Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Determination of the symmetry of the highest occupied molecular orbitals of SF6

Wu Rui-Qi Guo Ying-Chun Wang Bing-Bing

Citation:

Determination of the symmetry of the highest occupied molecular orbitals of SF6

Wu Rui-Qi, Guo Ying-Chun, Wang Bing-Bing
PDF
HTML
Get Citation
  • Quantum chemical calculation is an important method to investigate the molecular structures for multi-atom molecules. The determination of electronic configurations and the accurate description of the symmetry of molecular orbitals are critical for understanding molecular structures. For the molecules belonging to high symmetry group, in the quantum chemical calculation the sub-group is always adopted. Thus the symmetries of some electric states or some molecular orbitals, which belong to different types of representations of high symmetry group, may coincide in the sub-group presentations. Therefore, they cannot be distinguished directly from the sub-group results. In this paper, we provide a method to identify the symmetry of molecular orbitals from the theoretical sub-group results and use this method to determine the symmetry of the highest occupied molecular orbitals (HOMO) of the sulfur hexafluoride SF6 molecule as an example. Especially, as a good insulating material, an important greenhouse gas and a hyper-valent molecule with the high octahedral $ O_h $ symmetry, SF6 has received wide attention for both the fundamental scientific interest and practical industrial applications. Theoretical work shows that the electronic configuration of ground electronic state $ ^1{\rm A_{1g}} $ of SF6 is ${({\rm {core}})^{22}}{(4{\rm a_{1\rm g}})^2}{(3{{\rm t}_{1\rm u}})^6}{(2{{\rm e}_{\rm g}})^4}{(5{{\rm a}_{1\rm g}})^2}{(4{{\rm t}_{1\rm u}})^6}{(1{{\rm t}_{2\rm g}})^6}{(3{{\rm e}_{\rm g}})^4}{(1{{\rm t}_{2\rm u}})^6}{(5{{\rm t}_{1\rm u}})^6}{(1{{\rm t}_{1\rm g}})^6} $ and the symmetry of the HOMOs is $ T_{1g} $. However, in some literature, the symmetry of HOMOs of SF6 has been written as $ T_{2g} $ instead of $ T_{1g} $. The reason for this mistake lies in the fact that in the ab initial quantum chemical calculation used is the Abelian group $ D_{2h} $, which is the sub-group of $ O_h $, to describe the symmetries of molecular orbitals of SF6. However, there does not exist the one-to-one matching relationship between the representations of $ D_{2h} $ group and those of $ O_h $ group. For example, both irreducible representations $ T_{1g} $ and $ T_{2g} $ of $ O_h $ group are reduced to the sum of $ B_{1g} $, $ B_{2g} $ and $ B_{3g} $ of $ D_{2h} $. So the symmetry of the orbitals needs to be investigated further to identify whether it is $ T_{1g} $ or $ T_{2g} $. In this work, we calculate the orbital functions in the equilibrium structure of ground state of SF6 by using HF/6-311G* method, which is implemented by using the Molpro software. The expressions of the HOMO functions which are triplet degenerate in energy are obtained. Then by exerting the symmetric operations of $ O_h $ group on three HOMO functions, we obtain their matrix representations and thus their characters. Finally, the symmetry of the HOMOs is verified to be $ T_{1g} $. By using this process, we may determine the molecular orbital symmetry of any other molecules with high symmetry group.
      Corresponding author: Guo Ying-Chun, ycguo@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275128, 11774411, 11474348).
    [1]

    Tang B, Zhang L F, Han F Y, Luo Z C, Liang Q Q, Liu C Y, Zhu L P, Zhang J M 2018 AIP Adv. 8 015016Google Scholar

    [2]

    Zhang X, Gockenbach E, Liu Z L, Chen H B, Yang L H 2013 Electr. Power Syst. Res. 103 105Google Scholar

    [3]

    Okubo H, Beroual A 2011 IEEE Electr. Insul. M. 27 34

    [4]

    Yoshino K, Hayashi S, Kohno Y, Kaneto K, Okube J, Moriya T 1984 Jpn. J. Appl. Phys. 23 L198Google Scholar

    [5]

    Tachikawa H, Yamano T 2001 Chem. Phys. 264 81Google Scholar

    [6]

    Ravishankara A R, Solomon S, Turnipseed A A, Warren R F 1993 Science 259 194Google Scholar

    [7]

    Niessen W V, Kraemer W P, Diercksen G H F 1979 Chem. Phys. Lett. 63 65Google Scholar

    [8]

