Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research advances in spintronic terahertz sources

Xu Yong Zhang Fan Zhang Xiao-Qiang Du Yin-Chang Zhao Hai-Hui Nie Tian-Xiao Wu Xiao-Jun Zhao Wei-Sheng

Citation:

Research advances in spintronic terahertz sources

Xu Yong, Zhang Fan, Zhang Xiao-Qiang, Du Yin-Chang, Zhao Hai-Hui, Nie Tian-Xiao, Wu Xiao-Jun, Zhao Wei-Sheng
PDF
HTML
Get Citation
  • The terahertz frequency band is located between infrared and microwave in the electromagnetic spectrum. The interesting properties such as broadband, low energy, high permeability, fingerprint, etc. make terahertz wave important for applications in the fields of aerospace, wireless communications, security, materials science, biomedicine, etc. The development and application of terahertz science and technology are largely limited by the terahertz sources, therefore it is crucial to develop new terahertz radiation sources. Recently, it was shown that terahertz spintronic not only provides the possibility of physically controlling the femtosecond spin current, but also expects to be the next-generation ultra-wideband, low-cost, high-efficiency terahertz sources. In this paper we systematically review the historical development, experimental devices, emission mechanisms, material selections, and future prospects of the spintronic terahertz sources. We present the research advances in the physical mechanisms of ultrafast spin current induced by femtosecond laser, the spin charge conversion at ferromagnetic and non-magnetic interfaces, and the terahertz emission triggered by ultrafast pulses. This review also introduces spintronic terahertz sources based on heavy metals, topological insulators, Rashba interfaces, and semiconductor systems.
      Corresponding author: Wu Xiao-Jun, xiaojunwu@buaa.edu.cn ; Zhao Wei-Sheng, weisheng.zhao@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904016, 61905007, 61627813), the Beihang Hefei Innovation Research Institute Project, China (Grant Nos. BHKX-19-01, BHKX-19-02), and the Beijing Natural Science Foundation, China (Grant No. 4194083)
    [1]

    Beaurepaire E, Merle J C, Daunois A, Bigot J 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [2]

    Carva K, Battiato M, Oppeneer P M 2011 Nat. Phys. 7 665Google Scholar

    [3]

    Koopmans B, van Kampen M, Kohlhepp J T, de Jonge W J M 2000 Phys. Rev. Lett. 85 844Google Scholar

    [4]

    Zhang G P, Hübner W, Lefkidis G, Bai Y, George T F 2009 Nat. Phys. 5 499Google Scholar

    [5]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [6]

    Nishitani J, Kozuki K, Nagashima T, Hangyo M 2010 Appl. Phys. Lett. 96 221906Google Scholar

    [7]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nat. Photonics 5 31Google Scholar

    [8]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [9]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [10]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [11]

    Yang K H, Richards P L, Shen Y R 1971 Appl. Phys. Lett. 19 320Google Scholar

    [12]

    Mourou G, Stancampiano C V, Blumenthal D 1981 Appl. Phys. Lett. 38 470Google Scholar

    [13]

    Auston D H, Cheung K P, Valdmanis J A, Kleinman D A 1984 Phys. Rev. Lett. 53 1555Google Scholar

    [14]

    Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523Google Scholar

    [15]

    Fattinger Ch, Grischkowsky D 1988 Appl. Phys. Lett. 53 1480Google Scholar

    [16]

    Shalaby M, Hauri C P 2015 Nat. Commun. 6 5976Google Scholar

    [17]

    Tomasino A, Parisi A, Stivala S, Livreri P, Cino A C, Busacca A C, Peccianti M, Morandotti R 2013 Sci. Rep. 3 1Google Scholar

    [18]

    Zhang X C, Ma X F, Jin Y, Lu T M, Boden E P, Phelps P D, Stewart K R, Yakymyshyn C P 1992 Appl. Phys. Lett. 61 3080Google Scholar

    [19]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar

    [20]

    Ignatyeva D O, Davies C S, Sylgacheva D A, Tsukamoto A, Yoshikawa H, Kapralov P O, Kirilyuk A, Belotelov V I, Kimel A V 2019 Nat. Commun. 10 4786Google Scholar

