Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Real-time time dependent density functional theory with numerical atomic orbital basis set: methodology and applications

Guan Meng-Xue Lian Chao Meng Sheng

Citation:

Real-time time dependent density functional theory with numerical atomic orbital basis set: methodology and applications

Guan Meng-Xue, Lian Chao, Meng Sheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Real-time time dependent density functional theory (rt-TDDFT) approach directly provides the time domain evolution of electronic wave functions together with ionic movements, presenting a versatile way of real time tracking ultrafast dynamics and phenomena either in perturbative regime or in non-perturbative regime. Thus, rt-TDDFT is a unique ab initio quantum method applicable for the exploration of strong field physics that is beyond the linear response theory. Numerical implementations of the rt-TDDFT based on planewaves and real-space grids have been demonstrated in recent years. However, the above two methods are suitable for the efficient treatment of low energy excitation on the scale of a few electron volts in a small size system. In this paper, we present a state-of-the-art real-time TDDFT approach as implemented in the time dependent ab initio package (TDAP). By employing atomic orbital basis sets, which are small in size and fast in performance, we are able to simulate a large-size system for long electronic propagation time with less computational cost while maintaining relatively high accuracy. The length and velocity-gauge of electromagnetic field are both implemented, showing the flexibility and credibility in applying our methods to various laser induced phenomena in diverse systems including solids, interfaces and two-dimensional materials. Furthermore, recently developed k-resolved algorithm ensures the possibility of handling the problems with a unit cell approach, which significantly reduces the formidable computational costs of traditional rt-TDDFT simulations. Detailed flow and implementation of this method are discussed in this paper, and several quintessential examples for applications are introduced. First, we use the present method to calculate the photoabsorption properties of armchair graphene nanoribbons and monitor the excitation details with momentum resolution. Then, we simulate laser melting of silicon, which captures the most important features of nonthermal melting observed in experiment, and further reveals that it can be attributed to drastic laser-induced change in bonding electron density and subsequent decrease in the melting barrier. After that, a model MoS2/WS2 bilayer system is used as an example to show how our method can be used to monitor the electronic dynamics in such a van der Waals heterostructure. Finally, we show the possibility of controlling the electron dynamic process to enhance high harmonic generation intensity and generate isolated attosecond pulse in monolayer MoS2 via two-color field. Most of the above examples present new ideas in their respective areas and demonstrate that our method has a great potential application in studying interesting ultrafast dynamics phenomena in a wide range of quantum systems.
      Corresponding author: Meng Sheng, smeng@iphy.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2016YFA0300902), the National Basic Research Program of China (Grant No. 2015CB921001), and the National Natural Science Foundation of China (Grant Nos. 11774396, 11474328).
    [1]

    Runge E, Gross E K 1984 Phys. Rev. Lett. 52 997

    [2]

    Ullrich C A 2011 Time-Dependent Density-Functional Theory:Concepts And Applications (Oxford:Oxford University Press)

    [3]

    Sato S, Yabana K, Shinohara Y, Otobe T, Lee K M, Bertsch G 2015 Phys. Rev. B 92 205413

    [4]

    Takimoto Y, Vila F, Rehr J 2007 J. Chem. Phys. 127 154114

    [5]

    Snchez-Portal D, Hernandez E 2002 Phys. Rev. B 66 235415

    [6]

    Lopata K, Govind N 2011 J. Chem. Theory Comput. 7 1344

    [7]

    Yabana K, Sugiyama T, Shinohara Y, Otobe T, Bertsch G 2012 Phys. Rev. B 85 045134

    [8]

    Castro A, Werschnik J, Gross E K 2012 Phys. Rev. Lett. 109 153603

    [9]

    Yost D C, Yao Y, Kanai Y 2017 Phys. Rev. B 96 115134

    [10]

    Andrade X, Strubbe D, de Giovannini U, Larsen A H, Oliveira M J, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J 2015 Phys. Chem. Chem. Phys. 17 31371

    [11]

    Sato S A, Yabana K 2014 J. Adv. Simulat. Sci. Eng. 1 98

    [12]

    Meng S, Kaxiras E 2008 J. Chem. Phys. 129 054110

    [13]

    Ma W, Zhang J, Yan L, Jiao Y, Gao Y, Meng S 2016 Comp. Mater. Sci. 112 478

    [14]

    Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys. Condens. Matter 14 2745

    [15]

    Ordejn P, Artacho E, Soler J M 1996 Phys. Rev. B 53 R10441

    [16]

    Yabana K, Nakatsukasa T, Iwata J I, Bertsch G 2006 Phys. Status Solidi (b) 243 1121

    [17]

    Wang Z, Li S S, Wang L W 2015 Phys. Rev. Lett. 114 063004

    [18]

    Ren J, Vukmirović N, Wang L W 2013 Phys. Rev. B 87 205117

    [19]

