Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exploration of the deep-ultraviolet nonlinear optical materials in the derivatives of KBe2BO3F2

Gai Min-Qiang Wang Ying Pan Shi-Lie

Citation:

Exploration of the deep-ultraviolet nonlinear optical materials in the derivatives of KBe2BO3F2

Gai Min-Qiang, Wang Ying, Pan Shi-Lie
PDF
HTML
Get Citation
  • The use of nonlinear optical crystal materials to extend the limited range of laser sources to the deep-ultraviolet (deep-UV, λ < 200 nm) regions by various frequency conversion techniques, has become an attractive field for generating deep-UV light. However, the lack of nonlinear optics (NLO) crystal materials capable of frequency conversion in the deep-UV light range, limits the development and application of deep-UV all-solid-state lasers. Therefore, scientists all over the world are actively exploring the new generation of deep-UV NLO crystal materials. At present, only the KBe2BO3F2 (KBBF) crystal is capable of generating deep-UV light through the direct sixth harmonic generation of the Nd:YAG laser. The infinite [Be2BO3F2] single layers, as the brilliant building blocks in the crystal structures of KBBF family, provide a relatively large second harmonic generation coefficient (d11 = 0.47 pm/V) and a sufficient birefringence (Δn = 0.07@1064 nm). However, the KBBF crystals have insurmountable intrinsic defects, such as the usage of high toxic beryllium oxide, and the serious layer growth habit, which greatly restrict its commercialization process. Since the layered structure of the KBBF crystal is still one of the most brilliant structures for generating deep-UV laser, an effective strategy is to change the interlayer connection mode and develop new NLO materials based on KBBF with less layering growth habit. In this paper, by reviewing the development history of borate deep-UV NLO crystals and the derivatives of KBBF, the relationship between layered structure and optical properties of different interlaminar connections of crystal materials is systematically analyzed. We discuss the main contradictions and solutions of the development of deep-UV NLO crystal materials which are similar to the KBBF structure. In order to provide a reference for the innovative exploration of new materials in the future, several design strategies are also proposed.
      Corresponding author: Pan Shi-Lie, slpan@ms.xjb.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51602341, 51425206, 91622107).
    [1]

    Maiman T H 1960 Nature 187 493Google Scholar

    [2]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar

    [3]

    Zernike F, Berman P R 1966 Phys. Rev. Lett. 16 117Google Scholar

    [4]

    Rao K S, Yoon K H 2003 J. Mater. Sci. 38 391Google Scholar

    [5]

    Cyranoski D 2009 Nature 457 953Google Scholar

    [6]

    Yao W J, He R, Wang X Y, Lin Z S, Chen C T 2014 Adv. Opt. Mater. 2 411Google Scholar

    [7]

    陈创天, 刘丽娟, 王晓洋 2014 物理 43 520Google Scholar

    Chen C T, Liu L J, Wang X Y 2014 Physics 43 520Google Scholar

    [8]

    Tressaud A, Poeppelmeier K R 2016 Photonic and Electronic Properties of Fluoride Materials: Progress in Fluorine Science Series (Amsterdam: Elsevier)

    [9]

    Tran T T, Yu H W, Rondinelli J M, Poeppelmeier K R, Halasyamani P S 2016 Chem. Mater. 28 5238Google Scholar

    [10]

    Halasyamani P S, Zhang W G 2017 Inorg. Chem. 56 12077Google Scholar

    [11]

    Wu C, Yang G, Humphrey M G, Zhang C 2018 Coord. Chem. Rev. 375 459Google Scholar

    [12]

    Shen Y G, Zhao S G, Luo J H 2018 Coord. Chem. Rev. 366 1Google Scholar

    [13]

    Yang Y, Jiang X X, Lin Z S, Wu Y C 2017 Crystals (Basel) 7 951

    [14]

    Eimerl D, Davis L, Velsko S, Graham E, Zalkin A 1987 J. Appl. Phys. 62 1968Google Scholar

    [15]

    Chen C T, Wu Y C, Jiang A D, Wu B C, You G M, Li R K, Lin S J 1989 J. Opt. Soc. Am. B 6 616Google Scholar

    [16]

    卢嘉锡, 吴新涛, 陈长章, 程文旦, 梁敬魁 1997 科学通报 42 561Google Scholar

    Lu J X, Wu X T, Chen C Z, Chen W D, Liang J K 1997 Chin. Sci. Bull. 42 561Google Scholar

    [17]

    Krogh-Moe J 1960 Acta Crystallogr. 13 889Google Scholar

    [18]

    Mori Y, Kuroda I, Nakajima S, Sasaki T, Nakai S 1995 Appl. Phys. Lett. 67 1818Google Scholar

    [19]

    陈创天, 姚文娇 2011 光学学报 31 82

    Chen C T, Yao W J 2011 Acta Opt. Sin. 31 82

    [20]

    Mei L F, Wang Y B, Chen C T, Wu B 1993 J. Appl. Phys. 74 7014Google Scholar

    [21]

    Chen C T, Luo S Y, Wang X Y, Wang G L, Wen X H, Wu H X, Zhang X, Xu Z Y 2009 J. Opt. Soc. Am. B 26 1519Google Scholar

    [22]

    Huang H W, Chen C T, Wang X Y, Zhu Y, Wang G L, Zhang X, Wang L R, Yao J Y 2011 J. Opt. Soc. Am. B: Opt. Phys. 28 2186Google Scholar

    [23]

    Jones-Bey H 1998 Laser Focus World 34 127

    [24]

    陈创天, 许祖彦 2002 人工晶体学报 31 224Google Scholar

    Chen C T, Xu Z Y 2002 J. Synth. Cryst. 31 224Google Scholar

    [25]

    刘丽娟, 陈创天 2010 中国材料进展 29 16

    Liu L J, Chen C T 2010 Mater. Chin. 29 16

    [26]

    Tran T T, Young J, Rondinelli J M, Halasyamani P S 2017 J. Am. Chem. Soc. 139 1285Google Scholar

    [27]

    Tran T T, He J G, Rondinelli J M, Halasyamani P S 2015 J. Am. Chem. Soc. 137 10504Google Scholar

    [28]

    Zhao S G, Gong P F, Luo S Y, Bai L, Lin Z S, Tang Y Y, Zhou Y L, Hong M C, Luo J H 2015 Angew. Chem. Int. Ed. 127 4291Google Scholar

    [29]

    Zhao S G, Gong P F, Luo S Y, Lei B, Lin Z S, Ji C M, Chen T L, Hong M C, Luo J H 2014 J. Am. Chem. Soc. 136 8560Google Scholar

    [30]

