-
The magnetoelectric coupling effect in materials provides an additional degree of freedom of physical states for information storage and shows great potential in developing a new generation of memory devices. We use an alternative concept of nonvolatile memory based on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hysteresis loop. The state of magnetoelectric coefficient, instead of magnetization, electric polarization, or resistance, is utilized to store information. Because this memory concept depends on the relationship between the charge and magnetic flux, it is actually the fourth fundamental circuit memory element in addition to memristor, memcapacitor, and meminductor, and is defined as memtranstor. Our experiments in memtranstor comprised of the[Pb(Mg1/3Nb2/3)]0.7[PbTiO3]0.3(PMN-PT)/Terfenol-D and Ni/PMN-PT/Ni multiferroic heterostructures clearly demonstrated that the magnetoelectric coefficient can be repeatedly switched not only between positive and negative polarities but also between multilevel states by applying electric fields, confirming the feasibility of this principle. In addition to nonvolatile memory, the nonvolatile logic functions, such as NOR and NAND and synaptic plasticity functions, such as long-term potentiation/depression and spiking-time-dependent plasticity are implemented in a single memtranstor by engineering the applied electric-field pulses. The combined functionalities of memory, logic, and synaptic plasticity enable the memtranstor to serve as a promising candidate for future computing systems beyond von Neumann architecture.
-
Keywords:
- magnetoelectrics /
- nonvolatile memory /
- memtranstor /
- transtor
[1] Scott J F 2000 Ferroelectric Memories (Berlin: Springer-Verlag) pp23-51
[2] Chappert C, Fert A, van Dau F N 2007 Nat. Mater. 6 813
[3] Wuttig M, Yamada N 2007 Nat. Mater. 6 824
[4] Waser R, Dittmann R, Staikov G, Szot K 2007 Nat. Mater. 6 833
[5] Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519
[6] Scott J F 2007 Nat. Mater. 6 256
[7] Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthlmy A, Fert A 2007 Nat. Mater. 6 296
[8] Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, Barthlmy A 2010 Science 327 1106
[9] Pantel D, Goetze S, Hesse D, Alexe M 2012 Nat. Mater. 11 289
[10] Bibes M, Barthlmy A 2008 Nat. Mater. 7 425
[11] Song C, Cui B, Li F, Zhou X J, Pan F 2017 Prog. Mater. Sci. 87 33
[12] Thiele C, Dorr K, Bilani O, Rdel J, Schultz L 2007 Phys. Rev. B 75 054408
[13] Ma J, Lin Y, Nan C W 2010 J. Phys. D:Appl. Phys. 43 012001
[14] Chen Y, Gao J, Fitchorov T, Cai Z, Ziemer K S, Vittoria C, Harris V G 2009 Appl. Phys. Lett. 94 082504
[15] Xuan H C, Wang L Y, Zheng Y X, Li Y L, Cao Q Q, Chen S Y, Wang D H, Huang Z G, Du Y W 2011 Appl. Phys. Lett. 99 032509
[16] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[17] Chua L O, Kang S M 1976 Proc. IEEE 64 209
[18] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[19] Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717
[20] Vongehr S 2012 Adv. Sci. Lett. 17 285
[21] Mathur N D 2008 Nature 455 E13
[22] Shang D S, Chai Y S, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B 24 068402
[23] Lou J, Pellegrini G N, Liu M, Mathur N D, Sun N X 2012 Appl. Phys. Lett. 100 102907