    [21]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar

    [22]

    Wang B, Shan S, Wu X, Wang C, Pandey C, Nie T, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [23]

    Koopmans B, Malinowski G, Longa F D, Steiauf D, Fähnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259Google Scholar

    [24]

    Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855Google Scholar

    [25]

    Choi G M, Min B C, Lee K J, Cahill D G 2014 Nat. Commun. 5 4334Google Scholar

    [26]

    Bergeard N, Hehn M, Mangin S, Lengaigne G, Montaigne F, Lalieu M L M, Koopmans B, Malinowski G 2016 Phys. Rev. Lett. 117 147203Google Scholar

    [27]

    Xu Y, Deb M, Malinowski G, Hehn M, Zhao W, Mangin S 2017 Adv. Mater. 29 1703474Google Scholar

    [28]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [29]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [30]

    Nenno D M, Rethfeld B, Schneider H C 2018 Phys. Rev. B 98 224416Google Scholar

    [31]

    Choi G M, Moon C H, Min B C, Lee K J, Cahill D G 2015 Nat. Phys. 11 576Google Scholar

    [32]

    Seifert T S, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Kläui M, Kampfrath T 2018 Nat. Commun. 9 2899Google Scholar

    [33]

    Beigang R, Papaioannou E T, Scheuer L, Keller S, Torosyan G, Rahm M, Sokoluk D, Talara M, Oda Y, Kitahara H, Afalla J, Mag-usara V K, Tani M 2019 Terahertz RF Millim. Submillimeter-Wave Technol. Appl. XⅡ San Francisco, California, United States, February 2–7, 2019 p109170O

    [34]

    Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar

    [35]

    Papaioannou E Th, Torosyan G, Keller S, Scheuer L, Battiato M, Mag-Usara V K, L’huillier J, Tani M, Beigang R 2018 IEEE Trans. Magn. 54 1Google Scholar

    [36]

    Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar

    [37]

    Mangin S, Gottwald M, Lambert C H, Steil D, Uhlí? V, Pang L, Hehn M, Alebrand S, Cinchetti M, Malinowski G, Fainman Y, Aeschlimann M, Fullerton E E 2014 Nat. Mater. 13 286Google Scholar

    [38]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing Th 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [39]

    Němec P, Rozkotová E, Tesařová N, Trojánek F, De Ranieri E, Olejník K, Zemen J, Novák V, Cukr M, Malý P, Jungwirth T 2012 Nat. Phys. 8 411Google Scholar

    [40]

    Ramsay A J, Roy P E, Haigh J A, Otxoa R M, Irvine A C, Janda T, Campion R P, Gallagher B L, Wunderlich J 2015 Phys. Rev. Lett. 114 067202Google Scholar

    [41]

    Freimuth F, Blügel S, Mokrousov Y 2016 Phys. Rev. B 94 144432Google Scholar

    [42]

    Choi G M, Schleife A, Cahill D G 2017 Nat. Commun. 8 15085Google Scholar

    [43]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [44]

    Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing Th, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar

    [45]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [46]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [47]

    Hoffmann A 2013 IEEE Trans. Magn. 49 5172Google Scholar

    [48]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [49]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [50]

    Wunderlich J, Kaestner B, Sinova J, Jungwirth T 2005 Phys. Rev. Lett. 94 047204Google Scholar

    [51]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [52]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [53]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [54]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [55]

    Shen K, Vignale G, Raimondi R 2014 Phys. Rev. Lett. 112 096601Google Scholar

    [56]

    Deorani P, Son J, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2014 Phys. Rev. B 90 094403Google Scholar

    [57]

    Rojas-Sánchez J C, Oyarzún S, Fu Y, Marty A, Vergnaud C, Gambarelli S, Vila L, Jamet M, Ohtsubo Y, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Reyren N, George J M, Fert A 2016 Phys. Rev. Lett. 116 096602Google Scholar

    [58]