    Li L, Wang Y, Lei B H, Han S J, Yang Z H, Poeppelmeier K R, Pan S L 2016 J. Am. Chem. Soc. 138 9101Google Scholar

    [31]

    Shen Y G, Yang Y, Zhao S G, Zhao B Q, Lin Z S, Ji C M, Li L N, Fu P, Hong M C, Luo J H 2016 Chem. Mater. 28 7110Google Scholar

    [32]

    Zhou Z Y, Qiu Y, Liang F, Palatinus L, Poupon M, Yang T, Cong R H, Lin Z S, Sun J L 2018 Chem. Mater. 30 2203Google Scholar

    [33]

    Song J L, Hu C L, Xu X, Kong F, Mao J G 2015 Angew. Chem. Int. Ed. 46 3679

    [34]

    Wu H P, Pan S L, Poeppelmeier K R, Li H Y, Jia D Z, Chen Z H, Fan X Y, Yang Y, Rondinelli J M, Luo H S 2011 J. Am. Chem. Soc. 133 7786Google Scholar

    [35]

    Wang Z J, Qiao H M, Su R B, Hu B, Yang X, He C, Long X 2018 Adv. Funct. Mater. 28 1804089Google Scholar

    [36]

    Sun Y Z, Li Z, Lee M H, Yang Z H, Pan S L, Sadeh B 2017 J. Phys. Soc. Jpn. 86 044401Google Scholar

    [37]

    Zhang B B, Han G P, Wang Y, Chen X L, Yang Z H, Pan S L 2018 Chem. Mater. 30 5397Google Scholar

    [38]

    Xiong L, Chen J, Lu J, Pan C Y, Wu L M 2018 Chem. Mater. 30 7823Google Scholar

    [39]

    Chen C T, Wang Y B, Wu B C, Wu K, Zeng W, Yu L 1995 Nature 373 322Google Scholar

    [40]

    Qi H, Chen C T 2001 Inorg. Chem. Commun. 4 565Google Scholar

    [41]

    Huang H W, Yao J Y, Lin Z S, Wang X Y, He R, Yao W J, Zhai N X, Chen C T 2011 Chem. Mater. 23 5457Google Scholar

    [42]

    Huang H W, Yao J Y, Lin Z S, Wang X Y, He R, Yao W J, Zhai N X, Chen C T 2011 Angew. Chem. Int. Ed. 123 9307Google Scholar

    [43]

    Guo S, Liu L J, Xia M J, Kang L, Huang Q, Li C, Wang X Y, Lin Z S, Chen C T 2016 Inorg. Chem. 47 6586

    [44]

    Wang S C, Ye N, Li W, Zhao D 2010 J. Am. Chem. Soc. 132 8779Google Scholar

    [45]

    Wang S C, Ye N 2011 J. Am. Chem. Soc. 133 11458Google Scholar

    [46]

    Huang H, Liu L, Jin S, Yao W, Zhang Y, Chen C 2013 J. Am. Chem. Soc. 135 18319Google Scholar

    [47]

    Guo S, Liang F, Liu L J, Xia M J, Fang Z, Wu R F, Wang X Y, Lin Z S, Chen C T 2017 New J. Chem. 41 4269Google Scholar

    [48]

    Peng G, Ye N, Lin Z S, Kang L, Pan S L, Zhang M, Lin C, Long X, Luo M, Chen Y 2018 Angew. Chem. Int. Ed. 57 8968Google Scholar

    [49]

    Guo S, Jiang X X, Xia M J, Liu L, Fang Z, Huang Q, Wu R, Wang X, Lin Z S, Chen C T 2017 Inorg. Chem. 56 11451Google Scholar

    [50]

    Hu Z G, Higashiyama T, Yoshimura M, Yap Y K, Mori Y, Sasaki T 1998 Jpn. J. Appl. Phys. 3 7

    [51]

    Tran T T, Koocher N Z, Rondinelli J M, Halasyamani P S 2017 Angew. Chem. Int. Ed. 56 2969Google Scholar

    [52]

    Ye N, Zeng W R, Wu B C, Chen C T 1998 Proc. SPIE-Int. Soc. Opt. Eng. p21

    [53]

    Hu Z G, Yoshimura M, Muramatsu K, Mori Y, Sasaki T 2002 Jpn. J. Appl. Phys. 41 1131Google Scholar

    [54]

    Zhao S G, Gong P F, Luo S Y, Liu S J, Li L N, Asghar M A, Khan T, Hong M, Lin Z S, Luo J H 2015 J. Am. Chem. Soc. 46 2207

    [55]

    Zhao B Q, Bai L, Li B X, Zhao S G, Shen Y G, Li X F, Ding Q R, Ji C M, Lin Z S, Luo J H 2017 Cryst. Growth Des. 18 1168

    [56]

    Yu H W, Young J, Wu H P, Zhang W, Rondinelli J M, Halasyamani S 2017 Adv. Opt. Mater. 5 1700840Google Scholar

    [57]

    Wu H P, Yu H W, Pan S L, Halasyamani P S 2017 Inorg. Chem. 56 8755Google Scholar

    [58]

    Zou G, Lin C, Jo H, Nam G, You T S, Ok K M 2016 Angew. Chem. Int. Ed. 55 12078Google Scholar

    [59]

    Luo M, Song Y X, Liang F, Ye N, Lin Z S 2018 Inorg. Chem. Front. 5 916Google Scholar

    [60]

    Yu H W, Koocher N, Rondinelli J, Halasyamani P S 2018 Angew. Chem. Int. Ed. 57 6100Google Scholar

    [61]

    Zhao S G, Zhang J, Zhang S Q, Sun Z H, Lin Z S, Wu Y C, Hong M C, Luo J H 2014 Inorg. Chem. 53 2521Google Scholar

    [62]

    Yu H W, Wu H P, Pan S L, Yang Z H, Hou X L, Su X, Jing Q, Poeppelmeier K R, Rondinelli J M 2014 J. Am. Chem. Soc. 136 1264Google Scholar

    [63]

    Yang G S, Gong P F, Lin Z S, Ye N 2016 Chem. Mater. 28 9122Google Scholar

    [64]

    Xia M J, Li R K 2016 J. Solid State Chem. 233 58Google Scholar

    [65]

    Chen Y N, Zhang M, Pan S L 2018 New J. Chem. 42 12365Google Scholar

    [66]

    Duan M H, Xia M J, Li R K 2018 Eur. J. Inorg. Chem. 2018 3686Google Scholar

    [67]

    Zhao S G, Gong P F, Bai L, Xu X, Zhang S Q, Sun Z H, Lin Z S, Hong M C, Chen C T, Luo J H 2014 Nat. Commun. 5 4019Google Scholar

