Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and properties of multi-effect potassium sodium niobate based transparent ferroelectric ceramics

Liu Yong Xu Zhi-Jun Fan Li-Qun Yi Wen-Tao Yan Chun-Yan Ma Jie Wang Kun-Peng

Liu Yan-Xia, Zhang Yun-Bo. Review of one-dimensional few-body systems in ultracold atomic physics. Acta Phys. Sin., 2019, 68(4): 040304. doi: 10.7498/aps.68.20181993
Citation: Liu Yan-Xia, Zhang Yun-Bo. Review of one-dimensional few-body systems in ultracold atomic physics. Acta Phys. Sin., 2019, 68(4): 040304. doi: 10.7498/aps.68.20181993

Preparation and properties of multi-effect potassium sodium niobate based transparent ferroelectric ceramics

Liu Yong, Xu Zhi-Jun, Fan Li-Qun, Yi Wen-Tao, Yan Chun-Yan, Ma Jie, Wang Kun-Peng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Traditional transparent materials, including glasses and polymers, are chemically unstable and mechanically weak. Single crystals of some inorganic materials are also optically transparent, which are more stable than glasses and polymers. The fabrication of crystals, however, is relatively slow. Fortunately, transparent ceramics emerge as a promising candidate. Transparent ferroelectric ceramic is a kind of transparent ceramic with electro-optic effect, which also has excellent characteristics of conventional ceramics with excellent mechanical properties, resistance to high temperature, resistance against corrosion, and high hardness. Lead based transparent ferroelectric ceramic dominates this field for many years due to its superior electro-optic effect. Owing to the high toxicity of lead oxide, however, its development is significantly hampered. Therefore, it is greatly urgent to develop the lead-free transparent ferroelectric ceramics with excellent properties to replace the traditional lead based ceramics. In this paper, (K0.5Na0.5)0.94–3xLi0.06LaxNb0.95Ta0.05O3 (KNLTN-Lax; x = 0, 0.01, 0.015, 0.02) lead-free transparent ferroelectric materials are fabricated by the conventional solid state reaction method and ordinary sintering process. The dependence of microstructure, phase structure, optical transmittance and electrical properties of the ceramic on composition are systemically investigated. The transparent ferroelectric ceramic with relaxor-behavior is obtained at x = 0.02. The optical transmittance of the ceramic near infrared region is as high as 60%. Meanwhile, the electrical properties of the ceramic at x = 0.01 still maintains a relatively high level (d33 = 110 pC/N, kp = 0.267). In addition, the Curie temperature for each of all the samples is higher than 400 ℃. These results suggest that this material might be a novel and promising lead-free material that could be used in a large variety of electro-optical devices.
      Corresponding author: Liu Yong, liuyong2049@126.com
    [1]

    兰国政 2008 化学工程与装备 1 46Google Scholar

    Lan G Z 2008 Chem. Eng. Equip. 1 46Google Scholar

    [2]

    许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第207页

    Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p207 (in Chinese)

    [3]

    Xiao Z H, Yu S J, Li Y M, Ruan S C, Kong L B, Huang Q, Huang Z G, Zhou K, Su H B, Yao Z J, Que W X, Liu Y, Zhang T S, Wang J, Liu P, Shen D Y, Allix M, Zhang J, Tang D Y 2020 Mater. Sci. Eng., R. 139 100518Google Scholar

    [4]

    Zhu Q Q, Yang P F, Wang Z Y, Hu P C 2020 J. Eur. Ceram. Soc. 40 2426Google Scholar

    [5]

    Peng B, Shi Q W, Huang W X, Wang S S, Qi J Q, Lu T C 2018 Ceram. Int. 44 13674Google Scholar

    [6]

    Terakado N, Yoshimine T, Kozawa R, Takahashi Y, Fujiwara T 2020 RSC Adv. 10 22352Google Scholar

    [7]

    Haertling G H 1987 Ferroelectrics 75 25Google Scholar

    [8]

    Feng Z H, Lin L, Wang Z Z, Zheng Z Q 2017 Opt. Commun. 399 40Google Scholar

    [9]

    Chen Y J, Sun D Z, Zhu Y Y, Zeng X, Ling L, Qiu P S, He X Y 2020 Ceram. Int. 46 6738Google Scholar

    [10]

    Zeng X, Xu C X, Xu L 2019 J. Lumin. 213 61Google Scholar

    [11]