    Christophorou L G, Olthoff J K 2000 J. Phys. Chem. Ref. Data 29 267Google Scholar

    [9]

    Decleva P, Fronzoni G, Kivimaki A, AlvarezRuiz J, Svensson S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 055102Google Scholar

    [10]

    Jose J, Lucchese R R, Rescigno T N 2014 J. Chem. Phys. 140 481

    [11]

    Hay P J 1977 J. Am. Chem. Soc. 8 1003

    [12]

    Weigold E, Zheng Y 1991 Chem. Phys. 150 405Google Scholar

    [13]

    Li Y, Agrena H, Carravettab V, Vahtrasa O, Karlssonc L, Wannbergc B, Hollandd D M P, MacDonald M A 1998 J. Electron. Spectrosc. 94 163Google Scholar

    [14]

    Zhao M F, Shan X, Yang J, Wang E L, Niu S S , Chen X J 2015 Chin. J. Chem. Phys. 28 539Google Scholar

    [15]

    Watanabe N, Yamazaki M, Takahashi M 2016 J. Electron. Spectrosc. 209 78Google Scholar

    [16]

    Hay P J 1982 J. Chem. Phys. 76 502Google Scholar

    [17]

    Tachikawa H 2002 J. Phys. B: At. Mol. Opt. Phys. 35 55Google Scholar

    [18]

    徐亦庄 1988 分子光谱理论 (北京: 清华大学出版社) 第75页

    Xu Y Z 1988 Theory of Molecular Spectroscopy (Beijing: Tsinghua University Press) p75 (in Chinese)

    [19]

    Werner H J, Knowles P J, Lindh R, Manby F R, Schutz M, Celani P, Korona T, Rauhut G, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Lloyd A W, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, et al. Molpro, A Package of ab initio Programs (Version 2006.1) http://www.molpro.net [2018-12-12 ]

    [20]

    Delhommelle J, Boutio A, Tavitian B, Mackie A D, Fuchs A H 1999 Mol. Phys. 96 719Google Scholar

    [21]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1979 J. Chem. Phys. 72 650

  • 图 1  $\varPsi_{B_{1g}}$, $\varPsi_{B_{2g}}$$\varPsi_{B_{3g}}$波函数截面图 (a) $\varPsi_{B_{1g}}$x = 0.8 a.u.处的yz截面图; (b) $\varPsi_{B_{1g}}$y = 0.8 a.u.处的xz截面图; (c) $\varPsi_{B_{1g}}$z = 0 a.u.处的xy截面图;(d) $\varPsi_{B_{2g}}$y = 0 a.u.处的xz截面图; (e) $\varPsi_{B_{3g}}$x = 0 a.u.处的yz截面图; (f) $C_2'^1$作用在$\varPsi_{B_{1g}}$后取y = 0 a.u.处的xz截面图

    Figure 1.  Functions of $\varPsi_{B_{1g}}$, $\varPsi_{B_{2g}}$ and $\varPsi_{B_{3g}}$: (a) $\varPsi_{B_{1g}}$ in the yz plane for x = 0.8 a.u.; (b) $\varPsi_{B_{1g}}$ in the xz plane for y = 0.8 a.u.; (c) $\varPsi_{B_{1g}}$ in the xy plane for z = 0 a.u.; (d) $\varPsi_{B_{2g}}$ in the xz plane for y = 0 a.u.; (e) $\varPsi_{B_{3g}}$ in the yz plane for x = 0 a.u.; (f) the function obtained by acting $C_2'^1$ on $\varPsi_{B_{1g}}$ in the xz plane for y = 0 a.u..

    图 2  SF6对称操作$C_2'$, $C_3$, $C_4$$C_2$的对称轴

    Figure 2.  Symmetric axes of symmetric operators $C_2'$, $C_3$,$C_4$ and $C_2$ on SF6

    表 1  SF6的分子结构

    Table 1.  Molecular structure of SF6

    kxk/a.u.yk/a.u.zk/a.u.
    S1000
    F22.92300
    F3–2.92300
    F402.9230
    F50–2.9230
    F6002.923
    F700–2.923
    DownLoad: CSV

    表 2  6-311G*基组中高斯函数的参数表

    Table 2.  Parameters of Gaussian functions of 6-311G* basis

    i123456
    ci0.0354610.2374510.8204581.01.01.0
    αi/a.u.55.444112.63233.717561.165450.3218921.75
    DownLoad: CSV