    [68]

    Zhang B B, Shi G Q, Yang Z H, Zhang F F, Pan S L 2017 Angew. Chem. Int. Ed. 56 3916Google Scholar

    [69]

    Shi G Q, Wang Y, Zhang F F, Zhang B B, Yang Z H, Hou X L, Pan S L, Poeppelmeier K R 2017 J. Am. Chem. Soc. 139 10645Google Scholar

    [70]

    Wang Y, Zhang B B, Yang Z H, Pan S L 2018 Angew. Chem. Int. Ed. 57 2150Google Scholar

    [71]

    Wang X F, Wang Y, Zhang B B, Zhang F F, Yang Z H, Pan S L 2017 Angew. Chem. Int. Ed. 56 14119Google Scholar

    [72]

    Zhang Z Z, Wang Y, Zhang B B, Yang Z H, Pan S L 2018 Angew. Chem. Int. Ed. 57 6577Google Scholar

    [73]

    Qi H, Chen C T 2001 Chem. Lett. 30 352Google Scholar

    [74]

    沈耀国 2017 民营科技 6 56Google Scholar

    Shen Y G 2017 Pri.Tech. 6 56Google Scholar

    [75]

    陈创天 1976 物理学报 25 146Google Scholar

    Chen C T 1976 Acta Phys. Sin. 25 146Google Scholar

    [76]

    陈创天 1977 物理学报 26 486Google Scholar

    Chen C T 1977 Acta Phys. Sin. 26 486Google Scholar

    [77]

    陈创天 1977 物理学报 26 124Google Scholar

    Chen C T 1977 Acta Phys. Sin. 26 124Google Scholar

    [78]

    陈创天 1978 物理学报 27 41Google Scholar

    Chen C T 1978 Acta Phys. Sin. 27 41Google Scholar

    [79]

    Kang L, Luo S Y, Peng G, Ye N, Wu Y C, Chen C T, Lin Z S 2015 Inorg. Chem. 54 10533Google Scholar

    [80]

    Bian Q, Yang Z H, Wang Y C, Mutailipu M, Ma Y, Pan S 2018 Inorg. Chem. 57 5716Google Scholar

    [81]

    Huang Q, Liu L J, Wang X Y, Li R K, Chen C T 2016 Inorg. Chem. Commun. 55 12496Google Scholar

    [82]

    Atuchin V V, Bazarov B G, Gavrilova T A, Grossman V G, Molokeev M S, Bazarova Z G 2012 J. Alloys Compd. 515 119Google Scholar

    [83]

    Huang Q, Liu L J, Xia M J, Yang Y, Guo S, Wang X Y, Lin Z S, Chen C T 2017 Crystals 7 104Google Scholar

    [84]

    Hu Z G, Yoshimura M, Muramatsu K, Mori Y, Sasaki T 2002 Jpn. J. Appl. Phys., Part 2 41

    [85]

    Hu Z G, Yue Y C, Chen X A, Yao J Y, Wang J N, Lin Z S 2011 Solid State Sci. 13 875Google Scholar

    [86]

    Li R K, Chen P 2010 Inorg. Chem. 49 1561Google Scholar

    [87]

    Mutailipu M, Zhang M, Wu H P, Yang Z H, Shen Y H, Sun J L, Pan S L 2018 Nat. Commun. 9 3089Google Scholar

    [88]

    He M, Chen X L, Okudera H, Simon A 2005 Chem. Mater. 17 2193Google Scholar

    [89]

    Shen Y G, Zhao S G, Yang Y, Cao L L, Wang Z J, Zhao B Q, Sun Z H, Lin Z S, Luo J H 2017 Cryst. Growth Des. 17 4422Google Scholar

    [90]

    Fang Z, Jiang X X, Duan M H, Hou Z Y, Tang C C, Xia M J, Liu L J, Lin Z S, Fan F D, Bai L, Chen C T 2018 Chem. - Eur. J. 24 7856Google Scholar

    [91]

    盖敏强, 王颖, 潘世烈 2018 科学通报 63 998

    Gai M Q, Wang Y, Pan S L 2018 Chin. Sci. Bull. 63 998

    [92]

    Han G P, Wang Y, Zhang B B, Pan S L 2018 Chem.- Eur. J. 24 17638Google Scholar

    [93]

    Wang Y, Pan S L 2016 Coord. Chem. Rev. 323 15Google Scholar

    [94]

    Cakmak G, Nuss J, Jansen M 2009 Z. Anorg. Allg. Chem. 635 631Google Scholar

    [95]

    Pilz T, Jansen M 2011 Z. Anorg. Allg. Chem. 637 2148Google Scholar

    [96]

    Pilz T, Nuss H, Jansen M 2012 J. Solid State Chem. 186 104Google Scholar

    [97]

    Zhang Z Z, Wang Y, Zhang B B, Yang Z H, Pan S L 2018 Inorg. Chem. 57 4820Google Scholar

    [98]

    Mutailipu M, Zhang M, Zhang B B, Wang L Y, Yang Z H, Zhou X, Pan S L 2018 Angew. Chem. Int. Ed. 57 6095Google Scholar

    [99]

    Luo M, Liang F, Song Y X, Zhao D, Xu F, Ye N, Lin Z S 2018 J. Am. Chem. Soc. 140 3884Google Scholar

    [100]

    Mutailipu M, Zhang M, Zhang B B, Yang Z H, Pan S L 2018 Chem. Commun. 54 6308Google Scholar

    [101]

    Tang C C, Jiang X X, Yin W L, Liu L J, Xia M J, Huang Q, Song G M, Wang X Y, Lin Z S, Chen C T 2019 Dalton Trans. 48 21Google Scholar

    [102]

    史国强 2017 硕士学位论文 (北京: 中国科学院大学)

    Shi G Q 2017 M.S. Thesis(Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [103]

    Luo M, Liang F, Song Y X, Zhao D, Ye N, Lin Z S 2018 J. Am. Chem. Soc. 140 6814Google Scholar

    [104]

    Kang L, Lin Z S, Liu F, Huang B 2018 Inorg. Chem. 57 11146Google Scholar

    [105]

    Kang L, Liang F, Gong P F, Lin Z S, Liu F, Huang B 2018 Phys. Status Solidi RRL 12 1800276Google Scholar

  • 图 1  KBBF族晶体结构模型

    Figure 1.  Crystal structure model of KBBF family.

    图 2  从KBBF 到Pb2BO3I的倍频效应演进

    Figure 2.  Second harmonic generation evolution from KBBF to Pb2BO3I.

