Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer

Wu Jia-Long Dou Yong-Jiang Zhang Jian-Feng Wang Hao-Ran Yang Xu-Yong

Citation:

Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer

Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong
PDF
HTML
Get Citation
  • Formamidinium lead bromide (FAPbBr3) perovskite nanocrystals (NCs) have attracted great attention due to their remarkable performances of low cost, high color purity and tunable band gap. However, in a typical FAPbBr3 perovskite light-emitting diode(LED), PEDOT:PSS, with hygroscopic and acidic nature, serves as a hole injection layer (HIL), thus leading to the device stability to decrease seriously. Device stability is one critical issue that needs improving for future applications. Here in this study, the nickel oxide (NiO) film prepared by the solution method is adopted as the HIL of the FAPbBr3 perovskite LED to substitute detrimental PEDOT:PSS. Compared with the control device with PEDOT:PSS HIL, the resulting LED based on NiO film has the operating lifetime twice as great as that based on the PEDOT:PSS film. For further enhancing the performance of FAPbBr3 LED, two metal dopants (Cs and Li) are introduced to improve the hole injection capability of NiO film and the charge carriers’ balance of device. With Hall measurements, both NiO and Cs/Li-doped NiO demonstrate a full p-type semiconductor characteristic. Increasing the doping concentration in the film can increase the carrier concentration and reduce the carrier mobility. This decreased carrier mobility results from the increased scattering due to grain boundaries and impurity phases, seriously at high Cs/Li concentration. As a result, the device, based on the NiO film (doping 2 mol% Cs) shows the best performance with a maximum brightness value of 2970 cd/m2, current efficiency of 43 cd/A and external quantum efficiency (EQE) of 11.0%, thus its efficiency is increased nearly by twice compared with that of the PEDOT:PSS-based device. The results pave the way for making highly efficient and stability perovskite LEDs based on FAPbBr3 NCs.
      Corresponding author: Yang Xu-Yong, yangxy@shu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0401702), the National Natural Science Foundation of China (Grant Nos. 51675322, 61605109, 61735004), the Shanghai Rising-Star Program, China (Grant No. 17QA1401600), and the Program for Professors of Special Appointment (Eastern Scholar) of the Higher Education Institutions of Shanghai, China.
    [1]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [4]

    Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photonics 11 108Google Scholar

    [5]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [6]

    Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515Google Scholar

    [7]

    Fu Y, Zhu H, Schrader A W, Liang D, Ding Q, Joshi P, Hwang L, Zhu X Y, Jin S 2016 Nano Lett. 16 1000Google Scholar

    [8]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [9]

    Protesescu L, Yakunin S, Bodnarchuk M I, Bertolotti F, Masciocchi N, Guagliardi A, Kovalenko M V 2016 J. Am. Chem. Soc. 138 14202Google Scholar

    [10]

    Song J, Hu W, Wang X F, Chen G, Tian W, Miyasaka T J 2016 Mater. Chem. A 4 8435Google Scholar

    [11]

    Smecca E, Numata Y, Deretzis I, Pellegrino G, Boninelli S, Miyasaka T, LaMagna A, Alberti A 2016 Phys. Chem. Chem. Phys. 18 13413Google Scholar

    [12]

    Perumal A, Shendre S, Li M, Tay Y K E, Sharma V K, Chen S, Wei Z, Liu Q, Gao Y, Buenconsejo P J S, Tan S T, Gan C L, Xiong Q, Sum T C, Demir H V 2016 Sci. Rep. 6 36733Google Scholar

    [13]

    Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51Google Scholar

    [14]

    Cui J, Meng F P, Zhang H, Cao K, Yuan H, Cheng Y, Huang F, Wang M K 2014 ACS Appl. Mater. Interfaces 6 22862Google Scholar

    [15]

    Cao F, Wang H, Shen P, Li X, Zheng Y, Shang Y Q, Zhang J H, Ning Z, Yang X 2017 Adv. Funct. Mater. 27 1704278Google Scholar

    [16]

    Chih Y, Wang J, Yang R, Liu C, Chang Y, Fu Y, Lai W, Chen P, Wen T, Huang Y, Tsao C, Guo T 2016 Adv. Mater. 28 8687Google Scholar