    Shiomi Y, Nomura K, Kajiwara Y, Eto K, Novak M, Segawa K, Ando Y, Saitoh E 2014 Phys. Rev. Lett. 113 196601Google Scholar

    [59]

    Sun R, Yang S, Yang X, Vetter E, Sun D, Li N, Su L, Li Y, Li Y, Gong Z, Xie Z, Hou K, Gul Q, He W, Zhang X, Cheng Z 2019 Nano Lett. 19 4420Google Scholar

    [60]

    Gambardella P, Miron I M 2011 Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369 3175Google Scholar

    [61]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [62]

    Rojas-Sánchez J C, Vila L, Desfonds G, Gambarelli S, Attané J P, de Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar

    [63]

    Huang L, Kim J W, Lee S H, Kim S D, Tien V M, Shinde K P, Shim J H, Shin Y, Shin H J, Kim S, Park J, Park S Y, Choi Y S, Kim H J, Hong J I, Kim D E, Kim D H 2019 Appl. Phys. Lett. 115 142404Google Scholar

    [64]

    Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing Th, Kimel A V 2015 Phys. Rev. B 92 104419Google Scholar

    [65]

    Huisman T J, Rasing T 2016 J. Phys. Soc. Jpn. 86 011009Google Scholar

    [66]

    Nenno D M, Binder R, Schneider H C 2019 Phys. Rev. Appl. 11 054083Google Scholar

    [67]

    Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2017 J. Phys. Appl. Phys. 51 034001Google Scholar

    [68]

    Chen M, Mishra R, Wu Y, Lee K, Yang H 2018 Adv. Opt. Mater. 6 1800430Google Scholar

    [69]

    Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944Google Scholar

    [70]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247Google Scholar

    [71]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [72]

    Nenno D M, Scheuer L, Sokoluk D, Keller S, Torosyan G, Brodyanski A, Lösch J, Battiato M, Rahm M, Binder R H, Schneider H C, Beigang R, Papaioannou E T 2019 Sci. Rep. 9 1Google Scholar

    [73]

    Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [74]

    Huisman T J, Ciccarelli C, Tsukamoto A, Mikhaylovskiy R V, Rasing Th, Kimel A V 2017 Appl. Phys. Lett. 110 072402Google Scholar

    [75]

    Seifert T, Martens U, Günther S, Schoen M A W, Radu F, Chen X Z, Lucas I, Ramos R, Aguirre M H, Algarabel P A, Anadón A, Körner H S, Walowski J, Back C, Ibarra M R, Morellón L, Saitoh E, Wolf M, Song C, Uchida K, Münzenberg M, Radu I, Kampfrath T 2017 SPIN 07 1740010Google Scholar

    [76]

    Schneider R, Fix M, Heming R, Michaelis de Vasconcellos S, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936Google Scholar

    [77]

    Schneider R, Fix M, Bensmann J, Michaelis de Vasconcellos S, Albrecht M, Bratschitsch R 2019 Appl. Phys. Lett. 115 152401Google Scholar

    [78]

    Cramer J, Seifert T, Kronenberg A, Fuhrmann F, Jakob G, Jourdan M, Kampfrath T, Kläui M 2018 Nano Lett. 18 1064Google Scholar

    [79]

    Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808Google Scholar

    [80]

    Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar

    [81]

    McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P, Gedik N 2012 Nat. Nanotechnol. 7 96Google Scholar

    [82]

    Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Münzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259Google Scholar

    [83]

    Seifert P, Vaklinova K, Kern K, Burghard M, Holleitner A 2017 Nano Lett. 17 973Google Scholar

    [84]

    Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102Google Scholar

    [85]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [86]

    Zhang Q, Hong D, Liu C, Schaller R, Fong D, Bhattacharya A, Wen H 2019 Conf. Lasers Electro-Opt. San Jose, California, May 5–10, 2019 pFM4D.7

    [87]

    Husain S, Kumar A, Kumar P, Kumar A, Barwal V, Behera N, Choudhary S, Svedlindh P, Chaudhary S 2018 Phys. Rev. B 98 180404Google Scholar

    [88]

    Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [89]

    Battiato M, Held K 2016 Phys. Rev. Lett. 116 196601Google Scholar

    [90]