    图 3  NH4Be2BO3F2 (ABBF)晶体结构模型[79,80]

    Figure 3.  Ball-and-stick representations of NH4Be2BO3F2(ABBF)[79,80].

    图 4  AZn2BO3X2 (A = K, Rb, NH4)系列晶体结构模型[6381] (a) NH4Zn2BO3Cl2; (b) KZn2BO3Cl2; (c) RbZn2BO3Cl2

    Figure 4.  Ball-and-stick representations of AZn2BO3X2 (A = K, Rb, NH4) series[6381]: (a) NH4Zn2BO3Cl2; (b) KZn2BO3Cl2; (c) RbZn2BO3Cl2.

    图 5  KABO系列晶体结构模型[5052] (a) K2Al2B2O7; (b) $\beta$-Rb2Al2B2O7

    Figure 5.  Ball-and-stick representations of KABO series[5052]: (a) K2Al2B2O7; (b) $\beta$-Rb2Al2B2O7.

    图 6  Ba3Mg3(BO3)3F3晶体结构模型[87] (a) Sr2Be2B2O7; (b) Ba3Mg3(BO3)3F3

    Figure 6.  Ball-and-stick representations of Ba3Mg3(BO3)3F3[87]: (a) Sr2Be2B2O7; (b) Ba3Mg3(BO3)3F3.

    图 7  Sr2Be2B2O7和BaAl2B2O7晶体结构模型

    Figure 7.  Ball-and-stick representations of Sr2Be2B2O7 and BaAl2B2O7.

    图 8  K3Sr3Li2Al4B6O20F和K3Ba3Li2Al4B6O20F (KBLABF)的晶体结构模型

    Figure 8.  Ball-and-stick representations of K3Sr3Li2Al4B6O20F and K3Ba3Li2Al4B6O20F (KBLABF).

    图 9  氟化硼酸盐的活性基团平衡“倍频效应-透过范围-双折射率”的关系[68]

    Figure 9.  Relationship of active group balance of fluorooxoborates among bandgap, NLO coefficient and birefringence[68].

    图 10  MB4O6F族氟化硼酸盐的晶体结构[92]

    Figure 10.  Crystal structures of the MB4O6F family[92].

    图 11  层间由B—O共价键连接的系列硼酸盐晶体结构

    Figure 11.  Crystal structures of the series borates contain B—O covalent bond.

    表 1  层间含有离子键和氢键连接的类KBBF结构硼酸盐深紫外NLO材料的结构和光学性能比较

    Table 1.  Cmparison of structural and optical properties of some deep-UV NLO materials of KBBF family with adjacent layers connected by ionic bond and hydrogen bond.

    化合物空间群结构层间连接紫外截止边/nmdeff (KDP)或dij/pm·V—1
    NaBe2BO3F2[20]C2[Be2BO3F2]Na+—F155deff = 1.7 × deff (NH4H2PO4)
    KBe2BO3F2[20]R32[Be2BO3F2]K+—F147d11 = 0.47 ± 0.01
    RbBe2BO3F2[21]R32[Be2BO3F2]Rb+—F160d11 = 0.45 ± 0.01
    CsBe2BO3F2[22]R32[Be2 BO3F2]Cs+—F151d11 = 0.5
    NH4Be2BO3F2[48]R32[Be2BO3F2]N—H·F1531.2
    $\gamma $-Be2BO3F[48]R32[Be2BO3F2]Be2+—F144.82.3
    RbZn2BO3Cl2[63,81]R32[Zn2BO3Cl2]Rb+—Cl1982.9
    KZn2BO3Cl2[63,81]R32[Zn2BO3Cl2]K+—Cl1933.0
    NH4Zn2BO3Cl2[63]R32[Zn2BO3Cl2]N—H·Cl1862.8
    Be2(BO3)F[43]C2[Be2BO3F2]Be2+—F150 a0.25
    BaBe2BO3F3[43]P63[Be2BO3F2]Ba2+—F< 1850.1
    K2Al2B2O7[50,52]P321[Al3B3O6]Al3+—O2−180 0.45
    K2(1-x)Na2xAl2BO7[88](0 < x < 0.6)P321[Al3B3O6]Al3+—O2−180 0.45
    K2(1−x)Rb2xAl2B2O7[82] (0 < x < 0.75)P321[Al3B3O6]Al3+—O2−0.7
    K0.67Rb1.33Al2B2O7[83]P321[Al3B3O6]Al3+—O2−1880.9
    $\beta$-Rb2Al2B2O7[51]P321[Al3B3O6]Al3+—O2−< 2002.0
    BaAlBO3F2[84]$ P{\overline 6}2c$[AlBO3F2]Ba2+—F1652.0
    Rb3Al3B3O10F[54]P31c[Al3(BO3)OF]Al3+—FAl3+—O2−< 2001.2
    BaZnBO3F[64]$ P{\overline 6}$[ZnBO3F]Zn2+—O2−3 × deff
    Ba3Mg3(BO3)3F3[87]Pna21[Mg3O2F3(BO3)2]Ba2+—F184d33 = 0.51
    注: 上标a为计算值.
    DownLoad: CSV

    表 2  SBBO型硼酸盐深紫外NLO材料的结构和光学性能比较

    Table 2.  Comparison of structural and optical properties of some deep-UV NLO materials of SBBO family.

    化合物空间群结构层间连接紫外截止边/nm倍频效应(KDP)或dij//pm·V−1
    Sr2Be2B2O7[39]$ P{\overline 6}c2$[Be2(BO3)2O]Sr2+—O2−1552.5
    Ba2Be2B2O7[40,73]$ P{\overline 6}2c$[Be2(BO3)2O]Ba2+—O2−2152.0
    BaAl2B2O7[52]R32[Al6B6O12]Al3+—O2−d11 = 0.75
    NaCaBe2B2O6F[41]Cc[Be3B3O6F3]Ca2+—O2−1900.3
    K3Ba3Li2Al4B6O20F[55]$ P{\overline 6}2c$[Li2Al4B6O20F]Ba2+—O2−1901.5
    Rb3Ba3Li2Al4B6O20F[89]$ P{\overline 6}2c$[Li2Al4B6O20F]Ba2+—O2−1951.4
    K3Sr3Li2Al4B6O20F[57]R32[Li2Al4B6O20F]Sr2+—O2−1901.7 (0.9)
    Cs2Al2(B3O6)2O[90]P63[Al2(B3O6)2O]Al3+—O2−185d31 = 0.032
    DownLoad: CSV

    表 3  部分氟化硼酸盐深紫外NLO材料的结构和光学性能比较

    Table 3.  Comparison of structural and optical properties of some fluorooxoborates deep-UV NLO materials.

