Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transformation thermotics: thermal metamaterials and their applications

Shen Xiang-Ying Huang Ji-Ping

Citation:

Transformation thermotics: thermal metamaterials and their applications

Shen Xiang-Ying, Huang Ji-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Heat transportation is one of the most ubiquitous phenomenon in the mother nature. Manipulating heat flow at will is of tremendous value in industry, civil life and even military. It would be a common sense that in different materials thermal properties are different. According to this knowledge people may design thermal materials to control heat conduction. One of the most common and successful example is blanket, which has been invented for thousands of years to keep us warm in cold days and keep icecream cool in summer. However, those great inventions are not powerful enough to manipulate heat flow at will. So there are still a lot of demands for designing the so-called metamaterials which have special properties that should not exist in nature. In 2006, Leonhardt and Pendry's research group (Pendry, Schurig and Smith) independently proposed a type of optical metamaterial which is also called invisible cloak. This device is well known for bending light around an object to make it invisible. Such a significant progress soon enlightened a lot of scientists in different aspects since it offers a powerful approach to design metamaterials. The principle of invisible cloak, which is concluded as transformation optics has been applied to light waves, acoustic, seismic, elastic waves, hydrodynamics and even matter waves as they all satisfy with wave equation. Although the conduction equation which governs the process of heat conduction is totally different from wave equation, from 2008 to 2012, Fan's group and Guenneau's group established the theoretical system of transformation thermotics. Since then, many thermal metamaterials with novel thermal properties have been figured out. Therefore, a boom in transformation thermotics and thermal metamaterials has begun. In this article, we will introduce some most recent achievements in this field, including novel thermal devices, simplified experimental method, macro thermal diode based on temperature dependent transformation thermotics, and the important role that soft matters play in the experimental confirmations of thermal metamaterials. These works pave the developments in transformation mapping theory and can surely inspire more designs of thermal metamaterials. What is more, some approaches proposed in this article provide more flexibility in controlling heat flow, and it may also be useful in other fields that are sensitive to temperature gradient, such as the Seebeck effect and many other domains where transformation theory is valid.
      Corresponding author: Huang Ji-Ping, jphuang@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11222544), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 16ZR1445100).
    [1]

    Veselago V G 1968 Physics-USPEKHI 10 509

    [2]

    Leonhardt U 2006 Science 312 1777

    [3]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [4]

    Alitalo P, Tretyakov S 2009 Mater. Today 12 22

    [5]

    Padilla W J, Basov D N, Smith D R 2006 Mater. Today 9 28

    [6]

    Zhao Q, Zhou J, Zhang F L, Lippens D 2009 Mater. Today 12 60

    [7]

    Wood J 2008 Mater. Today 11 40

    [8]

    Jiang W X, Chin J Y, Cui T J 2009 Mater. Today 12 26

    [9]

    Lax M, Nelson D F 1976 Phys. Rev. B 13 1777

    [10]

    Leonhardt U, Philbin T G 2009 Prog. Opt. 53 69

    [11]

    Schurig D, Pendry J B, Smith D R 2006 Opt. Express 14 9794

    [12]

    Milton G W, Briane M, Willis J R 2006 New J. Phys. 8 248

    [13]

    Shalaev V M 2008 Science 322 384

    [14]

    Chen H Y, Chan C T, Sheng P 2010 Nature Mater. 9 387

    [15]

    Pendry J B, Maier S A 2012 Science 337 549

    [16]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [17]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518

    [18]

    Cummer S A, Schurig D 2007 New J. Phys. 9 45

    [19]

    Norris A N 2008 Proc. R. Soc. Lond. A: Math. Phys. Sci. 464 2411

    [20]

    Farhat M, Enoch S, Guenneau S, Movchan A B 2008 Phys. Rev. Lett. 101 134501

    [21]

    Liu B, Huang J P 2009 Euro. Phys. J. Appl. Phys. 48 093901

    [22]