    Hibberd M T, Lake D S, Johansson N A B, Thomson T, Jamison S P, Graham D M 2019 Appl. Phys. Lett. 114 031101Google Scholar

    [91]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [92]

    Chen X, Wu X, Shan S, Guo F, Kong D, Wang C, Nie T, Pandey C, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [93]

    Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar

    [94]

    Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H 2019 Adv. Opt. Mater. 7 1801608Google Scholar

    [95]

    Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M, Turchinovich D 2015 Nat. Phys. 11 761Google Scholar

    [96]

    Zhang S, Li Q, Dai Y, Lin X, Ma G, Jin Z, Zhu W, Zhang Z, Yao J 2018 2018 43rd Int. Conf. Infrared Millim. Terahertz Waves IRMMW-THz Nagoya, Japan, September 9–14, 2018 p1

    [97]

    Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing Th, Kimel A V 2014 Phys. Rev. B 90 184405Google Scholar

    [98]

    Mikhaylovskiy R V, Hendry E, Secchi A, Mentink J H, Eckstein M, Wu A, Pisarev R V, Kruglyak V V, Katsnelson M I, Rasing T, Kimel A V 2015 Nat. Commun. 6 8190Google Scholar

  • 图 1  透射式太赫兹发射谱仪的光路示意图

    Figure 1.  Schematic diagram of experimental setup of spintronic terahertz emission spectroscopy in transmission geometry.

    图 2  铁磁/非磁异质结太赫兹发射 (a)时域波形; (b)频谱

    Figure 2.  The time-domain waveform and frequency-domain spectrum of the terahertz wave emitted by FM/NM heterostructures: (a) The time-domain waveform; (b) frequency-domain spectrum.

    图 3  面内磁化的铁磁薄膜FM被飞秒激光激发, 自旋极化的非平衡热电子注入非磁层. 根据逆自旋霍尔效应, 多数电子和少数电子在不同方向偏转, 从而将纵向自旋流转换为横向的电荷流, 产生了太赫兹发射

    Figure 3.  The in-plane magnetized ferromagnetic layer is excited by the femtosecond laser, which induces the injection of non-equilibrium spin-polarized hot electrons into the non-magnetic layer. The spin-majority electrons and the spin-minority electrons are deflected into opposite directions due to inverse spin Hall effect. The longitudinal spin current is converted into a transverse electric current and leads to the terahertz emission.

    图 4  (a)拓扑绝缘体表面的能量色散关系图; (b) Rashba界面的能量色散关系图, Rashba界面态和拓扑绝缘体表面态中形成了强烈的自旋-动量锁定; (c)拓扑绝缘体表面的逆Edelstein效应; (d) Rashba界面的逆Edelstein效应, 注入y极化的自旋流密度诱导出x方向的电荷流[57]

    Figure 4.  (a) Energy dispersion of the Rashba interface; (b) energy dispersion of the topological insulator. Strong spin-momentum locking can be observed in interface states of the Rashba interface and surface states of the topological insulator; (c) the inverse Edelstein effect of Rashba interfaces; (d) the inverse Edelstein effect of topological insulator surface states. The y-polarized spin current induces a charge current in the x direction[57].

  • [1]

    Beaurepaire E, Merle J C, Daunois A, Bigot J 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [2]

    Carva K, Battiato M, Oppeneer P M 2011 Nat. Phys. 7 665Google Scholar

    [3]

    Koopmans B, van Kampen M, Kohlhepp J T, de Jonge W J M 2000 Phys. Rev. Lett. 85 844Google Scholar

    [4]

    Zhang G P, Hübner W, Lefkidis G, Bai Y, George T F 2009 Nat. Phys. 5 499Google Scholar

    [5]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [6]

    Nishitani J, Kozuki K, Nagashima T, Hangyo M 2010 Appl. Phys. Lett. 96 221906Google Scholar

    [7]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nat. Photonics 5 31Google Scholar

    [8]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [9]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [10]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [11]

    Yang K H, Richards P L, Shen Y R 1971 Appl. Phys. Lett. 19 320Google Scholar

    [12]