    [17]

    Wang Z, Luo Z, Zhao C, Guo Q, Wang Y, Wang F, Bian X, Alsaedi A, Hayat T, Tan Z 2017 J. Phys. Chem. C 121 28132Google Scholar

    [18]

    Lee S, Kim D B, Hamilton L, Daboczi M, Nam Y S, Lee B R, Zhao B, Jang C H, Friend R, Kim J, Song M H 2018 Adv. Sci. 5 1801350Google Scholar

    [19]

    Wang H, Zhang X, Wu Q, Cao F, Yang D, Shang Y, Ning Z, Zhang W, Zheng W, Yan Y, Kershaw S V, Zhang L, Rogach A L, Yang X 2019 Nat. Commun. 10 665Google Scholar

    [20]

    Wang H, Li X, Yuan M, Yang X 2018 Small 14 1703410Google Scholar

    [21]

    Levchun L, OsvetA, Tang X F 2017 Nano Lett. 17 2765

    [22]

    Empedocles S A, Bawendi M G 1997 Science 278 2114Google Scholar

    [23]

    Mashford B S, Stevenson M, Popvic Z, Hamilton C, Zhou Z, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S, Kazlas P T 2013 Nat. Photonics 7 407Google Scholar

    [24]

    Park S Y, Kim H R, Kang Y J, Kim D H, Kang J W 2010 Sol. Energy Mater. Sol. Cells 94 2332Google Scholar

    [25]

    Yang Y X, Zheng Y, Cao W R, Titov A, Hyvonen J, Manders J R, Xue J G, Holloway P H, Qian L 2015 Nat. Photonics 9 259Google Scholar

    [26]

    Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X 2014 Nature 515 96Google Scholar

    [27]

    Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R B M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920Google Scholar

    [28]

    Fu F, Feurer T, Weiss T P, Pisoni S, Avancini E, Andres C, Buecheler S, Tiwari A N 2016 Nat. Energy 2 16190

    [29]

    Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C, Du G 2017 Nano Lett. 17 313Google Scholar

    [30]

    Shi Z, Li S, Li Y, Ji H, Li X, Wu D, Xu T, Chen Y, Tian Y, Zhang Y, Shan C, Du G 2018 ACS Nano 12 1462Google Scholar

    [31]

    Alidoust N, Carter E A 2015 Phys. Chem. Chem. Phys. 17 18098Google Scholar

    [32]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695Google Scholar

    [33]

    Zhang J, Cai G, Zhou D, Tang H, Wang X, Gu C, Tu J 2014 J. Mater. Chem. C 2 7013Google Scholar

    [34]

    Popescu I, Skoufa Z, Heracleous E, Lemonidou A, Marcu I C 2015 Phys. Chem. Chem. Phys. 17 8138Google Scholar

    [35]

    Muthukumaran P, Raju C V, Sumathi C, Ravi G, Solairaj D, Rameshthangam P, Wilson J, Rajendrane S, Alwarappan S 2016 New J. Chem. 40 2741Google Scholar

    [36]

    Chen S C, Kuo T Y, Lin Y C, Lin H C 2011 Thin Solid Films 519 4944Google Scholar

    [37]

    Hwang J D, Ho T H 2017 Mater. Sci. Semicond. Process. 71 396Google Scholar

    [38]

    Chen W, Wu Y, Fan J, Djurišic A B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D, He Z B 2018 Adv. Energy Mater. 8 1703519Google Scholar

  • 图 1  (a) 器件结构示意图; (b) 器件横断面SEM截面图; (c) 能级结构示意图; (d) FAPbBr3 NCs的XRD图谱(插图为其TEM图)

    Figure 1.  (a) Device structure; (b) cross-sectional SEM image of the device; (c) energy band diagram; (d) XRD diffraction pattern of the FAPbBr3 NCs (inset: TEM image of the FAPbBr3 NCs).

