20]

    Castillo-Martinez E, Duran A, Alario-Franco M A 2008 J. Solid State Chem. 181 895

    [21]

    Komarek A C, Streltsov S V, Isobe M, Moller T, Hoelzel M, Senyshyn A, Trots D, Fernandez-Diaz M T, Hansen T, Gotou H, Yagi T, Ueda Y, Anisimov V I, Gruninger M, Khomskii D I, Braden M 2008 Phys. Rev. Lett. 101 167204

    [22]

    Streltsov S V, Korotin M A, Anisimov V I, Khomskii D I 2008 Phys. Rev. B 78 054425

    [23]

    Bhobe P A, Chainani A, Taguchi M, Eguchi R, Matsunami M, Ohtsuki T, Ishizaka K, Okawa M, Oura M, Senba Y, Ohashi H, Isobe M, Ueda Y, Shin S 2011 Phys. Rev. B 83 165132

  • [1]

    Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, Lichtenberg F 1994 Nature 372 532

    [2]

    Chu C W, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q 1987 Phys. Rev. Lett. 58 405

    [3]

    Liu Q Q, Yang H, Qin X M, Yu Y, Yang L X, Li F Y, Yu R C, Jin C Q, Uchida S 2006 Phys. Rev. B 74 100506

    [4]

    Arita R, Yamasaki A, Held K, Matsuno J, Kuroki K 2007 Phys. Rev. B 75 174521

    [5]

    Zhou H D, Conner B S, Balicas L, Wiebe C R 2007 Phys. Rev. Lett. 99 136403

    [6]

    Dun Z L, Garlea V O, Yu C, Ren Y, Choi E S, Zhang H M, Dong S, Zhou H D 2014 Phys. Rev. B 89 235131

    [7]

    Ortega-San-Martin L, Williams A J, Rodgers J, Attfield J P, Heymann G, Huppertz H 2007 Phys. Rev. Lett. 99 255701

    [8]

    Komarek A C, Moller T, Isobe M, Drees Y, Ulbrich H, Azuma M, Fernandez-Diaz M T, Senyshyn A, Hoelzel M, Andre G, Ueda Y, Gruninger M, Braden M 2011 Phys. Rev. B 84 125114

    [9]

    Zhou J S, Jin C Q, Long Y W, Yang L X, Goodenough J B 2006 Phys. Rev. Lett. 96 046408

    [10]

    Long Y W, Yang L X, Lv Y X, Liu Q Q, Jin C Q, Zhou J S, Goodenough J B 2011 J. Phys.: Condens. Matter 23 355601

    [11]

    Yang L X, Long Y W, Jin C Q, Yu R C, Zhou J S, Goodenough J B, Liu H Z, Shen G Y, Mao H K 2008 Joint 21st Airapt and 45th Ehprg International Conference on High Pressure Science and Technology 121 022017

    [12]

    Rani M, Sakurai H, Okubo S, Takamoto K, Nakata R, Sakurai T, Ohta H, Matsuo A, Kohama Y, Kindo K, Ahmad J 2013 J. Phys.: Condens. Matter 25 226001

    [13]

    Castillo-Martinez E, Alario-Franco M A 2007 Solid State Sciences 9 564

    [14]

    Matsuno J, Okimoto Y, Kawasaki M, Tokura Y 2005 Phys. Rev. Lett. 95 176404

    [15]

    Baikie T, Ahmad Z, Srinivasan M, Maignan A, Pramana S S, White T J 2007 J. Solid State Chem. 180 1538

    [16]

    Sakurai H 2014 J. Phys. Soc. Jpn. 83 123701

    [17]

    Weng H M, Kawazoe Y, Wan X G, Dong J M 2006 Phys. Rev. B 74 205112

    [18]

    Sugiyama J, Nozaki H, Umegaki I, Higemoto W, Ansaldo E J, Brewer J H, Sakurai H, Kao T H, Yang H D, Mansson M 2014 Phys. Rev. B 89 020402

    [19]

    Imai Y, Solovyev I, Imada M 2005 Phys. Rev. Lett. 95 176405

    [20]

    Castillo-Martinez E, Duran A, Alario-Franco M A 2008 J. Solid State Chem. 181 895

    [21]

    Komarek A C, Streltsov S V, Isobe M, Moller T, Hoelzel M, Senyshyn A, Trots D, Fernandez-Diaz M T, Hansen T, Gotou H, Yagi T, Ueda Y, Anisimov V I, Gruninger M, Khomskii D I, Braden M 2008 Phys. Rev. Lett. 101 167204

    [22]

    Streltsov S V, Korotin M A, Anisimov V I, Khomskii D I 2008 Phys. Rev. B 78 054425

    [23]