    化合物空间群结构层间连接方式紫外截止边/nm倍频效应(KDP)
    NH4B4O6F[69]Pna21[B4O6F]N—H·F1563.0
    CsB4O6F[71]Pna21[B4O6F]Cs+—F1551.9
    RbB4O6F[70]Pna21[B4O6F]Rb+—F< 1900.8
    CsKB8O12F2[70]P321[B4O6F]Cs/K+—F< 1901.9
    CsRbB8O12F2[70]$ P{\overline 6}2c$[B4O6F]Cs/K+—F< 1901.1
    NaB4O6F[72]C2[B4O6F]Na+—F< 1800.9
    SrB5O7F3[98]Cmc21[B5O7F3]Sr2+—F< 1801.6
    Sr2B10O14F6[99]< 2002.5
    CaB5O7F3[97]Cmc21[B5O7F3]Ca2+—F< 1802.0
    Ca2B10O14F6[99]< 2002.3
    DownLoad: CSV

    表 4  层间含有B—O共价键连接的类KBBF结构硼酸盐深紫外NLO材料的结构和光学性能比较

    Table 4.  Comparison of structural and optical properties of some deep-UV NLO materials of KBBF family with adjacent layers connected by rigid B—O groups.

    化合物空间群结构层间连接方式紫外截止边/nm倍频效应(KDP)
    $ \beta $-KBe2B3O7[44]Pmn21[Be2BO5][BO2]< 2000.75
    $\gamma $-KBe2B3O7[44]P21[Be2BO5][B3O6]< 2000.68
    RbBe2B3O7[44]Pmn21[Be2BO5][BO2]< 2000.79
    Na2CsBe6B5O15[45]C2[Be2BO5][BO3]< 2001.17
    Na2Be4B4O11[46]P1[Be2BO5][B2O5]1711.30
    LiNa5Be12B12O23[46]Pc[Be2BO5][B2O5]1691.40
    Li4Sr(BO3)2[67]Cc[SrBO3][B2O3]1862.00
    DownLoad: CSV
  • [1]

    Maiman T H 1960 Nature 187 493Google Scholar

    [2]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar

    [3]

    Zernike F, Berman P R 1966 Phys. Rev. Lett. 16 117Google Scholar

    [4]

    Rao K S, Yoon K H 2003 J. Mater. Sci. 38 391Google Scholar

    [5]

    Cyranoski D 2009 Nature 457 953Google Scholar

    [6]

    Yao W J, He R, Wang X Y, Lin Z S, Chen C T 2014 Adv. Opt. Mater. 2 411Google Scholar

    [7]

    陈创天, 刘丽娟, 王晓洋 2014 物理 43 520Google Scholar

    Chen C T, Liu L J, Wang X Y 2014 Physics 43 520Google Scholar

    [8]

    Tressaud A, Poeppelmeier K R 2016 Photonic and Electronic Properties of Fluoride Materials: Progress in Fluorine Science Series (Amsterdam: Elsevier)

    [9]

    Tran T T, Yu H W, Rondinelli J M, Poeppelmeier K R, Halasyamani P S 2016 Chem. Mater. 28 5238Google Scholar

    [10]

    Halasyamani P S, Zhang W G 2017 Inorg. Chem. 56 12077Google Scholar

    [11]

    Wu C, Yang G, Humphrey M G, Zhang C 2018 Coord. Chem. Rev. 375 459Google Scholar

    [12]

    Shen Y G, Zhao S G, Luo J H 2018 Coord. Chem. Rev. 366 1Google Scholar

    [13]

    Yang Y, Jiang X X, Lin Z S, Wu Y C 2017 Crystals (Basel) 7 951

    [14]

    Eimerl D, Davis L, Velsko S, Graham E, Zalkin A 1987 J. Appl. Phys. 62 1968Google Scholar

    [15]

    Chen C T, Wu Y C, Jiang A D, Wu B C, You G M, Li R K, Lin S J 1989 J. Opt. Soc. Am. B 6 616Google Scholar

    [16]

    卢嘉锡, 吴新涛, 陈长章, 程文旦, 梁敬魁 1997 科学通报 42 561Google Scholar

    Lu J X, Wu X T, Chen C Z, Chen W D, Liang J K 1997 Chin. Sci. Bull. 42 561Google Scholar

    [17]

    Krogh-Moe J 1960 Acta Crystallogr. 13 889Google Scholar

    [18]

    Mori Y, Kuroda I, Nakajima S, Sasaki T, Nakai S 1995 Appl. Phys. Lett. 67 1818Google Scholar

    [19]

    陈创天, 姚文娇 2011 光学学报 31 82

    Chen C T, Yao W J 2011 Acta Opt. Sin. 31 82

    [20]

    Mei L F, Wang Y B, Chen C T, Wu B 1993 J. Appl. Phys. 74 7014Google Scholar

    [21]

    Chen C T, Luo S Y, Wang X Y, Wang G L, Wen X H, Wu H X, Zhang X, Xu Z Y 2009 J. Opt. Soc. Am. B 26 1519Google Scholar

    [22]

    Huang H W, Chen C T, Wang X Y, Zhu Y, Wang G L, Zhang X, Wang L R, Yao J Y 2011 J. Opt. Soc. Am. B: Opt. Phys. 28 2186Google Scholar

    [23]

    Jones-Bey H 1998 Laser Focus World 34 127

    [24]

    陈创天, 许祖彦 2002 人工晶体学报 31 224Google Scholar

    Chen C T, Xu Z Y 2002 J. Synth. Cryst. 31 224Google Scholar

    [25]

    刘丽娟, 陈创天 2010 中国材料进展 29 16

    Liu L J, Chen C T 2010 Mater. Chin. 29 16

    [26]

    Tran T T, Young J, Rondinelli J M, Halasyamani P S 2017 J. Am. Chem. Soc. 139 1285Google Scholar

    [27]

    Tran T T, He J G, Rondinelli J M, Halasyamani P S 2015 J. Am. Chem. Soc. 137 10504Google Scholar

    [28]

    Zhao S G, Gong P F, Luo S Y, Bai L, Lin Z S, Tang Y Y, Zhou Y L, Hong M C, Luo J H 2015 Angew. Chem. Int. Ed. 127 4291Google Scholar

    [29]

    Zhao S G, Gong P F, Luo S Y, Lei B, Lin Z S, Ji C M, Chen T L, Hong M C, Luo J H 2014 J. Am. Chem. Soc. 136 8560Google Scholar

    [30]

    Li L, Wang Y, Lei B H, Han S J, Yang Z H, Poeppelmeier K R, Pan S L 2016 J. Am. Chem. Soc. 138 9101Google Scholar