[24] Fiebig M 2005 J. Phys. D 38 R123
[25] Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759
[26] Nan C W, Bichurin M I, Peterburgskaya B S, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101
[27] Shen J X, Cong J Z, Chai Y S, Shang D S, Shen S P, Zhai K, Tian Y, Sun Y 2016 Phys. Rev. Appl. 6 021001
[28] Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804
[29] Lee D, Yang M S, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B, Noh T W 2012 Adv. Mater. 24 402
[30] Shen J X, Cong J Z, Shang D S, Chai Y S, Shen S P, Zhai K, Sun Y 2016 Sci. Rep. 6 34473
[31] Lu P P, Shang D S, Shen J X, Chai Y S, Yang C S, Zhai K, Cong J Z, Shen S P, Sun Y 2016 Appl. Phys. Lett. 109 252902
[32] Zhai K, Shang D S, Chai Y S, Li G, Cai J W, Shen B G, Sun Y 2018 Adv. Func. Mater. 28 1705771
[33] Wang J, Meng H, Wang J P 2005 J. Appl. Phys. 97 10D509
[34] Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062
[35] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S 2010 Nature 464 873
[36] Wang Z, Zhao W, Kang W, Zhang Y, Klein J O, Ravelosona D, Zhang Y, Chappert C 2014 IEEE Trans. Magn. 50 9100604
[37] Li Y, Zhong Y P, Deng Y F, Zhou Y X, Xu L, Miao X S 2013 J. Appl. Phys. 114 234503
[38] Linn E, Rosezin R, Tappertzhofen S, Bttger U, Waser R 2012 Nanotechnology 23 305205
[39] Siemon A, Breuer T, Aslam N, Ferch S, Kim W, van den Hurk J, Rana V, Hoffmann-Eifert S, Waser R, Menzel S, Linn E 2015 Adv. Funct. Mater. 25 6414
[40] Shen J X, Shang D S, Chai Y S, Wang Y, Cong J Z, Shen S P, Yan L Q, Wang W H, Sun Y 2016 Phys. Rev. Appl. 6 064028
[41] Zhou Y, Yang S C, Apo D J, Maurya D, Priya S 2012 Appl. Phys. Lett. 101 232905
[42] Cassinerio M, Ciocchini N, Ielmini D 2013 Adv. Mater. 25 5975
[43] Binek C, Doudin B 2005 J. Phys. Condens. Matter. 17 L39
[44] Chen X, Hochstrat A, Borisov P, Kleemann W 2006 Appl. Phys. Lett. 89 202508
[45] Hu J M, Li Z, Lin Y H, Nan C W 2010 Phys. Status Solidi RRL 4 106
[46] Bi G Q, Poo M M 1998 J. Neurosci. 18 10464
[47] Mead C 1990 Proc. IEEE 78 1629
[48] Indiveri G, Chicca E, Douglas R A 2006 IEEE Trans. Neural Netw. 17 211
[49] Yang J J, Strukov D B, Stewart D 2013 Nat. Nanotechnol. 8 13
[50] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297
[51] Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906
[52] Kuzum D, Yu S, Wong H S P 2013 Nanotechnology 24 382001
[53] Shen J X, Shang D S, Chai Y S, Wang S G, Shen B G, Sun Y 2018 Adv. Mater. 30 1706717
-
[1] Scott J F 2000 Ferroelectric Memories (Berlin: Springer-Verlag) pp23-51
[2] Chappert C, Fert A, van Dau F N 2007 Nat. Mater. 6 813
[3] Wuttig M, Yamada N 2007 Nat. Mater. 6 824
[4] Waser R, Dittmann R, Staikov G, Szot K 2007 Nat. Mater. 6 833
[5] Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519
[6] Scott J F 2007 Nat. Mater. 6 256
[7] Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthlmy A, Fert A 2007 Nat. Mater. 6 296
[8] Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, Barthlmy A 2010 Science 327 1106
[9] Pantel D, Goetze S, Hesse D, Alexe M 2012 Nat. Mater. 11 289
[10] Bibes M, Barthlmy A 2008 Nat. Mater. 7 425
[11] Song C, Cui B, Li F, Zhou X J, Pan F 2017 Prog. Mater. Sci. 87 33
[12] Thiele C, Dorr K, Bilani O, Rdel J, Schultz L 2007 Phys. Rev. B 75 054408