    Brun M, Guenneau S, Movchan A B 2009 Appl. Phys. Lett. 94 061903

    [23]

    Su Q, Liu B, Huang J P 2011 Front. Phys. 6 65

    [24]

    Zhang S, Xia C G, Fang N 2011 Phys. Rev. Lett. 106 024301

    [25]

    Parnell W J, Norris A N, Shearer T 2012 Appl. Phys. Lett. 100 171907

    [26]

    Farhat M, Guenneau S, Enoch S 2009 Phys. Rev. Lett. 103 024301

    [27]

    Milton G W, Nicorovici N A P 2006 Proc. R. Soc. Lond. A, Math. Phys. Sci. 462 3027

    [28]

    Stenger N, Wilhelm M, Wegener M 2012 Phys. Rev. Lett. 108 014301

    [29]

    Chen H Y, Yang J, Zi J, Chan C T 2009 EPL 85 24004

    [30]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002

    [31]

    Greenleaf A, Kurylev Y, Lassas M, Uhlmann G 2008 New J. Phys. 10 115024

    [32]

    Diatta A, Guenneau S 2011 J. Opt. 13 024012

    [33]

    Greenleaf A, Kurylev Y, Lassas M, Leonhardt U, Uhlmann G 2012 Proc. Natl. Acad. Sci. USA 109 10169

    [34]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 25190767

    [35]

    Chen T Y, Weng C N, Chen J S 2008 Appl. Phys. Lett. 93 114103

    [36]

    Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504

    [37]

    Yu G X, Lin Y F, Zhang G Q 2011 Front. Phys. 6 70

    [38]

    Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207

    [39]

    Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303

    [40]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901

    [41]

    Guenneau S, Amra C 2013 Opt. Express 21 6578

    [42]

    Han T C, Yuan T, Li B W, Qiu C W 2013 Sci. Rep. 3 1593

    [43]

    Guo Y, Jacob Z 2013 Opt. Express 21 15014

    [44]

    Narayana S, Savo S, Sato Y 2013 Appl. Phys. Lett. 102 201904

    [45]

    Ma Y G, Lan L, Jiang W, Sun F, He S L 2013 Npg. Asia Mater. 5 e73

    [46]

    He X, Wu L Z 2013 Appl. Phys. Lett. 102 211912

    [47]

    Gao Y, Huang J P 2013 EPL 104 44001

    [48]

    Ball P 2012 Nature Mater. 11 666

    [49]

    Shen X Y, Huang J P 2014 Int. J. Heat Mass Trans. 78 1

    [50]

    Shen X Y, Chen Y X, Huang J P 2016 Commun. Theor. Phys. 65 375

    [51]

    Chen Y X, Shen X Y, Huang J P 2015 Euro. Phys. J. Appl. Phys. 70 20901

    [52]

    Zhu N Q, Shen X Y, Huang J P 2015 AIP Adv. 5 053401

    [53]

    Han T C, Bai X, Thong T L J, Li B W, Qiu C W 2014 Adv. Mater. 26 1731

    [54]

    Chen H S, Wu B I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903

    [55]

    Ruan Z C, Yan M, Neff C W, Qiu M 2007 Phys. Rev. Lett. 99 113903

    [56]

    Yan M, Ruan Z C, Qiu M 2007 Phys. Rev. Lett. 99 233901

    [57]

    Greenleaf A, Lassas M, Uhlmann G 2003 Physiol. Meas. 24 413

    [58]

    Huang J P, Yu K W 2006 Phys. Rep. 431 87

    [59]

    Xia T K, Hui P M, Stroud D 1990 J. Appl. Phys. 67 2736

    [60]

    You C Y, Shin S C, Kim S Y 1997 Phys. Rev. B 55 5953

    [61]

    Shi L H, Gao L 2008 Phys. Rev. B 77 195121

    [62]