    [31]

    Shen Y G, Yang Y, Zhao S G, Zhao B Q, Lin Z S, Ji C M, Li L N, Fu P, Hong M C, Luo J H 2016 Chem. Mater. 28 7110Google Scholar

    [32]

    Zhou Z Y, Qiu Y, Liang F, Palatinus L, Poupon M, Yang T, Cong R H, Lin Z S, Sun J L 2018 Chem. Mater. 30 2203Google Scholar

    [33]

    Song J L, Hu C L, Xu X, Kong F, Mao J G 2015 Angew. Chem. Int. Ed. 46 3679

    [34]

    Wu H P, Pan S L, Poeppelmeier K R, Li H Y, Jia D Z, Chen Z H, Fan X Y, Yang Y, Rondinelli J M, Luo H S 2011 J. Am. Chem. Soc. 133 7786Google Scholar

    [35]

    Wang Z J, Qiao H M, Su R B, Hu B, Yang X, He C, Long X 2018 Adv. Funct. Mater. 28 1804089Google Scholar

    [36]

    Sun Y Z, Li Z, Lee M H, Yang Z H, Pan S L, Sadeh B 2017 J. Phys. Soc. Jpn. 86 044401Google Scholar

    [37]

    Zhang B B, Han G P, Wang Y, Chen X L, Yang Z H, Pan S L 2018 Chem. Mater. 30 5397Google Scholar

    [38]

    Xiong L, Chen J, Lu J, Pan C Y, Wu L M 2018 Chem. Mater. 30 7823Google Scholar

    [39]

    Chen C T, Wang Y B, Wu B C, Wu K, Zeng W, Yu L 1995 Nature 373 322Google Scholar

    [40]

    Qi H, Chen C T 2001 Inorg. Chem. Commun. 4 565Google Scholar

    [41]

    Huang H W, Yao J Y, Lin Z S, Wang X Y, He R, Yao W J, Zhai N X, Chen C T 2011 Chem. Mater. 23 5457Google Scholar

    [42]

    Huang H W, Yao J Y, Lin Z S, Wang X Y, He R, Yao W J, Zhai N X, Chen C T 2011 Angew. Chem. Int. Ed. 123 9307Google Scholar

    [43]

    Guo S, Liu L J, Xia M J, Kang L, Huang Q, Li C, Wang X Y, Lin Z S, Chen C T 2016 Inorg. Chem. 47 6586

    [44]

    Wang S C, Ye N, Li W, Zhao D 2010 J. Am. Chem. Soc. 132 8779Google Scholar

    [45]

    Wang S C, Ye N 2011 J. Am. Chem. Soc. 133 11458Google Scholar

    [46]

    Huang H, Liu L, Jin S, Yao W, Zhang Y, Chen C 2013 J. Am. Chem. Soc. 135 18319Google Scholar

    [47]

    Guo S, Liang F, Liu L J, Xia M J, Fang Z, Wu R F, Wang X Y, Lin Z S, Chen C T 2017 New J. Chem. 41 4269Google Scholar

    [48]

    Peng G, Ye N, Lin Z S, Kang L, Pan S L, Zhang M, Lin C, Long X, Luo M, Chen Y 2018 Angew. Chem. Int. Ed. 57 8968Google Scholar

    [49]

    Guo S, Jiang X X, Xia M J, Liu L, Fang Z, Huang Q, Wu R, Wang X, Lin Z S, Chen C T 2017 Inorg. Chem. 56 11451Google Scholar

    [50]

    Hu Z G, Higashiyama T, Yoshimura M, Yap Y K, Mori Y, Sasaki T 1998 Jpn. J. Appl. Phys. 3 7

    [51]

    Tran T T, Koocher N Z, Rondinelli J M, Halasyamani P S 2017 Angew. Chem. Int. Ed. 56 2969Google Scholar

    [52]

    Ye N, Zeng W R, Wu B C, Chen C T 1998 Proc. SPIE-Int. Soc. Opt. Eng. p21

    [53]

    Hu Z G, Yoshimura M, Muramatsu K, Mori Y, Sasaki T 2002 Jpn. J. Appl. Phys. 41 1131Google Scholar

    [54]

    Zhao S G, Gong P F, Luo S Y, Liu S J, Li L N, Asghar M A, Khan T, Hong M, Lin Z S, Luo J H 2015 J. Am. Chem. Soc. 46 2207

    [55]

    Zhao B Q, Bai L, Li B X, Zhao S G, Shen Y G, Li X F, Ding Q R, Ji C M, Lin Z S, Luo J H 2017 Cryst. Growth Des. 18 1168

    [56]

    Yu H W, Young J, Wu H P, Zhang W, Rondinelli J M, Halasyamani S 2017 Adv. Opt. Mater. 5 1700840Google Scholar

    [57]

    Wu H P, Yu H W, Pan S L, Halasyamani P S 2017 Inorg. Chem. 56 8755Google Scholar

    [58]

    Zou G, Lin C, Jo H, Nam G, You T S, Ok K M 2016 Angew. Chem. Int. Ed. 55 12078Google Scholar

    [59]

    Luo M, Song Y X, Liang F, Ye N, Lin Z S 2018 Inorg. Chem. Front. 5 916Google Scholar

    [60]

    Yu H W, Koocher N, Rondinelli J, Halasyamani P S 2018 Angew. Chem. Int. Ed. 57 6100Google Scholar

    [61]

    Zhao S G, Zhang J, Zhang S Q, Sun Z H, Lin Z S, Wu Y C, Hong M C, Luo J H 2014 Inorg. Chem. 53 2521Google Scholar

    [62]

    Yu H W, Wu H P, Pan S L, Yang Z H, Hou X L, Su X, Jing Q, Poeppelmeier K R, Rondinelli J M 2014 J. Am. Chem. Soc. 136 1264Google Scholar

    [63]

    Yang G S, Gong P F, Lin Z S, Ye N 2016 Chem. Mater. 28 9122Google Scholar

    [64]

    Xia M J, Li R K 2016 J. Solid State Chem. 233 58Google Scholar

    [65]

    Chen Y N, Zhang M, Pan S L 2018 New J. Chem. 42 12365Google Scholar

    [66]

    Duan M H, Xia M J, Li R K 2018 Eur. J. Inorg. Chem. 2018 3686Google Scholar

    [67]

    Zhao S G, Gong P F, Bai L, Xu X, Zhang S Q, Sun Z H, Lin Z S, Hong M C, Chen C T, Luo J H 2014 Nat. Commun. 5 4019Google Scholar

    [68]