[13] Ma J, Lin Y, Nan C W 2010 J. Phys. D:Appl. Phys. 43 012001
[14] Chen Y, Gao J, Fitchorov T, Cai Z, Ziemer K S, Vittoria C, Harris V G 2009 Appl. Phys. Lett. 94 082504
[15] Xuan H C, Wang L Y, Zheng Y X, Li Y L, Cao Q Q, Chen S Y, Wang D H, Huang Z G, Du Y W 2011 Appl. Phys. Lett. 99 032509
[16] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[17] Chua L O, Kang S M 1976 Proc. IEEE 64 209
[18] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[19] Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717
[20] Vongehr S 2012 Adv. Sci. Lett. 17 285
[21] Mathur N D 2008 Nature 455 E13
[22] Shang D S, Chai Y S, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B 24 068402
[23] Lou J, Pellegrini G N, Liu M, Mathur N D, Sun N X 2012 Appl. Phys. Lett. 100 102907
[24] Fiebig M 2005 J. Phys. D 38 R123
[25] Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759
[26] Nan C W, Bichurin M I, Peterburgskaya B S, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101
[27] Shen J X, Cong J Z, Chai Y S, Shang D S, Shen S P, Zhai K, Tian Y, Sun Y 2016 Phys. Rev. Appl. 6 021001
[28] Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804
[29] Lee D, Yang M S, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B, Noh T W 2012 Adv. Mater. 24 402
[30] Shen J X, Cong J Z, Shang D S, Chai Y S, Shen S P, Zhai K, Sun Y 2016 Sci. Rep. 6 34473
[31] Lu P P, Shang D S, Shen J X, Chai Y S, Yang C S, Zhai K, Cong J Z, Shen S P, Sun Y 2016 Appl. Phys. Lett. 109 252902
[32] Zhai K, Shang D S, Chai Y S, Li G, Cai J W, Shen B G, Sun Y 2018 Adv. Func. Mater. 28 1705771
[33] Wang J, Meng H, Wang J P 2005 J. Appl. Phys. 97 10D509
[34] Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062
[35] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S 2010 Nature 464 873
[36] Wang Z, Zhao W, Kang W, Zhang Y, Klein J O, Ravelosona D, Zhang Y, Chappert C 2014 IEEE Trans. Magn. 50 9100604
[37] Li Y, Zhong Y P, Deng Y F, Zhou Y X, Xu L, Miao X S 2013 J. Appl. Phys. 114 234503
[38] Linn E, Rosezin R, Tappertzhofen S, Bttger U, Waser R 2012 Nanotechnology 23 305205
[39] Siemon A, Breuer T, Aslam N, Ferch S, Kim W, van den Hurk J, Rana V, Hoffmann-Eifert S, Waser R, Menzel S, Linn E 2015 Adv. Funct. Mater. 25 6414
[40] Shen J X, Shang D S, Chai Y S, Wang Y, Cong J Z, Shen S P, Yan L Q, Wang W H, Sun Y 2016 Phys. Rev. Appl. 6 064028
[41] Zhou Y, Yang S C, Apo D J, Maurya D, Priya S 2012 Appl. Phys. Lett. 101 232905
[42] Cassinerio M, Ciocchini N, Ielmini D 2013 Adv. Mater. 25 5975
[43] Binek C, Doudin B 2005 J. Phys. Condens. Matter. 17 L39
[44] Chen X, Hochstrat A, Borisov P, Kleemann W 2006 Appl. Phys. Lett. 89 202508
[45] Hu J M, Li Z, Lin Y H, Nan C W 2010 Phys. Status Solidi RRL 4 106
[46] Bi G Q, Poo M M 1998 J. Neurosci. 18 10464
[47] Mead C 1990 Proc. IEEE 78 1629
[48] Indiveri G, Chicca E, Douglas R A 2006 IEEE Trans. Neural Netw. 17 211
[49] Yang J J, Strukov D B, Stewart D 2013 Nat. Nanotechnol. 8 13
[50] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297
[51] Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906
[52] Kuzum D, Yu S, Wong H S P 2013 Nanotechnology 24 382001
[53] Shen J X, Shang D S, Chai Y S, Wang S G, Shen B G, Sun Y 2018 Adv. Mater. 30 1706717
Catalog
Metrics
- Abstract views: 9478
- PDF Downloads: 449
- Cited By: 0