    Bhobe P A, Chainani A, Taguchi M, Eguchi R, Matsunami M, Ohtsuki T, Ishizaka K, Okawa M, Oura M, Senba Y, Ohashi H, Isobe M, Ueda Y, Shin S 2011 Phys. Rev. B 83 165132

  • [1] Chen Bei, Deng Yong-He, Qi Qing-Hua, Gao Ming, Wen Da-Dong, Wang Xiao-Yun, Peng Ping. Analysis of icosahedral structure in rapidly solidified Pd82Si18 amorphous alloy under high pressure. Acta Physica Sinica, 2024, 73(2): 026101. doi: 10.7498/aps.73.20231101
    [2] Wang Yue, Shao Bo-Huai, Chen Shuang-Long, Wang Chun-Jie, Gao Chun-Xiao. Effects of defects on electrical transport properties of anatase TiO2 polycrystalline under high pressure: AC impedance measurement. Acta Physica Sinica, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [3] Wang Fei, Li Quan-Jun, Hu Kuo, Liu Bing-Bing. Electron microscopic study on high-pressure induced deformation of nano-TiO2. Acta Physica Sinica, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [4] Wang Yue, Shao Bo-Huai, Chen Shuang-Long, Wang Chun-Jie, Gao Chun-Xiao. Grain and grain boundary behaviors and electrical transport properties of TiO2 nanowires under high pressure. Acta Physica Sinica, 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [5] Yao Pan-Pan, Wang Ling-Rui, Wang Jia-Xiang, Guo Hai-Zhong. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure. Acta Physica Sinica, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [6] Wang Chun-Jie, Wang Yue, Gao Chun-Xiao. Grain boundary electrical characteristics for rutile TiO2 under pressure. Acta Physica Sinica, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [7] Song Ting, Sun Xiao-Wei, Wei Xiao-Ping, Ouyang Yu-Hua, Zhang Chun-Lin, Guo Peng, Zhao Wei. High-pressure structure prediction and high-temperature structural stability of periclase. Acta Physica Sinica, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [8] Duan De-Fang, Ma Yan-Bin, Shao Zi-Ji, Xie Hui, Huang Xiao-Li, Liu Bing-Bing, Cui Tian. Structures and novel superconductivity of hydrogen-rich compounds under high pressures. Acta Physica Sinica, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [9] Dong Jia-Jun, Yao Ming-Guang, Liu Shi-Jie, Liu Bing-Bing. Studies of quasi one-dimensional nanostructures at high pressures. Acta Physica Sinica, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [10] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [11] Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun. First-principles study of the structural, elastic and electronic properties of RhB under high pressure. Acta Physica Sinica, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [12] Yan Xiao-Zhen, Kuang Xiao-Yu, Mao Ai-Jie, Kuang Fang-Guang, Wang Zhen-Hua, Sheng Xiao-Wei. First-principles study on the elastic, electronic and thermodynamic properties of ErNi2B2C under high pressure. Acta Physica Sinica, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [13] Wang Hai-Yan, Li Chang-Yun, Gao Jie, Hu Qian-Ku, Mi Guo-Fa. First-principles studies of the structural and thermodynamic properties of TiAl3 under high pressure. Acta Physica Sinica, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [14] Zhang Pin-Liang, Gong Zi-Zheng, Ji Guang-Fu, Liu Song. First-principles study of high-pressure physical properties of α-Ti2Zr. Acta Physica Sinica, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [15] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [16] Tang Jie, Yang Li-Rong, Wang Xiao-Jun, Zhang Lin, Wei Cheng-Fu, Chen Bo-Wei, Mei Yang. Effects of high pressure on microstructure and properties of bulk (PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x alloys. Acta Physica Sinica, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [17] Zhou Da-Wei, Lu Cheng, Li Gen-Quan, Song Jin-Fan, Song Yu-Ling, Bao Gang. First principles investigations of the structural stability and thermal dynamical properties of metal Ba under high pressure. Acta Physica Sinica, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [18] Chen Zhong-Jun. First principles study of the elastic, electronic and optical properties of MgS under pressure. Acta Physica Sinica, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [19] Lü Xiao-Jing, Weng Chun-Sheng, Li Ning. The analysis of CO2 absorption spectrum characteristics near 1.58 μm at high pressures. Acta Physica Sinica, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [20] Ding Ying-Chun, Xu Ming, Pan Hong-Zhe, Shen Yi-Bin, Zhu Wen-Jun, He Hong-Liang. Electronic structure and physical properties of γ-Si3N4 under high pressure. Acta Physica Sinica, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
Metrics
  • Abstract views:  5892
  • PDF Downloads:  401
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2015
  • Accepted Date:  27 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回