    Mourou G, Stancampiano C V, Blumenthal D 1981 Appl. Phys. Lett. 38 470Google Scholar

    [13]

    Auston D H, Cheung K P, Valdmanis J A, Kleinman D A 1984 Phys. Rev. Lett. 53 1555Google Scholar

    [14]

    Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523Google Scholar

    [15]

    Fattinger Ch, Grischkowsky D 1988 Appl. Phys. Lett. 53 1480Google Scholar

    [16]

    Shalaby M, Hauri C P 2015 Nat. Commun. 6 5976Google Scholar

    [17]

    Tomasino A, Parisi A, Stivala S, Livreri P, Cino A C, Busacca A C, Peccianti M, Morandotti R 2013 Sci. Rep. 3 1Google Scholar

    [18]

    Zhang X C, Ma X F, Jin Y, Lu T M, Boden E P, Phelps P D, Stewart K R, Yakymyshyn C P 1992 Appl. Phys. Lett. 61 3080Google Scholar

    [19]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar

    [20]

    Ignatyeva D O, Davies C S, Sylgacheva D A, Tsukamoto A, Yoshikawa H, Kapralov P O, Kirilyuk A, Belotelov V I, Kimel A V 2019 Nat. Commun. 10 4786Google Scholar

    [21]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar

    [22]

    Wang B, Shan S, Wu X, Wang C, Pandey C, Nie T, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [23]

    Koopmans B, Malinowski G, Longa F D, Steiauf D, Fähnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259Google Scholar

    [24]

    Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855Google Scholar

    [25]

    Choi G M, Min B C, Lee K J, Cahill D G 2014 Nat. Commun. 5 4334Google Scholar

    [26]

    Bergeard N, Hehn M, Mangin S, Lengaigne G, Montaigne F, Lalieu M L M, Koopmans B, Malinowski G 2016 Phys. Rev. Lett. 117 147203Google Scholar

    [27]

    Xu Y, Deb M, Malinowski G, Hehn M, Zhao W, Mangin S 2017 Adv. Mater. 29 1703474Google Scholar

    [28]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [29]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [30]

    Nenno D M, Rethfeld B, Schneider H C 2018 Phys. Rev. B 98 224416Google Scholar

    [31]

    Choi G M, Moon C H, Min B C, Lee K J, Cahill D G 2015 Nat. Phys. 11 576Google Scholar

    [32]

    Seifert T S, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Kläui M, Kampfrath T 2018 Nat. Commun. 9 2899Google Scholar

    [33]

    Beigang R, Papaioannou E T, Scheuer L, Keller S, Torosyan G, Rahm M, Sokoluk D, Talara M, Oda Y, Kitahara H, Afalla J, Mag-usara V K, Tani M 2019 Terahertz RF Millim. Submillimeter-Wave Technol. Appl. XⅡ San Francisco, California, United States, February 2–7, 2019 p109170O

    [34]

    Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar

    [35]

    Papaioannou E Th, Torosyan G, Keller S, Scheuer L, Battiato M, Mag-Usara V K, L’huillier J, Tani M, Beigang R 2018 IEEE Trans. Magn. 54 1Google Scholar

    [36]

    Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar

    [37]

    Mangin S, Gottwald M, Lambert C H, Steil D, Uhlí? V, Pang L, Hehn M, Alebrand S, Cinchetti M, Malinowski G, Fainman Y, Aeschlimann M, Fullerton E E 2014 Nat. Mater. 13 286Google Scholar

    [38]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing Th 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [39]

    Němec P, Rozkotová E, Tesařová N, Trojánek F, De Ranieri E, Olejník K, Zemen J, Novák V, Cukr M, Malý P, Jungwirth T 2012 Nat. Phys. 8 411Google Scholar

    [40]

    Ramsay A J, Roy P E, Haigh J A, Otxoa R M, Irvine A C, Janda T, Campion R P, Gallagher B L, Wunderlich J 2015 Phys. Rev. Lett. 114 067202Google Scholar

    [41]

