Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on the optical properties of Fe-doped GaN

Jia Wan-Li Zhou Miao Wang Xin-Mei Ji Wei-Li

Citation:

First-principles study on the optical properties of Fe-doped GaN

Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using hybrid density functional theory, we investigate the structural, electronic and optical properties of pristine GaN and Fe-doped GaN with a Fe concentration of 12.5%. Specifically, we first analyze the crystal lattice constant, band structure, and density of states, respectively. Then we predict the dielectric function, absorption coefficient, refractive index, reflectivity, energy-loss spectrum and extinction coefficient. Finally, we analyze the influences of the doping of Fe element on the photoelectric property of Fe doped systems. The calculated lattice constants for perfect GaN are a=b=3.19 Å, c=5.18 Å, which are in good agreement with the experimental values. Furthermore, we find that the doping of Fe element has little effect on the structural properties of GaN. The Band gap of pristine GaN is predicted to be 3.41 eV, very close to the experimental value of 3.39 eV. The band gap of Fe doped GaN (12.5%) significantly decreases to 3.06 eV. By comparing the densities of states of the systems with and without Fe doping, it is found that Fe-3 d state is mainly responsible for the decrease of band gap. The calculated static dielectric constant of perfect GaN is 5.74, and it increases to 6.20 after incorporating the Fe element. The results about the imaginary part of dielectric function show that two equal-strength perfect GaN peaks are observed to be at 6.81 eV and 10.85 eV. The first peak is closely related to the direction transition from the valence band top to the conduction band bottom. Furthermore, it is also observed that a peak is located at 4.04 eV in the low energy, which can be understood as resulting from the electron transition inside the valence band. The optical absorption edge of the intrinsic GaN is 3.25 eV, corresponding to the transition energy. The reason why this energy is smaller than the bandgap is because the electronic band gap equals the sum of optical bandgap and exciton energy. However, the maximum absorption coefficients of these two systems both occur at 13.80 eV in energy. The refractive index for intrinsic system is 2.39, and it increases to 2.48 after doping the Fe element. It is found from the energy-loss spectrum that the maximum energy-loss is at 20.02 eV for a perfect system, while it is at 18.96 eV for a doped system. Additionally, we obtain the reliable reflectivity and excitation coefficient. In conclusion, our calculated results provide a well theoretical basis for the theoretical research on the co-doping of Fe element and other elements. The analyses on the Fe-doped GaN high-voltage photoconductive switch materials and devices also provide a powerful theoretical basis and experimental support in the future research.
      Corresponding author: Jia Wan-Li, wuli4@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575158) and the Scientific Research Foundation of the Education Department of Shanxi, China (Grant No. 25606K082).
    [1]

    Fu X Q, Chang B K, Li S 2011 Acta Phys. Sin. 60 038503 (in Chinese)[付小倩, 常本康, 李飙 2011 物理学报 60 038503]

    [2]

    Brown G F, Wu J Q 2009 Laser Photon. Rev. 36 394

    [3]

    Zhao Y J 2006 Adv. Mater. Industry 8 55 (in Chinese)[赵亚娟 2006 先进材料工业 8 55]

    [4]

    Lee R, Wright A F, Crawford M H, Petersen G A, Han J, Biefeld R M 1999 Appl. Phys. Lett. 74 3344

    [5]

    Dridi Z, Bouhafs B, Ruterana P 2003 Semicond. Sci. Tech. 18 850

    [6]

    Yun F, Reshchikov M A, He L, King T, Morkoc H 2002 J. Appl. Phys. 92 4142

    [7]

    Kuo Y K, Lin W W 2002 Jpn. J. Appl. Phys. 41 73

    [8]

    Baur J, Maier K, Kunzer M, Kaufmann U, Schneider J, Amano H, Hiramatsu K 1994 Appl. Phys. Lett. 64 857

    [9]

    Cordier Y, Azize M, Baron N, Bougrioua Z, Chenot S, Tottereau O, Gibart P 2008 J. Cryst. Growth 310 948

    [10]

    Polyakov A Y, Smirnov N B, Govorkov A V, Pearton S J 2003 Appl. Phys. Lett. 83 3314

    [11]

    Feng Z H, Liu B, Yuan F P, Yin J Y, Liang D, Li X B, Cai S J 2007 J. Cryst. Growth 309 8

    [12]

    Freitas J A, Gowda M, Tischler J G, Kim J H, Liu L, Hanser D 2008 J. Cryst. Growth 310 3968

    [13]

    Dashdorj J, Zvanut M E, Harrison J G, Udwary K, Paskova T 2012 J. Appl. Phys. 112 013712

    [14]

    Dong Y F, Li Y 2016 Chin. J. Comput. Phys. 33 490 (in Chinese)[董艳锋, 李英 2016 计算物理 33 490]