    图 2  (a) 器件的归一化电致发光和光致发光光谱; PEDOT:PSS和NiO空穴注入层器件的(b) 电流密度-电压曲线, (c) 亮度-电压曲线和(d)电流密度-外量子效率-电压特性

    Figure 2.  (a) Normalized electroluminescence and photoluminescence spectra of the device; (b) J-V characteristics, (c) L-V characteristics, and (d) CE-EQE-V characteristics of the PEDOT:PSS- and NiO-based device.

    图 3  PEDOT:PSS和NiO空穴注入层的器件寿命特性图

    Figure 3.  Operating lifetime characteristics of the PEDOT:PSS and NiO-based devices.

    图 4  掺杂不同浓度(2, 4, 6 mol%)Cs的NiO器件的(a) 电流密度-亮度-电压特性和(b)电流效率-外量子效率-电压特性; 掺杂不同浓度(2, 4, 6 mol%)Li的NiO器件的(c) 电流密度-亮度-电压特性和(d)电流效率-外量子效率-电压特性

    Figure 4.  (a) J-L-V characteristics of the devices with Cs: NiO; (b) CE-EQE-V characteristics of the devices with Cs: NiO; (c) J-L-V characteristics of the devices with Li: NiO; (d) CE-EQE-V characteristics of the devices with Li: NiO at different concentrations (2, 4 and 6 mol%).

    表 1  金属掺杂NiO的器件性能

    Table 1.  The performance of devices with metal-doped NiO.

    金属掺
    杂浓度
    Von/V a Lmax/
    cd·m–2 b
    CE/
    cd·A–1 c
    EQE/% d
    2 mol% Cs 3 2970 43.0 11.0
    4 mol% Cs 3 2610 27.8 7.1
    6 mol% Cs 3 2090 8.7 2.2
    2 mol% Li 3 2500 32.3 8.3
    4 mol% Li 3 3490 41.8 10.7
    6 mol% Li 3 2950 16.0 4.1
    a开启电压, 亮度为1 cd·m–2 时的电压; b最高的亮度; c最高的电流效率; d最高的外量子效率.
    DownLoad: CSV

    表 2  Cs掺杂NiO薄膜的电学性能

    Table 2.  Electrical properties of Cs-doped NiO films.

    金属掺杂浓度 ρ/Ω·cm a μ/cm2·V–1·s–1 b p/cm–3 c
    0 2.6 × 10–1 1.7 2.1 × 1018
    2 mol% Cs 1.8 × 10–1 1.5 5.3 × 1018
    4 mol% Cs 1.7 × 10–1 0.5 6.0 × 1018
    6 mol% Cs 1.4 × 10–1 0.2 7.4 × 1018
    2 mol% Li 2.2 × 10–1 1.3 4.6 × 1018
    4 mol% Li 1.8 × 10–1 1.1 5.7 × 1018
    6 mol% Li 1.5 × 10–1 0.3 6.9 × 1018
    a电阻率; b迁移率; c载流子浓度(空穴).
    DownLoad: CSV
  • [1]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [4]

    Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photonics 11 108Google Scholar

    [5]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [6]

    Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515Google Scholar

    [7]

    Fu Y, Zhu H, Schrader A W, Liang D, Ding Q, Joshi P, Hwang L, Zhu X Y, Jin S 2016 Nano Lett. 16 1000Google Scholar

    [8]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [9]

    Protesescu L, Yakunin S, Bodnarchuk M I, Bertolotti F, Masciocchi N, Guagliardi A, Kovalenko M V 2016 J. Am. Chem. Soc. 138 14202Google Scholar

    [10]

    Song J, Hu W, Wang X F, Chen G, Tian W, Miyasaka T J 2016 Mater. Chem. A 4 8435Google Scholar

    [11]

    Smecca E, Numata Y, Deretzis I, Pellegrino G, Boninelli S, Miyasaka T, LaMagna A, Alberti A 2016 Phys. Chem. Chem. Phys. 18 13413Google Scholar

    [12]

    Perumal A, Shendre S, Li M, Tay Y K E, Sharma V K, Chen S, Wei Z, Liu Q, Gao Y, Buenconsejo P J S, Tan S T, Gan C L, Xiong Q, Sum T C, Demir H V 2016 Sci. Rep. 6 36733Google Scholar