    Zhang B B, Shi G Q, Yang Z H, Zhang F F, Pan S L 2017 Angew. Chem. Int. Ed. 56 3916Google Scholar

    [69]

    Shi G Q, Wang Y, Zhang F F, Zhang B B, Yang Z H, Hou X L, Pan S L, Poeppelmeier K R 2017 J. Am. Chem. Soc. 139 10645Google Scholar

    [70]

    Wang Y, Zhang B B, Yang Z H, Pan S L 2018 Angew. Chem. Int. Ed. 57 2150Google Scholar

    [71]

    Wang X F, Wang Y, Zhang B B, Zhang F F, Yang Z H, Pan S L 2017 Angew. Chem. Int. Ed. 56 14119Google Scholar

    [72]

    Zhang Z Z, Wang Y, Zhang B B, Yang Z H, Pan S L 2018 Angew. Chem. Int. Ed. 57 6577Google Scholar

    [73]

    Qi H, Chen C T 2001 Chem. Lett. 30 352Google Scholar

    [74]

    沈耀国 2017 民营科技 6 56Google Scholar

    Shen Y G 2017 Pri.Tech. 6 56Google Scholar

    [75]

    陈创天 1976 物理学报 25 146Google Scholar

    Chen C T 1976 Acta Phys. Sin. 25 146Google Scholar

    [76]

    陈创天 1977 物理学报 26 486Google Scholar

    Chen C T 1977 Acta Phys. Sin. 26 486Google Scholar

    [77]

    陈创天 1977 物理学报 26 124Google Scholar

    Chen C T 1977 Acta Phys. Sin. 26 124Google Scholar

    [78]

    陈创天 1978 物理学报 27 41Google Scholar

    Chen C T 1978 Acta Phys. Sin. 27 41Google Scholar

    [79]

    Kang L, Luo S Y, Peng G, Ye N, Wu Y C, Chen C T, Lin Z S 2015 Inorg. Chem. 54 10533Google Scholar

    [80]

    Bian Q, Yang Z H, Wang Y C, Mutailipu M, Ma Y, Pan S 2018 Inorg. Chem. 57 5716Google Scholar

    [81]

    Huang Q, Liu L J, Wang X Y, Li R K, Chen C T 2016 Inorg. Chem. Commun. 55 12496Google Scholar

    [82]

    Atuchin V V, Bazarov B G, Gavrilova T A, Grossman V G, Molokeev M S, Bazarova Z G 2012 J. Alloys Compd. 515 119Google Scholar

    [83]

    Huang Q, Liu L J, Xia M J, Yang Y, Guo S, Wang X Y, Lin Z S, Chen C T 2017 Crystals 7 104Google Scholar

    [84]

    Hu Z G, Yoshimura M, Muramatsu K, Mori Y, Sasaki T 2002 Jpn. J. Appl. Phys., Part 2 41

    [85]

    Hu Z G, Yue Y C, Chen X A, Yao J Y, Wang J N, Lin Z S 2011 Solid State Sci. 13 875Google Scholar

    [86]

    Li R K, Chen P 2010 Inorg. Chem. 49 1561Google Scholar

    [87]

    Mutailipu M, Zhang M, Wu H P, Yang Z H, Shen Y H, Sun J L, Pan S L 2018 Nat. Commun. 9 3089Google Scholar

    [88]

    He M, Chen X L, Okudera H, Simon A 2005 Chem. Mater. 17 2193Google Scholar

    [89]

    Shen Y G, Zhao S G, Yang Y, Cao L L, Wang Z J, Zhao B Q, Sun Z H, Lin Z S, Luo J H 2017 Cryst. Growth Des. 17 4422Google Scholar

    [90]

    Fang Z, Jiang X X, Duan M H, Hou Z Y, Tang C C, Xia M J, Liu L J, Lin Z S, Fan F D, Bai L, Chen C T 2018 Chem. - Eur. J. 24 7856Google Scholar

    [91]

    盖敏强, 王颖, 潘世烈 2018 科学通报 63 998

    Gai M Q, Wang Y, Pan S L 2018 Chin. Sci. Bull. 63 998

    [92]

    Han G P, Wang Y, Zhang B B, Pan S L 2018 Chem.- Eur. J. 24 17638Google Scholar

    [93]

    Wang Y, Pan S L 2016 Coord. Chem. Rev. 323 15Google Scholar

    [94]

    Cakmak G, Nuss J, Jansen M 2009 Z. Anorg. Allg. Chem. 635 631Google Scholar

    [95]

    Pilz T, Jansen M 2011 Z. Anorg. Allg. Chem. 637 2148Google Scholar

    [96]

    Pilz T, Nuss H, Jansen M 2012 J. Solid State Chem. 186 104Google Scholar

    [97]

    Zhang Z Z, Wang Y, Zhang B B, Yang Z H, Pan S L 2018 Inorg. Chem. 57 4820Google Scholar

    [98]

    Mutailipu M, Zhang M, Zhang B B, Wang L Y, Yang Z H, Zhou X, Pan S L 2018 Angew. Chem. Int. Ed. 57 6095Google Scholar

    [99]

    Luo M, Liang F, Song Y X, Zhao D, Xu F, Ye N, Lin Z S 2018 J. Am. Chem. Soc. 140 3884Google Scholar

    [100]

    Mutailipu M, Zhang M, Zhang B B, Yang Z H, Pan S L 2018 Chem. Commun. 54 6308Google Scholar

    [101]

    Tang C C, Jiang X X, Yin W L, Liu L J, Xia M J, Huang Q, Song G M, Wang X Y, Lin Z S, Chen C T 2019 Dalton Trans. 48 21Google Scholar

    [102]

    史国强 2017 硕士学位论文 (北京: 中国科学院大学)

    Shi G Q 2017 M.S. Thesis(Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [103]

    Luo M, Liang F, Song Y X, Zhao D, Ye N, Lin Z S 2018 J. Am. Chem. Soc. 140 6814Google Scholar

    [104]

    Kang L, Lin Z S, Liu F, Huang B 2018 Inorg. Chem. 57 11146Google Scholar

    [105]

    Kang L, Liang F, Gong P F, Lin Z S, Liu F, Huang B 2018 Phys. Status Solidi RRL 12 1800276Google Scholar