    [15]

    Lu W, Lei T M 2009 Electron. Sci. Tech. 22 55 (in Chinese)[陆稳, 雷天民 2009 电子科技 22 55]

    [16]

    Huang B R, Zhang F C, Cui H W 2016 Henan Sci. 34 16 (in Chinese)[黄保瑞, 张富春, 崔红卫 2016 河南科学 34 16]

    [17]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Acta Phys. Sin. 62 017103 (in Chinese)[李倩倩, 郝秋艳, 李英, 刘国栋 2013 物理学报 62 017103]

    [18]

    Xing H Y, Fan G H, Zhao D G, He M, Zhang Y, Zhou T M 2008 Acta Phys. Sin. 57 6513 (in Chinese)[邢海英, 范广涵, 赵德刚, 何苗, 章勇, 周天明 2008 物理学报 57 6513]

    [19]

    Zhao Y Q, Liu B, Yu Z L, Ma J, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

    [20]

    Zhao Y Q, Liu B, Yu Z L, Cao D, Cai M Q 2017 Electrochim. Acta 247 891

    [21]

    Gorczyca I, Christensen N E, Perlin P 1991 Solid State Commun. 79 779

    [22]

    Leszcynski M, Grzegory I, Bockowski M 1993 J. Cryst. Growth 126 601

    [23]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Eur. Phys. J. B 89 80

    [24]

    Cao D, Liu B, Yu H, Hu W, Cai M 2015 Eur. Phys. J. B 88 75

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [27]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [28]

    Hummer K, Harl J, Kresse G 2009 Phys. Rev. B 80 115205

    [29]

    Maruska H A, Tietjen J J 1969 Appl. Phys. Lett. 15 327

    [30]

    Brown G F, Wu J Q 2009 Laser Photon. Rev. 3 394

    [31]

    Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188

    [32]

    Sheng X C 2003 The Spectrum and Optical Property of Semiconductor (Beijing:Science Press) p76 (in Chinese)[沈学础 2003 半导体光谱和光学性质 (科学出版社) 第76页]

    [33]

    Pankove J I, Berkeyheiser J E, Maruska H P 1970 Solid State Commun. 8 1051

    [34]

    Choi J H, Cui P, Lan H, Zhang Z 2015 Appl. Phys. Lett. 115 066403

    [35]

    Maruska H P, Tietjen J J 1969 Appl. Phys. Lett. 15 327

  • [1]

    Fu X Q, Chang B K, Li S 2011 Acta Phys. Sin. 60 038503 (in Chinese)[付小倩, 常本康, 李飙 2011 物理学报 60 038503]

    [2]

    Brown G F, Wu J Q 2009 Laser Photon. Rev. 36 394

    [3]

    Zhao Y J 2006 Adv. Mater. Industry 8 55 (in Chinese)[赵亚娟 2006 先进材料工业 8 55]

    [4]

    Lee R, Wright A F, Crawford M H, Petersen G A, Han J, Biefeld R M 1999 Appl. Phys. Lett. 74 3344

    [5]

    Dridi Z, Bouhafs B, Ruterana P 2003 Semicond. Sci. Tech. 18 850

    [6]

    Yun F, Reshchikov M A, He L, King T, Morkoc H 2002 J. Appl. Phys. 92 4142

    [7]

    Kuo Y K, Lin W W 2002 Jpn. J. Appl. Phys. 41 73

    [8]

    Baur J, Maier K, Kunzer M, Kaufmann U, Schneider J, Amano H, Hiramatsu K 1994 Appl. Phys. Lett. 64 857

    [9]

    Cordier Y, Azize M, Baron N, Bougrioua Z, Chenot S, Tottereau O, Gibart P 2008 J. Cryst. Growth 310 948

    [10]

    Polyakov A Y, Smirnov N B, Govorkov A V, Pearton S J 2003 Appl. Phys. Lett. 83 3314

    [11]

    Feng Z H, Liu B, Yuan F P, Yin J Y, Liang D, Li X B, Cai S J 2007 J. Cryst. Growth 309 8

    [12]

    Freitas J A, Gowda M, Tischler J G, Kim J H, Liu L, Hanser D 2008 J. Cryst. Growth 310 3968

    [13]

    Dashdorj J, Zvanut M E, Harrison J G, Udwary K, Paskova T 2012 J. Appl. Phys. 112 013712

    [14]

    Dong Y F, Li Y 2016 Chin. J. Comput. Phys. 33 490 (in Chinese)[董艳锋, 李英 2016 计算物理 33 490]

    [15]

    Lu W, Lei T M 2009 Electron. Sci. Tech. 22 55 (in Chinese)[陆稳, 雷天民 2009 电子科技 22 55]