    [13]

    Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51Google Scholar

    [14]

    Cui J, Meng F P, Zhang H, Cao K, Yuan H, Cheng Y, Huang F, Wang M K 2014 ACS Appl. Mater. Interfaces 6 22862Google Scholar

    [15]

    Cao F, Wang H, Shen P, Li X, Zheng Y, Shang Y Q, Zhang J H, Ning Z, Yang X 2017 Adv. Funct. Mater. 27 1704278Google Scholar

    [16]

    Chih Y, Wang J, Yang R, Liu C, Chang Y, Fu Y, Lai W, Chen P, Wen T, Huang Y, Tsao C, Guo T 2016 Adv. Mater. 28 8687Google Scholar

    [17]

    Wang Z, Luo Z, Zhao C, Guo Q, Wang Y, Wang F, Bian X, Alsaedi A, Hayat T, Tan Z 2017 J. Phys. Chem. C 121 28132Google Scholar

    [18]

    Lee S, Kim D B, Hamilton L, Daboczi M, Nam Y S, Lee B R, Zhao B, Jang C H, Friend R, Kim J, Song M H 2018 Adv. Sci. 5 1801350Google Scholar

    [19]

    Wang H, Zhang X, Wu Q, Cao F, Yang D, Shang Y, Ning Z, Zhang W, Zheng W, Yan Y, Kershaw S V, Zhang L, Rogach A L, Yang X 2019 Nat. Commun. 10 665Google Scholar

    [20]

    Wang H, Li X, Yuan M, Yang X 2018 Small 14 1703410Google Scholar

    [21]

    Levchun L, OsvetA, Tang X F 2017 Nano Lett. 17 2765

    [22]

    Empedocles S A, Bawendi M G 1997 Science 278 2114Google Scholar

    [23]

    Mashford B S, Stevenson M, Popvic Z, Hamilton C, Zhou Z, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S, Kazlas P T 2013 Nat. Photonics 7 407Google Scholar

    [24]

    Park S Y, Kim H R, Kang Y J, Kim D H, Kang J W 2010 Sol. Energy Mater. Sol. Cells 94 2332Google Scholar

    [25]

    Yang Y X, Zheng Y, Cao W R, Titov A, Hyvonen J, Manders J R, Xue J G, Holloway P H, Qian L 2015 Nat. Photonics 9 259Google Scholar

    [26]

    Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X 2014 Nature 515 96Google Scholar

    [27]

    Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R B M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920Google Scholar

    [28]

    Fu F, Feurer T, Weiss T P, Pisoni S, Avancini E, Andres C, Buecheler S, Tiwari A N 2016 Nat. Energy 2 16190

    [29]

    Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C, Du G 2017 Nano Lett. 17 313Google Scholar

    [30]

    Shi Z, Li S, Li Y, Ji H, Li X, Wu D, Xu T, Chen Y, Tian Y, Zhang Y, Shan C, Du G 2018 ACS Nano 12 1462Google Scholar

    [31]

    Alidoust N, Carter E A 2015 Phys. Chem. Chem. Phys. 17 18098Google Scholar

    [32]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695Google Scholar

    [33]

    Zhang J, Cai G, Zhou D, Tang H, Wang X, Gu C, Tu J 2014 J. Mater. Chem. C 2 7013Google Scholar

    [34]

    Popescu I, Skoufa Z, Heracleous E, Lemonidou A, Marcu I C 2015 Phys. Chem. Chem. Phys. 17 8138Google Scholar

    [35]

    Muthukumaran P, Raju C V, Sumathi C, Ravi G, Solairaj D, Rameshthangam P, Wilson J, Rajendrane S, Alwarappan S 2016 New J. Chem. 40 2741Google Scholar

    [36]

    Chen S C, Kuo T Y, Lin Y C, Lin H C 2011 Thin Solid Films 519 4944Google Scholar

    [37]

    Hwang J D, Ho T H 2017 Mater. Sci. Semicond. Process. 71 396Google Scholar

    [38]

    Chen W, Wu Y, Fan J, Djurišic A B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D, He Z B 2018 Adv. Energy Mater. 8 1703519Google Scholar