    Freimuth F, Blügel S, Mokrousov Y 2016 Phys. Rev. B 94 144432Google Scholar

    [42]

    Choi G M, Schleife A, Cahill D G 2017 Nat. Commun. 8 15085Google Scholar

    [43]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [44]

    Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing Th, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar

    [45]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [46]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [47]

    Hoffmann A 2013 IEEE Trans. Magn. 49 5172Google Scholar

    [48]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [49]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [50]

    Wunderlich J, Kaestner B, Sinova J, Jungwirth T 2005 Phys. Rev. Lett. 94 047204Google Scholar

    [51]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [52]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [53]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [54]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [55]

    Shen K, Vignale G, Raimondi R 2014 Phys. Rev. Lett. 112 096601Google Scholar

    [56]

    Deorani P, Son J, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2014 Phys. Rev. B 90 094403Google Scholar

    [57]

    Rojas-Sánchez J C, Oyarzún S, Fu Y, Marty A, Vergnaud C, Gambarelli S, Vila L, Jamet M, Ohtsubo Y, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Reyren N, George J M, Fert A 2016 Phys. Rev. Lett. 116 096602Google Scholar

    [58]

    Shiomi Y, Nomura K, Kajiwara Y, Eto K, Novak M, Segawa K, Ando Y, Saitoh E 2014 Phys. Rev. Lett. 113 196601Google Scholar

    [59]

    Sun R, Yang S, Yang X, Vetter E, Sun D, Li N, Su L, Li Y, Li Y, Gong Z, Xie Z, Hou K, Gul Q, He W, Zhang X, Cheng Z 2019 Nano Lett. 19 4420Google Scholar

    [60]

    Gambardella P, Miron I M 2011 Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369 3175Google Scholar

    [61]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [62]

    Rojas-Sánchez J C, Vila L, Desfonds G, Gambarelli S, Attané J P, de Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar

    [63]

    Huang L, Kim J W, Lee S H, Kim S D, Tien V M, Shinde K P, Shim J H, Shin Y, Shin H J, Kim S, Park J, Park S Y, Choi Y S, Kim H J, Hong J I, Kim D E, Kim D H 2019 Appl. Phys. Lett. 115 142404Google Scholar

    [64]

    Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing Th, Kimel A V 2015 Phys. Rev. B 92 104419Google Scholar

    [65]

    Huisman T J, Rasing T 2016 J. Phys. Soc. Jpn. 86 011009Google Scholar

    [66]

    Nenno D M, Binder R, Schneider H C 2019 Phys. Rev. Appl. 11 054083Google Scholar

    [67]

    Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2017 J. Phys. Appl. Phys. 51 034001Google Scholar

    [68]

    Chen M, Mishra R, Wu Y, Lee K, Yang H 2018 Adv. Opt. Mater. 6 1800430Google Scholar

    [69]

    Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944Google Scholar

    [70]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247Google Scholar

    [71]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [72]

    Nenno D M, Scheuer L, Sokoluk D, Keller S, Torosyan G, Brodyanski A, Lösch J, Battiato M, Rahm M, Binder R H, Schneider H C, Beigang R, Papaioannou E T 2019 Sci. Rep. 9 1Google Scholar

    [73]

    Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [74]

    Huisman T J, Ciccarelli C, Tsukamoto A, Mikhaylovskiy R V, Rasing Th, Kimel A V 2017 Appl. Phys. Lett. 110 072402Google Scholar

    [75]

    Seifert T, Martens U, Günther S, Schoen M A W, Radu F, Chen X Z, Lucas I, Ramos R, Aguirre M H, Algarabel P A, Anadón A, Körner H S, Walowski J, Back C, Ibarra M R, Morellón L, Saitoh E, Wolf M, Song C, Uchida K, Münzenberg M, Radu I, Kampfrath T 2017 SPIN 07 1740010Google Scholar

    [76]

    Schneider R, Fix M, Heming R, Michaelis de Vasconcellos S, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936Google Scholar

    [77]

    Schneider R, Fix M, Bensmann J, Michaelis de Vasconcellos S, Albrecht M, Bratschitsch R 2019 Appl. Phys. Lett. 115 152401Google Scholar