    Zhang H, Wang H, Gu H G, Zong X, Tu B T, Xu P Y, Wang B, Wang W M, Liu S Y, Fu Z Y 2018 J. Eur. Ceram. Soc. 38 4057Google Scholar

    [12]

    Wu X, Lu S B, Kwok K W 2017 J. Alloys Compd. 695 3573Google Scholar

    [13]

    Lin C, Wang H J, Ma J Z, Deng B Y, Wu X, Lin T F, Zheng X H, Yu X 2020 J. Alloys Compd. 826 154249Google Scholar

    [14]

    Yu S, Carloni D, Wu Y 2020 J. Am. Ceram. Soc. 103 4159Google Scholar

    [15]

    Zhang M, Yang H B, Li D, Lin Y 2020 J. Alloys Compd. 829 154565Google Scholar

    [16]

    Liu Y, Chu R Q, Xu Z J, Zhang Y J, Chen Q, Li G R 2011 Mater. Sci. Eng., B 176 1463Google Scholar

    [17]

    Yang D, Yang Z Y, Zhang X S, Wei L L, Chao X L, Yang Z P 2017 J. Alloys Compd. 716 21Google Scholar

    [18]

    李艳艳 2010 硕士学位论文 (南昌: 南昌航空大学)

    Li Y Y 2010 M.S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)

    [19]

    Jian L, Wayman C M 1995 Acta Mater. 43 3893Google Scholar

    [20]

    Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar

    [21]

    Zhang P, Zhao Y G 2015 Mater. Lett. 161 620Google Scholar

    [22]

    杨振宇 2016 硕士学位论文 (西安: 陕西师范大学)

    Yang Z Y 2016 M.S. Thesis (Xi'an: Shaanxi Normal University) (in Chinese)

    [23]

    耿志明 2015 硕士学位论文 (常州: 常州大学)

    Geng Z M 2015 M. S. Thesis (Changzhou: Changzhou University) (in Chinese)

    [24]

    Thomas N W 1990 J. Phys. Chem. Solids 51 1419Google Scholar

    [25]

    郝继功 2010 硕士学位论文 (聊城: 聊城大学)

    Hao J G 2010 M.S. Thesis (Liaocheng: Liaocheng University) (in Chinese)

    [26]

    刘涛 2007 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)

    Liu T 2007 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences) (in Chinese)

    [27]

    Uchino K, Nomura S 1982 Ferroelectr. Lett. Sect. 44 55Google Scholar

    期刊类型引用(9)

    1. 周建,廖星川,刘福深,尚肖楠,沈君逸. 应用卷积近场动力学快速模拟随机裂纹扩展. 岩土力学. 2025(02): 625-639 . 百度学术
    2. 侯昭飞,唐发满,张杨,杨佺忠,尚立涛,孙逊,赵福垚. 冲击波致裂在青海一里坪卤水开采中的增渗效果(英文). 盐湖研究. 2024(03): 78-86 . 百度学术
    3. 魏德葆,纪佑军,王泽根,蒋国斌. 微裂缝对灰岩地层固体废弃物回注能力的影响. 吉林大学学报(地球科学版). 2024(04): 1339-1349 . 百度学术
    4. 寻之朋,郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟. 物理学报. 2022(06): 365-370 . 百度学术
    5. 李滔,李骞,胡勇,彭先,冯曦,朱占美,赵梓寒. 不规则微裂缝网络定量表征及其对多孔介质渗流能力的影响. 石油勘探与开发. 2021(02): 368-378 . 百度学术
    6. LI Tao,LI Qian,HU Yong,PENG Xian,FENG Xi,ZHU Zhanmei,ZHAO Zihan. Quantitative characterization of irregular microfracture network and its effect on the permeability of porous media. Petroleum Exploration and Development. 2021(02): 430-441 . 必应学术
    7. 董少群,王涛,曾联波,刘凯,梁锋,尹启航,曹东升. 地下空间逾渗与裂缝属性的关系分析. 地学前缘. 2019(03): 140-146 . 百度学术
    8. 李乐. 开裂孔隙材料渗透率的细观力学模型研究. 力学学报. 2018(05): 1032-1040 . 百度学术
    9. 钱鹏,徐千军. 基于单元嵌入技术和弹性比拟的含裂纹混凝土三维渗流模拟方法. 工程力学. 2017(04): 125-133 . 百度学术

    其他类型引用(8)

  • 图 1  KNLTN-Lax陶瓷的XRD图谱

    Figure 1.  XRD patterns of KNLTN-Lax ceramics.