  • [1] Yu Yuan, Xing Ruo-Fei, Du Hui-Tian, Zhou Qian, Fan Ji-Hui, Pang Zhi-Yong, Han Sheng-Hao. Performance of trans perovskite solar cells improved by finely adjusting the particle size of nickel oxide nanoparticles through pH value. Acta Physica Sinica, 2023, 72(1): 018101. doi: 10.7498/aps.72.20221640
    [2] Yu Yi, An Zhi-Dong, Cai Xiao-Yi, Guo Ming-Lei, Jing Cheng-Bin, Li Yan-Qing. Recent progress of tin-based perovskites and their applications in light-emitting diodes. Acta Physica Sinica, 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [3] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [4] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [5] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [6] Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing. Efficient and stable blue perovskite light emitting diodes based on defect passivation. Acta Physica Sinica, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [7] Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long. Research progress of enhancing perovskite light emitting diodes with light extraction. Acta Physica Sinica, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [8] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [9] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [10] Li Zhen-Chao, Chen Zi-Ming, Zou Guang-Rui-Xing, Yip Hin-Lap, Cao Yong. Applications of organic additives in metal halide perovskite light-emitting diodes. Acta Physica Sinica, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [11] Chen Zhan-Xu, Wan Wei, He Ying-Ji, Chen Geng-Yan, Chen Yong-Zhu. Light-extraction enhancement of GaN-based LEDs by closely-packed nanospheres monolayer. Acta Physica Sinica, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [12] Mao Qing-Hua, Liu Jun-Lin, Quan Zhi-Jue, Wu Xiao-Ming, Zhang Meng, Jiang Feng-Yi. Influences of p-type layer structure and doping profile on the temperature dependence of the foward voltage characteristic of GaInN light-emitting diode. Acta Physica Sinica, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [13] Chen Wei-Chao, Tang Hui-Li, Luo Ping, Ma Wei-Wei, Xu Xiao-Dong, Qian Xiao-Bo, Jiang Da-Peng, Wu Feng, Wang Jing-Ya, Xu Jun. Research progress of substrate materials used for GaN-Based light emitting diodes. Acta Physica Sinica, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [14] Chen Xin-Lian, Kong Fan-Min, Li Kang, Gao Hui, Yue Qing-Yang. Improvement of light extraction efficiency of GaN-based blue light-emitting diode by disorder photonic crystal. Acta Physica Sinica, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [15] Wang Guang-Xu, Tao Xi-Xia, Xiong Chuan-Bing, Liu Jun-Lin, Feng Fei-Fei, Zhang Meng, Jiang Feng-Yi. Effects of Ni-assisted annealing on p-type contact resistivity of GaN-based LED films grown on Si(111) substrates. Acta Physica Sinica, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [16] Xue Zheng-Qun, Huang Sheng-Rong, Zhang Bao-Ping, Chen Chao. Analyses of laser-induced p-type doping of GaN in the improvement of light-emitting diodes. Acta Physica Sinica, 2010, 59(2): 1268-1274. doi: 10.7498/aps.59.1268
    [17] Li Bing-Qian, Zheng Tong-Chang, Xia Zheng-Hao. Temperature characteristics of the forward voltage of GaN based blue light emitting diodes. Acta Physica Sinica, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [18] Shen Guang-Di, Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling. Research on effects of current spreading and optimized contact scheme for high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [19] Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling, Shen Guang-Di. Effects of optimized contact scheme on the performance of high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [20] Luo Yi, Guo Wen-Ping, Shao Jia-Ping, Hu Hui, Han Yan-Jun, Xue Song, Wang Lai, Sun Chang-Zheng, Hao Zhi-Biao. A study on wavelength stability of GaN-based blue light emitting diodes. Acta Physica Sinica, 2004, 53(8): 2720-2723. doi: 10.7498/aps.53.2720
Metrics
  • Abstract views:  9743
  • PDF Downloads:  243
  • Cited By: 0
Publishing process
  • Received Date:  21 August 2019
  • Accepted Date:  25 October 2019
  • Available Online:  12 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回