    表 3  $O_h$群的部分特征标表

    Table 3.  Part of character table of $O_h$ group

    $O_h$E$8C_3$$6C_2'$$6C_4$$3C_2$P$6S_4$$8S_6$$3\sigma_h$$6\sigma_d$
    $T_{1g}$30–11–1310–1–1
    $T_{2g}$301–1–13–10–11
    DownLoad: CSV
  • [1]

    Tang B, Zhang L F, Han F Y, Luo Z C, Liang Q Q, Liu C Y, Zhu L P, Zhang J M 2018 AIP Adv. 8 015016Google Scholar

    [2]

    Zhang X, Gockenbach E, Liu Z L, Chen H B, Yang L H 2013 Electr. Power Syst. Res. 103 105Google Scholar

    [3]

    Okubo H, Beroual A 2011 IEEE Electr. Insul. M. 27 34

    [4]

    Yoshino K, Hayashi S, Kohno Y, Kaneto K, Okube J, Moriya T 1984 Jpn. J. Appl. Phys. 23 L198Google Scholar

    [5]

    Tachikawa H, Yamano T 2001 Chem. Phys. 264 81Google Scholar

    [6]

    Ravishankara A R, Solomon S, Turnipseed A A, Warren R F 1993 Science 259 194Google Scholar

    [7]

    Niessen W V, Kraemer W P, Diercksen G H F 1979 Chem. Phys. Lett. 63 65Google Scholar

    [8]

    Christophorou L G, Olthoff J K 2000 J. Phys. Chem. Ref. Data 29 267Google Scholar

    [9]

    Decleva P, Fronzoni G, Kivimaki A, AlvarezRuiz J, Svensson S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 055102Google Scholar

    [10]

    Jose J, Lucchese R R, Rescigno T N 2014 J. Chem. Phys. 140 481

    [11]

    Hay P J 1977 J. Am. Chem. Soc. 8 1003

    [12]

    Weigold E, Zheng Y 1991 Chem. Phys. 150 405Google Scholar

    [13]

    Li Y, Agrena H, Carravettab V, Vahtrasa O, Karlssonc L, Wannbergc B, Hollandd D M P, MacDonald M A 1998 J. Electron. Spectrosc. 94 163Google Scholar

    [14]

    Zhao M F, Shan X, Yang J, Wang E L, Niu S S , Chen X J 2015 Chin. J. Chem. Phys. 28 539Google Scholar

    [15]

    Watanabe N, Yamazaki M, Takahashi M 2016 J. Electron. Spectrosc. 209 78Google Scholar

    [16]

    Hay P J 1982 J. Chem. Phys. 76 502Google Scholar

    [17]

    Tachikawa H 2002 J. Phys. B: At. Mol. Opt. Phys. 35 55Google Scholar

    [18]

    徐亦庄 1988 分子光谱理论 (北京: 清华大学出版社) 第75页

    Xu Y Z 1988 Theory of Molecular Spectroscopy (Beijing: Tsinghua University Press) p75 (in Chinese)

    [19]

    Werner H J, Knowles P J, Lindh R, Manby F R, Schutz M, Celani P, Korona T, Rauhut G, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Lloyd A W, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, et al. Molpro, A Package of ab initio Programs (Version 2006.1) http://www.molpro.net [2018-12-12 ]

    [20]

    Delhommelle J, Boutio A, Tavitian B, Mackie A D, Fuchs A H 1999 Mol. Phys. 96 719Google Scholar

    [21]