    Nan C W, Birringer R, Clarke D R, Gleiter H 1997 J. Appl. Phys. 81 6692

    [63]

    Gao L, Zhou X F, Ding Y L 2007 Chem. Phys. Lett. 434 297

    [64]

    Mackay T G, Lakhtakia A 2005 J. Opt. A: Pure Appl. Opt. 7 669

    [65]

    Landau L D, Lifshitz E M 1984 Electrodynamics of Continuous Media (city Amsterdam: Elsevier)

    [66]

    Zhang M, Che Z H, Chen J H, Zhao H Z, Yang L, Zhong Z Y, Lu J H 2010 J. Chem. Eng. Data 56 859

    [67]

    Han T C, Gao D L, Thong T L J, Li B W, Qiu C W 2014 Phys. Rev. Lett. 112 054302

    [68]

    Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S, Huang J P 2015 Phys. Rev. Lett. 115 195503

    [69]

    Li Y, Shen X Y, Huang J P, Ni Y S 2016 Phys. Lett. A 380 1641

  • [1]

    Veselago V G 1968 Physics-USPEKHI 10 509

    [2]

    Leonhardt U 2006 Science 312 1777

    [3]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [4]

    Alitalo P, Tretyakov S 2009 Mater. Today 12 22

    [5]

    Padilla W J, Basov D N, Smith D R 2006 Mater. Today 9 28

    [6]

    Zhao Q, Zhou J, Zhang F L, Lippens D 2009 Mater. Today 12 60

    [7]

    Wood J 2008 Mater. Today 11 40

    [8]

    Jiang W X, Chin J Y, Cui T J 2009 Mater. Today 12 26

    [9]

    Lax M, Nelson D F 1976 Phys. Rev. B 13 1777

    [10]

    Leonhardt U, Philbin T G 2009 Prog. Opt. 53 69

    [11]

    Schurig D, Pendry J B, Smith D R 2006 Opt. Express 14 9794

    [12]

    Milton G W, Briane M, Willis J R 2006 New J. Phys. 8 248

    [13]

    Shalaev V M 2008 Science 322 384

    [14]

    Chen H Y, Chan C T, Sheng P 2010 Nature Mater. 9 387

    [15]

    Pendry J B, Maier S A 2012 Science 337 549

    [16]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [17]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518

    [18]

    Cummer S A, Schurig D 2007 New J. Phys. 9 45

    [19]

    Norris A N 2008 Proc. R. Soc. Lond. A: Math. Phys. Sci. 464 2411

    [20]

    Farhat M, Enoch S, Guenneau S, Movchan A B 2008 Phys. Rev. Lett. 101 134501

    [21]

    Liu B, Huang J P 2009 Euro. Phys. J. Appl. Phys. 48 093901

    [22]

    Brun M, Guenneau S, Movchan A B 2009 Appl. Phys. Lett. 94 061903

    [23]

    Su Q, Liu B, Huang J P 2011 Front. Phys. 6 65

    [24]

    Zhang S, Xia C G, Fang N 2011 Phys. Rev. Lett. 106 024301

    [25]

    Parnell W J, Norris A N, Shearer T 2012 Appl. Phys. Lett. 100 171907

    [26]

    Farhat M, Guenneau S, Enoch S 2009 Phys. Rev. Lett. 103 024301

    [27]

    Milton G W, Nicorovici N A P 2006 Proc. R. Soc. Lond. A, Math. Phys. Sci. 462 3027

    [28]

    Stenger N, Wilhelm M, Wegener M 2012 Phys. Rev. Lett. 108 014301

    [29]

    Chen H Y, Yang J, Zi J, Chan C T 2009 EPL 85 24004

    [30]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002

    [31]

    Greenleaf A, Kurylev Y, Lassas M, Uhlmann G 2008 New J. Phys. 10 115024

    [32]

    Diatta A, Guenneau S 2011 J. Opt. 13 024012

    [33]