    [16]

    Huang B R, Zhang F C, Cui H W 2016 Henan Sci. 34 16 (in Chinese)[黄保瑞, 张富春, 崔红卫 2016 河南科学 34 16]

    [17]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Acta Phys. Sin. 62 017103 (in Chinese)[李倩倩, 郝秋艳, 李英, 刘国栋 2013 物理学报 62 017103]

    [18]

    Xing H Y, Fan G H, Zhao D G, He M, Zhang Y, Zhou T M 2008 Acta Phys. Sin. 57 6513 (in Chinese)[邢海英, 范广涵, 赵德刚, 何苗, 章勇, 周天明 2008 物理学报 57 6513]

    [19]

    Zhao Y Q, Liu B, Yu Z L, Ma J, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

    [20]

    Zhao Y Q, Liu B, Yu Z L, Cao D, Cai M Q 2017 Electrochim. Acta 247 891

    [21]

    Gorczyca I, Christensen N E, Perlin P 1991 Solid State Commun. 79 779

    [22]

    Leszcynski M, Grzegory I, Bockowski M 1993 J. Cryst. Growth 126 601

    [23]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Eur. Phys. J. B 89 80

    [24]

    Cao D, Liu B, Yu H, Hu W, Cai M 2015 Eur. Phys. J. B 88 75

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [27]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [28]

    Hummer K, Harl J, Kresse G 2009 Phys. Rev. B 80 115205

    [29]

    Maruska H A, Tietjen J J 1969 Appl. Phys. Lett. 15 327

    [30]

    Brown G F, Wu J Q 2009 Laser Photon. Rev. 3 394

    [31]

    Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188

    [32]

    Sheng X C 2003 The Spectrum and Optical Property of Semiconductor (Beijing:Science Press) p76 (in Chinese)[沈学础 2003 半导体光谱和光学性质 (科学出版社) 第76页]

    [33]

    Pankove J I, Berkeyheiser J E, Maruska H P 1970 Solid State Commun. 8 1051

    [34]

    Choi J H, Cui P, Lan H, Zhang Z 2015 Appl. Phys. Lett. 115 066403

    [35]

    Maruska H P, Tietjen J J 1969 Appl. Phys. Lett. 15 327

  • [1] Wang Fan-Fan, Chen Dong, Yuan Jun, Zhang Zhu-Feng, Jiang Tao, Zhou Jun. Interlayer angle dependence of photoelectric properties of Sb/SnC van der Waals heterojunction and its application. Acta Physica Sinica, 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [2] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [3] Wang Xue-Ting, Fu Yu-Hao, Na Guang-Ren, Li Hong-Dong, Zhang Li-Jun. Barium as doping element tuning both toxicity and optoelectric properties of lead-based halide perovskites. Acta Physica Sinica, 2019, 68(15): 157101. doi: 10.7498/aps.68.20190596
    [4] Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min. First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Physica Sinica, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [5] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [6] Qu Ling-Feng, Hou Qing-Yu, Xu Zhen-Chao, Zhao Chun-Wang. Photoelectric properties of Ti doped ZnO: First principles calculation. Acta Physica Sinica, 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [7] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [8] Rao Xue, Wang Ru-Zhi, Cao Jue-Xian, Yan Hui. First-principles calculation of doped GaN/AlN superlattices. Acta Physica Sinica, 2015, 64(10): 107303. doi: 10.7498/aps.64.107303
    [9] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [10] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [11] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [12] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [13] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [14] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [15] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [16] Yu Zhi-Qiang. Electronic structure and photoelectric properties of OsSi2 epitaxially grown on a Si(111) substrate. Acta Physica Sinica, 2012, 61(21): 217102. doi: 10.7498/aps.61.217102
    [17] Han Lu-Hui, Zhang Chong-Hong, Zhang Li-Qing, Yang Yi-Tao, Song Yin, Sun You-Mei. X-ray photoelectron spectroscopy study on GaN crystal irradiated by slow highly charged ions. Acta Physica Sinica, 2010, 59(7): 4584-4590. doi: 10.7498/aps.59.4584
    [18] Zhang Ji-Hua, Ding Jian-Wen, Lu Zhang-Hui. First-principles study of electrical structures and optical properties of Co:MgF2 crystal. Acta Physica Sinica, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [19] Chen Kun, Fan Guang-Han, Zhang Yong. First principles study of optical properties of wurtzite ZnO with Mn-doping. Acta Physica Sinica, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [20] Guo Jian-Yun, Zheng Guang, He Kai-Hua, Chen Jing-Zhong. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
Metrics
  • Abstract views:  8700
  • PDF Downloads:  473
  • Cited By: 0
Publishing process
  • Received Date:  23 October 2017
  • Accepted Date:  15 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回