    Ren J, Kaxiras E, Meng S 2010 Mol. Phys. 108 1829

    [20]

    Rohringer N, Peter S, Burgdrfer J 2006 Phys. Rev. A 74 042512

    [21]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [22]

    Yang L, Park C H, Son Y W, Cohen M L, Louie S G 2007 Phys. Rev. Lett. 99 186801

    [23]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotech. 7 330

    [24]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R 2011 Nat. Nanotech. 6 630

    [25]

    Yang L, Deslippe J, Park C H, Cohen M L, Louie S G 2009 Phys. Rev. Lett. 103 186802

    [26]

    Trevisanutto P E, Holzmann M, Ct M, Olevano V 2010 Phys. Rev. B 81 121405

    [27]

    Gomez C V, Pisarra M, Gravina M, Pitarke J M, Sindona A 2016 Phys. Rev. Lett. 117 116801

    [28]

    Ostrikov K K, Beg F, Ng A 2016 Rev. Mod. Phys. 88 011001

    [29]

    Shank C, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454

    [30]

    Harb M, Ernstorfer R, Hebeisen C T, Sciaini G, Peng W, Dartigalongue T, Eriksson M A, Lagally M G, Kruglik S G, Miller R D 2008 Phys. Rev. Lett. 100 155504

    [31]

    Sokolowski-Tinten K, Blome C, Dietrich C, Tarasevitch A, von Hoegen M H, von der Linde D, Cavalleri A, Squier J, Kammler M 2001 Phys. Rev. Lett. 87 225701

    [32]

    Porer M, Leierseder U, Mnard J M, Dachraoui H, Mouchliadis L, Perakis I, Heinzmann U, Demsar J, Rossnagel K, Huber R 2014 Nat. Mater. 13 857

    [33]

    Hellmann S, Beye M, Sohrt C, Rohwer T, Sorgenfrei F, Redlin H, Kallne M, Marczynski-Bhlow M, Hennies F, Bauer M 2010 Phys. Rev. Lett. 105 187401

    [34]

    Lian C, Zhang S, Meng S 2016 Phys. Rev. B 94 184310

    [35]

    Zijlstra E S, Kalitsov A, Zier T, Garcia M E 2013 Phys. Rev. X 3 011005

    [36]

    Falke S M, Rozzi C A, Brida D, Maiuri M, Amato M, Sommer E, de Sio A, Rubio A, Cerullo G, Molinari E 2014 Science 344 1001

    [37]

    Rozzi C A, Falke S M, Spallanzani N, Rubio A, Molinari E, Brida D, Maiuri M, Cerullo G, Schramm H, Christoffers J 2013 Nat. Commun. 4 1602

    [38]

    Zhang J, Hong H, Lian C, Ma W, Xu X, Zhou X, Fu H, Liu K, Meng S 2017 Adv. Sci. 4 1700086

    [39]

    van der Zande A M, Kunstmann J, Chernikov A, Chenet D A, You Y, Zhang X, Huang P Y, Berkelbach T C, Wang L, Zhang F 2014 Nano Lett. 14 3869

    [40]

    Long R, Prezhdo O V 2016 Nano Lett. 16 1996

    [41]

    Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520

    [42]

    Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T, Goulielmakis E 2015 Nature 521 498

    [43]

    Vampa G, Hammond T J, Thire N, Schmidt B E, Legare F, McDonald C R, Brabec T, Corkum P B 2015 Nature 522 462

    [44]

    Liu H, Li Y, You Y S, Ghimire S, Heinz T F, Reis D A 2016 Nat. Phys. 13 262

    [45]

    Li J B, Zhang X, Yue S J, Wu H M, Hu B T, Du H C 2017 Opt. Express 25 18603

    [46]

    Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Legare F, Giguere M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902

  • [1]

    Runge E, Gross E K 1984 Phys. Rev. Lett. 52 997

    [2]

    Ullrich C A 2011 Time-Dependent Density-Functional Theory:Concepts And Applications (Oxford:Oxford University Press)

    [3]

    Sato S, Yabana K, Shinohara Y, Otobe T, Lee K M, Bertsch G 2015 Phys. Rev. B 92 205413

    [4]

    Takimoto Y, Vila F, Rehr J 2007 J. Chem. Phys. 127 154114

    [5]

    Snchez-Portal D, Hernandez E 2002 Phys. Rev. B 66 235415

    [6]

    Lopata K, Govind N 2011 J. Chem. Theory Comput. 7 1344

    [7]

    Yabana K, Sugiyama T, Shinohara Y, Otobe T, Bertsch G 2012 Phys. Rev. B 85 045134

    [8]

    Castro A, Werschnik J, Gross E K 2012 Phys. Rev. Lett. 109 153603

    [9]

    Yost D C, Yao Y, Kanai Y 2017 Phys. Rev. B 96 115134

    [10]