  • [1] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [2] Shi Liang-Zhu, Zhang Meng, Chu Yu-Xi, Liu Bo-Wen, Hu Ming-Lie. 206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser. Acta Physica Sinica, 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [3] Wu Fang, Bu Yang, Liu Zhi-Fan, Wang Shao-Qing, Li Si-Kun, Wang Xiang-Zhao. Design and analysis of bilayer metallic grating polarizer in deep ultraviolet band. Acta Physica Sinica, 2021, 70(4): 044203. doi: 10.7498/aps.70.20201403
    [4] Chen Hua-Jun. Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system. Acta Physica Sinica, 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [5] Guo Dao-You, Li Pei-Gang, Chen Zheng-Wei, Wu Zhen-Ping, Tang Wei-Hua. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector. Acta Physica Sinica, 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [6] Jia Ning,  Wang Shan-Peng,  Tao Xu-Tang. Research progress of mid-and far-infrared nonlinear optical crystals. Acta Physica Sinica, 2018, 67(24): 244203. doi: 10.7498/aps.67.20181591
    [7] Meng Xiang-Hao, Liu Hua-Gang, Huang Jian-Hong, Dai Shu-Tao, Deng Jing, Ruan Kai-Ming, Chen Jin-Ming, Lin Wen-Xiong. Tunable deep ultraviolet femtosecond sum frequency laser based on Ba1-xB2-y-zO4SixAlyGaz crystal. Acta Physica Sinica, 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [8] Ma Jing, Liu Ying. Group velocity matching in femtosecond optical parametric amplification of the KBe2BO3F2. Acta Physica Sinica, 2009, 58(7): 4697-4701. doi: 10.7498/aps.58.4697
    [9] Xue Chun-Rong, Yi Kui, Qi Hong-Ji, Shao Jian-Da, Fan Zheng-Xiu. Optical constants of fluoride films in the DUV range. Acta Physica Sinica, 2009, 58(7): 5035-5040. doi: 10.7498/aps.58.5035
    [10] Wang Zheng-Ping, Teng Bing, Du Chen-Lin, Xu Xin-Guang, Fu Kun, Xu Gui-Bao, Wang Ji-Yang, Shao Zong-Shu. Frequency doubling property of the low symmetric nonlinear optical crystal BIBO. Acta Physica Sinica, 2003, 52(9): 2176-2184. doi: 10.7498/aps.52.2176
    [11] Wang Zheng-Peng, Shao Yao-Peng, Xu Xin-Gang, Wang Ji-Yang, Liu Yao-Gang, Wei Jing-Qian, Shao Zang-Shu. . Acta Physica Sinica, 2002, 51(9): 2029-2033. doi: 10.7498/aps.51.2029
    [12] LIN ZHE-SHUAI, WANG ZHI-ZHONG, CHEN CHUANG-TIAN, LEE MING-HSIEN. CALCULATIONS FOR THE LINEAR AND NONLINEAR OPTICAL COEFFICIENTS OF NaNO2 CRYSTAL. Acta Physica Sinica, 2001, 50(6): 1145-1149. doi: 10.7498/aps.50.1145
    [13] YU BAO-LONG, BU HONG-JIAN, WU XIAO-CHUN, ZHANG GUI-LAN, TANG GUO-QING, CHEN WEN-JU, ZHU CONG-SHAN, GAN FU-XI. NONLINEAR OPTICAL PROPERTIES OF In2O3 NANOPARTICLES. Acta Physica Sinica, 1999, 48(2): 320-325. doi: 10.7498/aps.48.320
    [14] WU KE-CHEN, CHEN CHUANG-TIAN. THEORETICAL CALCULATION OF SHG COEFFICIENTS OF Na2SbF5 CRYSTAL. Acta Physica Sinica, 1992, 41(9): 1436-1439. doi: 10.7498/aps.41.1436
    [15] YIN XIN, Lü MENG-KAI, CHENG DUAN-PING. THE REFRACTIVE INDICES AND NONLINEAR OPTICAL PROPERTY OF KIO3 CRYSTAL. Acta Physica Sinica, 1987, 36(11): 1492-1495. doi: 10.7498/aps.36.1492
    [16] XUE YING-HUA, MIN NAI-BEN, ZHU JIN-SONG, FENG DUAN. THE SECOND HARMONIC GENERATION IN LiNbO3 CRYSTALS WITH PERIODIC LAMINAR FERROELECTRIC DOMAINS. Acta Physica Sinica, 1983, 32(12): 1515-1525. doi: 10.7498/aps.32.1515
    [17] CHEN CHUANG-TIAN. AN IONIC GROUPING THEORY OF THE ELECTRO-OPTICAL AND NON-LINEAR OPTICAL EFFECTS OF CRYSTALS (IV)——THE CALCULATION OF LINEAR OPTICAL SUSCEPTIBILITIES IN CRYSTALS OF THE PEROVSKITE AND THE TUNGSTEN BRONZE STRUCTURE TYPES. Acta Physica Sinica, 1978, 27(1): 41-46. doi: 10.7498/aps.27.41
    [18] CHEN CHUANG-TIAN. AN IONIC GROUPING THEORY OF THE ELECTRO-OPTICAL AND NON-LINEAR OPTICAL EFFECTS OF CRYSTALS (Ⅲ)——A THEORETICAL CALCULATION OF THE ELECTRO-OPTICAL AND OPTICAL SECOND HARMONIC COEFFICIENTS FOR LiNbO3, LiTaO3,KNbO3, AND BNN CRYSTALS BASED ON A DEFO. Acta Physica Sinica, 1977, 26(6): 486-499. doi: 10.7498/aps.26.486
    [19] CHEN CHUANG-TIAN. AN IONIC GROUPING THEORY OF THE ELECTRO-OPTICAI AND NON-LINEAR OPTICAL EFFECTS OF CRYSTALS (Ⅱ)——A THEORETICAL CALCULATION OF THE SECOND HARMONIC OPTICAL COEFFICIENTS OF THE LITHIUM IODATE CRYSTAL BASED ON A HIGHLY DEFORMED OXYGEN-OCTAHEDRA MODEL I. Acta Physica Sinica, 1977, 26(2): 124-132. doi: 10.7498/aps.26.124
    [20] CHEN CHUANG-TIAN. AN IONIC GROUPING THEORY OF THE ELECTRO-OPTICAL AND NON-LINEAR OPTICAL EFFECTS OF CRYSTALS (Ⅰ)——A THEORETICAL CALCULATION OF ELECTRO-OPTICAL AND SECOND OPTICAL HARMONIC COEFFICIENTS OF BARIUM TITANATE CRYSTALS BASED ON A DEFORMED OXYGEN-OCTAHEDRA. Acta Physica Sinica, 1976, 25(2): 146-161. doi: 10.7498/aps.25.146
Metrics
  • Abstract views:  11995
  • PDF Downloads:  178
  • Cited By: 0
Publishing process
  • Received Date:  06 December 2018
  • Accepted Date:  25 December 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回