    [78]

    Cramer J, Seifert T, Kronenberg A, Fuhrmann F, Jakob G, Jourdan M, Kampfrath T, Kläui M 2018 Nano Lett. 18 1064Google Scholar

    [79]

    Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808Google Scholar

    [80]

    Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar

    [81]

    McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P, Gedik N 2012 Nat. Nanotechnol. 7 96Google Scholar

    [82]

    Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Münzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259Google Scholar

    [83]

    Seifert P, Vaklinova K, Kern K, Burghard M, Holleitner A 2017 Nano Lett. 17 973Google Scholar

    [84]

    Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102Google Scholar

    [85]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [86]

    Zhang Q, Hong D, Liu C, Schaller R, Fong D, Bhattacharya A, Wen H 2019 Conf. Lasers Electro-Opt. San Jose, California, May 5–10, 2019 pFM4D.7

    [87]

    Husain S, Kumar A, Kumar P, Kumar A, Barwal V, Behera N, Choudhary S, Svedlindh P, Chaudhary S 2018 Phys. Rev. B 98 180404Google Scholar

    [88]

    Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [89]

    Battiato M, Held K 2016 Phys. Rev. Lett. 116 196601Google Scholar

    [90]

    Hibberd M T, Lake D S, Johansson N A B, Thomson T, Jamison S P, Graham D M 2019 Appl. Phys. Lett. 114 031101Google Scholar

    [91]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [92]

    Chen X, Wu X, Shan S, Guo F, Kong D, Wang C, Nie T, Pandey C, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [93]

    Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar

    [94]

    Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H 2019 Adv. Opt. Mater. 7 1801608Google Scholar

    [95]

    Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M, Turchinovich D 2015 Nat. Phys. 11 761Google Scholar

    [96]

    Zhang S, Li Q, Dai Y, Lin X, Ma G, Jin Z, Zhu W, Zhang Z, Yao J 2018 2018 43rd Int. Conf. Infrared Millim. Terahertz Waves IRMMW-THz Nagoya, Japan, September 9–14, 2018 p1

    [97]

    Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing Th, Kimel A V 2014 Phys. Rev. B 90 184405Google Scholar

    [98]

    Mikhaylovskiy R V, Hendry E, Secchi A, Mentink J H, Eckstein M, Wu A, Pisarev R V, Kruglyak V V, Katsnelson M I, Rasing T, Kimel A V 2015 Nat. Commun. 6 8190Google Scholar