    Krishnan R, Binkley J S, Seeger R, Pople J A 1979 J. Chem. Phys. 72 650

  • [1] Yuan Hong-Rui, Liu Tao, Zhu Tian-Xin, Liu Yun, Li Xiang, Chen Yang, Duan Chuan-Xi. High-resolution jet-cooled laser absorption spectra of SF6 at 10.6 μm. Acta Physica Sinica, 2023, 72(6): 063301. doi: 10.7498/aps.72.20222285
    [2] Yang Yan, Zhang Bin, Ren Zhong-Xue, Bai Guang-Ru, Liu Lu, Zhao Zeng-Xiu. Asymmetry in high-order harmonic generation of polar molecule CO. Acta Physica Sinica, 2022, 71(23): 234204. doi: 10.7498/aps.71.20221714
    [3] Zhang Yun-Gang, Liu Huang-Tao, Gao Qiang, Zhu Zhi-Feng, Li Bo, Wang Yong-Da. Time-resolved spectral characteristics of SF6 plasma under femtosecond laser-guided high-voltage discharge. Acta Physica Sinica, 2020, 69(18): 185201. doi: 10.7498/aps.69.20200636
    [4] Zhu Xiao-Song, Zhang Qing-Bin, Lan Peng-Fei, Lu Pei-Xiang. Molecular orbital imaging with high spatial and temperal resolutions. Acta Physica Sinica, 2016, 65(22): 224207. doi: 10.7498/aps.65.224207
    [5] SHA Sha, Chen Zhi-Hua, Zhang Qing-Bing. Numerical investigations on the interaction of shock waves with spherical SF6 bubbles. Acta Physica Sinica, 2015, 64(1): 015201. doi: 10.7498/aps.64.015201
    [6] Sha Sha, Chen Zhi-Hua, Xue Da-Wen, Zhang Hui. Richtmyer-Meshkov instability induced by the interaction between shock wave and SF6 isosceles trapezoid cylinders. Acta Physica Sinica, 2014, 63(8): 085205. doi: 10.7498/aps.63.085205
    [7] Yang Li-Hua, Yang Bo-Jun. Symmetry in the vibration spectrum of complicated molecule. Acta Physica Sinica, 2014, 63(6): 060201. doi: 10.7498/aps.63.060201
    [8] Zhang Xiao-Xing, Meng Fan-Sheng, Tang Ju, Yang Bing. DFT calculations on the adsorption of component SF6 decomposed under partial discharge onto carbon nanotubes modified by -OH. Acta Physica Sinica, 2012, 61(15): 156101. doi: 10.7498/aps.61.156101
    [9] Lou Zhi-Mei. Approximate Lie symmetries and approximate invariants of the orbit differential equation for perturbed Kepler system. Acta Physica Sinica, 2010, 59(10): 6764-6769. doi: 10.7498/aps.59.6764
    [10] Ruan Wen, Luo Wen-Lang, Zhang Li, Zhu Zheng-He, Fu Yi-Bei. Asymmetry of molecular reactive collision of the DTO molecules. Acta Physica Sinica, 2009, 58(3): 1537-1543. doi: 10.7498/aps.58.1537
    [11] Shi Shen-Yang, Fu Jing-Li, Chen Li-Qun. Lie symmetries of discrete Lagrange systems. Acta Physica Sinica, 2007, 56(6): 3060-3063. doi: 10.7498/aps.56.3060
    [12] Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of an Emden system. Acta Physica Sinica, 2006, 55(11): 5594-5597. doi: 10.7498/aps.55.5594
    [13] Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica, 2005, 54(9): 3983-3986. doi: 10.7498/aps.54.3983
    [14] Lou Zhi-Mei. Parametric orbit equation and symmetries of classical particle in the field of noncentral force. Acta Physica Sinica, 2005, 54(4): 1460-1463. doi: 10.7498/aps.54.1460
    [15] Luo Shao-Kai. Mei symmetry,Noether symmetry and Lie symmetry of Hamiltonian canonical equations in a singular system. Acta Physica Sinica, 2004, 53(1): 5-10. doi: 10.7498/aps.53.5
    [16] Luo Shao-Kai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica, 2003, 52(12): 2941-2944. doi: 10.7498/aps.52.2941
    [17] CHAI CHANG-CHUN, YANG YIN-TANG, LI YUE-JIN, JIA HU-JUN, JI HUI-LIAN. STUDY ON PLASMA ETCHING OF β-SiC THIN FILMS IN SF6 AND THE SF6+O2 MIXTURES. Acta Physica Sinica, 1999, 48(3): 550-555. doi: 10.7498/aps.48.550
    [18] LI HAI-YANG, BAO SHI-NING, XU BO, XU CHUN-YI, HE PI-MO, XU YA-BAI, LIU FENG-QIN, K.YIBULAXIN, QIAN HAI-JIE, DONG YU-HUI. THE ORBITAL SYMMETRY OF CARBON MONOXIDE ON Cs-PRECOVERED Ru(1010) SURFACE. Acta Physica Sinica, 1999, 48(4): 699-703. doi: 10.7498/aps.48.699
    [19] GU GUO-LIANG, TAO RUI-BAO. THE EXCHANGE SYMMETRY IN THE MOLECULAR VIBRATIONS. Acta Physica Sinica, 1986, 35(5): 590-597. doi: 10.7498/aps.35.590
    [20] . Acta Physica Sinica, 1966, 22(2): 253-256. doi: 10.7498/aps.22.253
Metrics
  • Abstract views:  8819
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  19 December 2018
  • Accepted Date:  20 February 2019
  • Published Online:  20 April 2019

/

返回文章
返回