    Greenleaf A, Kurylev Y, Lassas M, Leonhardt U, Uhlmann G 2012 Proc. Natl. Acad. Sci. USA 109 10169

    [34]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 25190767

    [35]

    Chen T Y, Weng C N, Chen J S 2008 Appl. Phys. Lett. 93 114103

    [36]

    Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504

    [37]

    Yu G X, Lin Y F, Zhang G Q 2011 Front. Phys. 6 70

    [38]

    Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207

    [39]

    Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303

    [40]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901

    [41]

    Guenneau S, Amra C 2013 Opt. Express 21 6578

    [42]

    Han T C, Yuan T, Li B W, Qiu C W 2013 Sci. Rep. 3 1593

    [43]

    Guo Y, Jacob Z 2013 Opt. Express 21 15014

    [44]

    Narayana S, Savo S, Sato Y 2013 Appl. Phys. Lett. 102 201904

    [45]

    Ma Y G, Lan L, Jiang W, Sun F, He S L 2013 Npg. Asia Mater. 5 e73

    [46]

    He X, Wu L Z 2013 Appl. Phys. Lett. 102 211912

    [47]

    Gao Y, Huang J P 2013 EPL 104 44001

    [48]

    Ball P 2012 Nature Mater. 11 666

    [49]

    Shen X Y, Huang J P 2014 Int. J. Heat Mass Trans. 78 1

    [50]

    Shen X Y, Chen Y X, Huang J P 2016 Commun. Theor. Phys. 65 375

    [51]

    Chen Y X, Shen X Y, Huang J P 2015 Euro. Phys. J. Appl. Phys. 70 20901

    [52]

    Zhu N Q, Shen X Y, Huang J P 2015 AIP Adv. 5 053401

    [53]

    Han T C, Bai X, Thong T L J, Li B W, Qiu C W 2014 Adv. Mater. 26 1731

    [54]

    Chen H S, Wu B I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903

    [55]

    Ruan Z C, Yan M, Neff C W, Qiu M 2007 Phys. Rev. Lett. 99 113903

    [56]

    Yan M, Ruan Z C, Qiu M 2007 Phys. Rev. Lett. 99 233901

    [57]

    Greenleaf A, Lassas M, Uhlmann G 2003 Physiol. Meas. 24 413

    [58]

    Huang J P, Yu K W 2006 Phys. Rep. 431 87

    [59]

    Xia T K, Hui P M, Stroud D 1990 J. Appl. Phys. 67 2736

    [60]

    You C Y, Shin S C, Kim S Y 1997 Phys. Rev. B 55 5953

    [61]

    Shi L H, Gao L 2008 Phys. Rev. B 77 195121

    [62]

    Nan C W, Birringer R, Clarke D R, Gleiter H 1997 J. Appl. Phys. 81 6692

    [63]

    Gao L, Zhou X F, Ding Y L 2007 Chem. Phys. Lett. 434 297

    [64]

    Mackay T G, Lakhtakia A 2005 J. Opt. A: Pure Appl. Opt. 7 669

    [65]

    Landau L D, Lifshitz E M 1984 Electrodynamics of Continuous Media (city Amsterdam: Elsevier)

    [66]

    Zhang M, Che Z H, Chen J H, Zhao H Z, Yang L, Zhong Z Y, Lu J H 2010 J. Chem. Eng. Data 56 859

    [67]

    Han T C, Gao D L, Thong T L J, Li B W, Qiu C W 2014 Phys. Rev. Lett. 112 054302

    [68]

    Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S, Huang J P 2015 Phys. Rev. Lett. 115 195503

    [69]