  • [1] Zhu Zhao-Zhao, Feng Zheng, Cai Jian-Wang. Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [2] Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211831
    [3] Fang Yu-Qing, Jin Zuan-Ming, Chen Hai-Yang, Ruan Shun-Yi, Li Ju-Geng, Cao Shi-Xun, Peng Yan, Ma Guo-Hong, Zhu Yi-Ming. Terahertz spectroscopic characterization of spin mode and crystal-field transition in high-throughput grown $ {\bf Sm}_{ x}{\bf Pr}_{ 1– x}{\bf FeO_3} $ crystals. Acta Physica Sinica, 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [4] Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei. Spintronic terahertz emitter: Performance, manipulation, and applications. Acta Physica Sinica, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [5] Song Bang-Ju, Jin Zuan-Ming, Guo Chen-Yang, Ruan Shun-Yi, Li Ju-Geng, Wan Cai-Hua, Han Xiu-Feng, Ma Guo-Hong, Yao Jian-Quan. Terahertz emission from Y3Fe5O12(YIG)/Pt heterostructures via ultrafast spin Seebeck effect. Acta Physica Sinica, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [6] Gao Yang, Chandan Pandey, Kong De-Yin, Wang Chun, Nie Tian-Xiao, Zhao Wei-Sheng, Miao Jun-Gang, Wang Li, Wu Xiao-Jun. Annealing effect on terahertz emission enhancement from ferromagnetic heterostructures. Acta Physica Sinica, 2020, 69(20): 200702. doi: 10.7498/aps.69.20200526
    [7] Wang Hang-Tian, Zhao Hai-Hui, Wen Liang-Gong, Wu Xiao-Jun, Nie Tian-Xiao, Zhao Wei-Sheng. High-performance THz emission: From topological insulator to topological spintronics. Acta Physica Sinica, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [8] Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo. Terahertz emitters based on ultrafast spin-to-charge conversion. Acta Physica Sinica, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [9] Zhang Shun-Nong, Zhu Wei-Hua, Li Ju-Geng, Jin Zuan-Ming, Dai Ye, Zhang Zong-Zhi, Ma Guo-Hong, Yao Jian-Quan. Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures. Acta Physica Sinica, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [10] Chai Lu, Niu Yue, Li Yan-Feng, Hu Ming-Lie, Wang Qing-Yue. Recent progress of tunable terahertz sources based on difference frequency generation. Acta Physica Sinica, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [11] Zuo Jian, Zhang Liang-Liang, Gong Chen, Zhang Cun-Lin. Research progress of super-continuum terahertz source based on nano-structures and terahertz lab on-chip system. Acta Physica Sinica, 2016, 65(1): 010704. doi: 10.7498/aps.65.010704
    [12] Pan Qun-Feng, Zhang Ze-Yu, Wang Hui-Zhen, Lin Xian, Jin Zuan-Ming, Cheng Zhen-Xiang, Ma Guo-Hong. Demagnetization dynamics of C-doped FePt film. Acta Physica Sinica, 2016, 65(12): 127802. doi: 10.7498/aps.65.127802
    [13] Zhao Wen-Juan, Chen Zai-Gao, Guo Wei-Jie. Influence of slow wave structure explosive emission on high-power surface wave oscillator. Acta Physica Sinica, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [14] Si Li-Ming, Hou Ji-Xuan, Liu Yong, Lü Xin. Extraction of effective constitutive parameters of active terahertz metamaterial with negative differential resistance carbon nanotubes. Acta Physica Sinica, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [15] Huang Jing-Guo, Lu Jin-Xing, Zhou Wei, Tong Jing-Chao, Huang Zhi, Chu Jun-Hao. Investigation of high power terahertz emission in gap crystal based on collinear difference frequency generation. Acta Physica Sinica, 2013, 62(12): 120704. doi: 10.7498/aps.62.120704
    [16] Liu Wei-Hao, Zhang Ya-Xin, Zhou Jun, Gong Sen, Liu Sheng-Gang. Radiation from the unsymmetrical modes of the periodical waveguide structure excited by eccentric electron beam. Acta Physica Sinica, 2012, 61(23): 234209. doi: 10.7498/aps.61.234209
    [17] Ma Feng-Ying, Chen Ming, Liu Xiao-Li, Liu Jian-Li, Chi Quan, Du Yan-Li, Guo Mao-Tian, Yuan Bin. Design and characterization of a terahertz microcavity structure. Acta Physica Sinica, 2012, 61(11): 114205. doi: 10.7498/aps.61.114205
    [18] Liu Wei-Hao, Zhang Ya-Xin, Hu Min, Zhou Jun, Liu Sheng-Gang. Mechanism study of a THz source using field emission array. Acta Physica Sinica, 2012, 61(12): 127901. doi: 10.7498/aps.61.127901
    [19] Gao Peng, Booske John H., Yang Zhong-Hai, Li Bin, Xu Li, He Jun, Gong Yu-Bin, Tian Zhong. Physics and simulation of terahertz folded waveguide traveling wave tube regenerative feedback oscillators. Acta Physica Sinica, 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
    [20] Du Jian, Zhang Peng, Liu Ji-Hong, Li Jin-Liang, Li Yu-Xian. Spin-tunneling time and transport in a ferromagnetic/semiconductor/ferromagnetic heterojunction with a δ tunnel barrier. Acta Physica Sinica, 2008, 57(11): 7221-7227. doi: 10.7498/aps.57.7221
Metrics
  • Abstract views:  12489
  • PDF Downloads:  710
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2020
  • Accepted Date:  23 May 2020
  • Available Online:  15 June 2020
  • Published Online:  20 October 2020

/

返回文章
返回