    Andrade X, Strubbe D, de Giovannini U, Larsen A H, Oliveira M J, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J 2015 Phys. Chem. Chem. Phys. 17 31371

    [11]

    Sato S A, Yabana K 2014 J. Adv. Simulat. Sci. Eng. 1 98

    [12]

    Meng S, Kaxiras E 2008 J. Chem. Phys. 129 054110

    [13]

    Ma W, Zhang J, Yan L, Jiao Y, Gao Y, Meng S 2016 Comp. Mater. Sci. 112 478

    [14]

    Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys. Condens. Matter 14 2745

    [15]

    Ordejn P, Artacho E, Soler J M 1996 Phys. Rev. B 53 R10441

    [16]

    Yabana K, Nakatsukasa T, Iwata J I, Bertsch G 2006 Phys. Status Solidi (b) 243 1121

    [17]

    Wang Z, Li S S, Wang L W 2015 Phys. Rev. Lett. 114 063004

    [18]

    Ren J, Vukmirović N, Wang L W 2013 Phys. Rev. B 87 205117

    [19]

    Ren J, Kaxiras E, Meng S 2010 Mol. Phys. 108 1829

    [20]

    Rohringer N, Peter S, Burgdrfer J 2006 Phys. Rev. A 74 042512

    [21]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [22]

    Yang L, Park C H, Son Y W, Cohen M L, Louie S G 2007 Phys. Rev. Lett. 99 186801

    [23]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotech. 7 330

    [24]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R 2011 Nat. Nanotech. 6 630

    [25]

    Yang L, Deslippe J, Park C H, Cohen M L, Louie S G 2009 Phys. Rev. Lett. 103 186802

    [26]

    Trevisanutto P E, Holzmann M, Ct M, Olevano V 2010 Phys. Rev. B 81 121405

    [27]

    Gomez C V, Pisarra M, Gravina M, Pitarke J M, Sindona A 2016 Phys. Rev. Lett. 117 116801

    [28]

    Ostrikov K K, Beg F, Ng A 2016 Rev. Mod. Phys. 88 011001

    [29]

    Shank C, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454

    [30]

    Harb M, Ernstorfer R, Hebeisen C T, Sciaini G, Peng W, Dartigalongue T, Eriksson M A, Lagally M G, Kruglik S G, Miller R D 2008 Phys. Rev. Lett. 100 155504

    [31]

    Sokolowski-Tinten K, Blome C, Dietrich C, Tarasevitch A, von Hoegen M H, von der Linde D, Cavalleri A, Squier J, Kammler M 2001 Phys. Rev. Lett. 87 225701

    [32]

    Porer M, Leierseder U, Mnard J M, Dachraoui H, Mouchliadis L, Perakis I, Heinzmann U, Demsar J, Rossnagel K, Huber R 2014 Nat. Mater. 13 857

    [33]

    Hellmann S, Beye M, Sohrt C, Rohwer T, Sorgenfrei F, Redlin H, Kallne M, Marczynski-Bhlow M, Hennies F, Bauer M 2010 Phys. Rev. Lett. 105 187401

    [34]

    Lian C, Zhang S, Meng S 2016 Phys. Rev. B 94 184310

    [35]

    Zijlstra E S, Kalitsov A, Zier T, Garcia M E 2013 Phys. Rev. X 3 011005

    [36]

    Falke S M, Rozzi C A, Brida D, Maiuri M, Amato M, Sommer E, de Sio A, Rubio A, Cerullo G, Molinari E 2014 Science 344 1001

    [37]

    Rozzi C A, Falke S M, Spallanzani N, Rubio A, Molinari E, Brida D, Maiuri M, Cerullo G, Schramm H, Christoffers J 2013 Nat. Commun. 4 1602

    [38]

    Zhang J, Hong H, Lian C, Ma W, Xu X, Zhou X, Fu H, Liu K, Meng S 2017 Adv. Sci. 4 1700086

    [39]

    van der Zande A M, Kunstmann J, Chernikov A, Chenet D A, You Y, Zhang X, Huang P Y, Berkelbach T C, Wang L, Zhang F 2014 Nano Lett. 14 3869

    [40]

    Long R, Prezhdo O V 2016 Nano Lett. 16 1996

    [41]

    Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520

    [42]

    Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T, Goulielmakis E 2015 Nature 521 498

    [43]

    Vampa G, Hammond T J, Thire N, Schmidt B E, Legare F, McDonald C R, Brabec T, Corkum P B 2015 Nature 522 462

    [44]

    Liu H, Li Y, You Y S, Ghimire S, Heinz T F, Reis D A 2016 Nat. Phys. 13 262

    [45]

    Li J B, Zhang X, Yue S J, Wu H M, Hu B T, Du H C 2017 Opt. Express 25 18603

    [46]

    Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Legare F, Giguere M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902

  • [1] Tan Hui, Cao Rui, Li Yong-Qiang. Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory. Acta Physica Sinica, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [2] Xiang Mei, Ling Feng-Zi, Deng Xu-Lan, Wei Jie, Bumaliya Abulimiti, Zhang Bing. Ultrafast dynamics of electron excited states of phenylacetylene. Acta Physica Sinica, 2021, 70(5): 053302. doi: 10.7498/aps.70.20201473
    [3] Zhao Jia-Lin, Cheng Kai, Yu Xue-Ke, Zhao Ji-Jun, Su Yan. Theoretical research of time-dependent density functional on initiated photo-dissociation of some typical energetic materials at excited state. Acta Physica Sinica, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [4] Zheng Zhen-Fa, Jiang Xiang, Chu Wei-Bin, Zhang Li-Li, Guo Hong-Li, Zhao Chuan-Yu, Wang Ya-Nan, Wang Ao-Lei, Zheng Qi-Jing, Zhao Jin. Investigation of ab initio nonadiabatic molecular dynamics of excited carriers in condensed matter systems. Acta Physica Sinica, 2021, 70(17): 177101. doi: 10.7498/aps.70.20210626
    [5] Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong. Density functional theory studies on the excited-state properties of Bilirubin molecule. Acta Physica Sinica, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [6] Shen Yu-Tian,  Meng Sheng. Water photosplitting: Atomistic mechanism and quantum dynamics. Acta Physica Sinica, 2019, 68(1): 018202. doi: 10.7498/aps.68.20181312
    [7] Fan Heng. Quantum computation and quantum simulation. Acta Physica Sinica, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [8] Shen Huan, Hu Chun-Long, Deng Xu-Lan. Excited-state dynamics of m-dichlorobezene in ultrashort laser pulses. Acta Physica Sinica, 2017, 66(15): 157801. doi: 10.7498/aps.66.157801
    [9] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [10] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [11] Zhang Jian-Dong, Yang Chun, Chen Yuan-Tao, Zhang Bian-Xia, Shao Wen-Ying. A density functional theory study of absorption behavior of CO on Au-doped single-walled carbon nanotubes. Acta Physica Sinica, 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [12] Shi Yun-Long, Yang Ya-Ping, Liu Hai-Lian, Huang Xian-Shan. Control of the evolution of an excited atom by using the dynamic Lorentzian reservior. Acta Physica Sinica, 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
    [13] Gao Tao, Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Xiao Yan. Spatial configurations and X-ray absorption of Ti catalyzing on NaAlH4 surfaces: Car-Parrinello molecular dynamics and density functional theory study. Acta Physica Sinica, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [14] Zhang Bian-Xia, Yang Chun, Feng Yu-Fang, Yu Yi. A density functional theory study of the absorption behavior of copper on single-walled carbon nanotubes. Acta Physica Sinica, 2009, 58(6): 4066-4071. doi: 10.7498/aps.58.4066
    [15] Gu Bin, Jin Nian-Qing, Wang Zhi-Ping, Zeng Xiang-Hua. Calculation of the transition spectra of sodium atom via TDDFT. Acta Physica Sinica, 2005, 54(10): 4648-4653. doi: 10.7498/aps.54.4648
    [16] WEN GEN-WANG. THE STEEPEST DESCENT PERTURBATION THEORY FOR THE EXCITED STATE OF A QUANTUM SYSTEM. Acta Physica Sinica, 1991, 40(9): 1388-1395. doi: 10.7498/aps.40.1388
    [17] SHUAI ZHI-GANG, SUN XIN, FU ROU-LI. CORRELATED-BASIS-FUNCTION THEORY FOR EXCITED STATES. Acta Physica Sinica, 1989, 38(10): 1648-1657. doi: 10.7498/aps.38.1648
    [18] LIU LEI, LI JIA-MING. STRUCTURE OF EXITED FRANCIUM ATOM. Acta Physica Sinica, 1988, 37(12): 2053-2056. doi: 10.7498/aps.37.2053
    [19] LIANG XIAO-LING, LI JIA-MING. MINIMA OF OSCILLATOR STRENGTH DENSITIES FOR EXCITED ATOMS. Acta Physica Sinica, 1985, 34(11): 1479-1487. doi: 10.7498/aps.34.1479
    [20] ZHU XI-WEN. REMARKS ON QUANTUM BEAT EXPERIMENT OF HIGHLY EXCITED SODIUM ATOMS. Acta Physica Sinica, 1981, 30(12): 1688-1692. doi: 10.7498/aps.30.1688
Metrics
  • Abstract views:  8702
  • PDF Downloads:  630
  • Cited By: 0
Publishing process
  • Received Date:  19 March 2018
  • Accepted Date:  17 April 2018
  • Published Online:  20 June 2019

/

返回文章
返回