    Li Y, Shen X Y, Huang J P, Ni Y S 2016 Phys. Lett. A 380 1641

  • [1] Han Xu, Xue Bin, Cao Yi, Wang Wei. Self-assembled biomolecular soft materials and their physical properties. Acta Physica Sinica, 2024, 73(17): 178103. doi: 10.7498/aps.73.20240947
    [2] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [3] Qin Zhao-Fu, Chen Hao, Hu Tao-Zheng, Chen Zhuo, Wang Zhen-Lin. Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [4] Li Yi-Ming, Wang Xin, Li Hao, Du Xian, Sun Peng. Energy harvesting and thermoelectric conversion characteristics based on thermal metamaterials. Acta Physica Sinica, 2022, 71(20): 207304. doi: 10.7498/aps.71.20221061
    [5] Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211596
    [6] Wang Hao-Ran, Lan Jun, Chen Jia-Hui, Li Yi-Feng. Sound field enhancement based on multiple-cavity metamaterial. Acta Physica Sinica, 2021, 70(15): 154301. doi: 10.7498/aps.70.20202172
    [7] Zhou Xiao-Xi, Hu Chuan-Deng, Lu Wei-Xin, Lai Yun, Hou Bo. Numerical design of frequency-split Weyl points in Weyl metamaterial. Acta Physica Sinica, 2020, 69(15): 154204. doi: 10.7498/aps.69.20200195
    [8] Sheng Chong, Liu Hui, Zhu Shi-Ning. Research progress of analogical gravitation on optical metamaterial chips. Acta Physica Sinica, 2020, 69(15): 157802. doi: 10.7498/aps.69.20200183
    [9] Wu Feng, Guo Zhi-Wei, Wu Jia-Ju, Jiang Hai-Tao, Du Gui-Qiang. Band gap engineering and applications in compound periodic structure containing hyperbolic metamaterials. Acta Physica Sinica, 2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
    [10] Preface to the special topic: Optical metamaterials. Acta Physica Sinica, 2020, 69(15): 150101. doi: 10.7498/aps.69.150101
    [11] Lin Yue-Chai, Liu Fang, Huang Yi-Dong. Cherenkov radiation based on metamaterials. Acta Physica Sinica, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [12] Tian Yuan, Ge Hao, Lu Ming-Hui, Chen Yan-Feng. Research advances in acoustic metamaterials. Acta Physica Sinica, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [13] Yang Peng, Qin Jin, Xu Jin, Han Tian-Cheng. Ultrathin flexible transmission metamaterial absorber. Acta Physica Sinica, 2019, 68(8): 087802. doi: 10.7498/aps.68.20182225
    [14] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [15] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [16] Wu Chen-Xu, Yan Da-Dong, Xing Xiang-Jun, Hou Mei-Ying. A summary of soft matter theories. Acta Physica Sinica, 2016, 65(18): 186102. doi: 10.7498/aps.65.186102
    [17] Xu Wen-Xiang, Sun Hong-Guang, Chen Wen, Chen Hui-Su. A review of correlative modeling for transport properties, microstructures, and compositions of granular materials in soft matter. Acta Physica Sinica, 2016, 65(17): 178101. doi: 10.7498/aps.65.178101
    [18] Wu Jin-Bo, Wen Wei-Jia. Research progress of field-inducedd soft smart materials. Acta Physica Sinica, 2016, 65(18): 188301. doi: 10.7498/aps.65.188301
    [19] Xu Xin-He, Liu Ying, Gan Yue-Hong, Liu Wen-Miao. A method of retrieving the constitutive parameter matrix of magnetoelectric coupling metamaterial. Acta Physica Sinica, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [20] Ran Xian-Wen, Tang Wen-Hui, Tan Hua, Dai Cheng-Da. High temperature high pressure constitutive relation of materials by considering fusion enthalpy. Acta Physica Sinica, 2006, 55(6): 2852-2855. doi: 10.7498/aps.55.2852
Metrics
  • Abstract views:  10454
  • PDF Downloads:  732
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2016
  • Accepted Date:  04 July 2016
  • Published Online:  05 September 2016

/

返回文章
返回