    图 2  KNLTN-Lax陶瓷的SEM图

    Figure 2.  SEM images of KNLTN-Lax ceramics.

    图 3  KNLTN-Lax陶瓷的密度和相对密度

    Figure 3.  Density and relative density of KNLTN-Lax ceramics.

    图 4  KNLTN-Lax陶瓷的透过率

    Figure 4.  Optical transmittance of KNLTN-Lax ceramics.

    图 5  KNLTN-Lax陶瓷的数码照片

    Figure 5.  Digital pictures of KNLTN-Lax ceramics.

    图 6  室温下KNLTN-Lax陶瓷的电滞回线

    Figure 6.  P-E hysteresis loops of KNLTN-Lax ceramics in room temperature.

    图 7  KNLTN-Lax陶瓷的介电常数在不同测试频率下随温度的变化

    Figure 7.  Temperature dependence of dielectric constant for KNLTN-Lax ceramics measured at different frequency.

    图 8  10 kHz下KNLTN-Lax陶瓷的介电常数倒数与温度的关系

    Figure 8.  Inverse dielectric constant (1/εr) as a function of temperature at 10 kHz for KNLTN-Lax ceramics.

    图 9  KNLTN-Lax陶瓷的log(1/ε–1/εm)与log(TTm)的关系

    Figure 9.  Plot of log(1/ε–1/εm) as a function of log(TTm) for KNLTN-Lax ceramics.

    图 10  KNLTN-Lax陶瓷的压电常数、机电耦合系数随x的变化

    Figure 10.  The d33 and kp of KNLTN-Lax ceramics as a function of x.

    表 1  KNLTN-Lax陶瓷的晶胞参数

    Table 1.  Lattice parameters of KNLTN-Lax ceramics.

    KNLTN-Laxa标准差b标准差c标准差
    x = 04.001340.003273.926090.004243.960780.02185
    x = 0.013.967850.007073.967850.007073.892680.07532
    x = 0.0153.962250.003933.962250.003933.960670.04487
    x = 0.023.963680.002293.963680.002294.011920.02727
    DownLoad: CSV

    表 2  KNLTN-Lax陶瓷在10 kHz下的Tcw, Tm, ΔTmγ的数值

    Table 2.  The parameters Tcw, Tm, ΔTm and γ for the ceramics at 10 kHz.

    x00.010.0150.02
    Tcw433443440437
    Tm427421408403
    ΔTm6223234
    γ1.4241.6241.7141.918
    DownLoad: CSV
  • [1]

    兰国政 2008 化学工程与装备 1 46Google Scholar

    Lan G Z 2008 Chem. Eng. Equip. 1 46Google Scholar

    [2]

    许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第207页

    Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p207 (in Chinese)

    [3]

    Xiao Z H, Yu S J, Li Y M, Ruan S C, Kong L B, Huang Q, Huang Z G, Zhou K, Su H B, Yao Z J, Que W X, Liu Y, Zhang T S, Wang J, Liu P, Shen D Y, Allix M, Zhang J, Tang D Y 2020 Mater. Sci. Eng., R. 139 100518Google Scholar

    [4]

    Zhu Q Q, Yang P F, Wang Z Y, Hu P C 2020 J. Eur. Ceram. Soc. 40 2426Google Scholar

    [5]

    Peng B, Shi Q W, Huang W X, Wang S S, Qi J Q, Lu T C 2018 Ceram. Int. 44 13674Google Scholar

    [6]

    Terakado N, Yoshimine T, Kozawa R, Takahashi Y, Fujiwara T 2020 RSC Adv. 10 22352Google Scholar

    [7]

    Haertling G H 1987 Ferroelectrics 75 25Google Scholar

    [8]

    Feng Z H, Lin L, Wang Z Z, Zheng Z Q 2017 Opt. Commun. 399 40Google Scholar

    [9]

    Chen Y J, Sun D Z, Zhu Y Y, Zeng X, Ling L, Qiu P S, He X Y 2020 Ceram. Int. 46 6738Google Scholar

    [10]

    Zeng X, Xu C X, Xu L 2019 J. Lumin. 213 61Google Scholar

    [11]

    Zhang H, Wang H, Gu H G, Zong X, Tu B T, Xu P Y, Wang B, Wang W M, Liu S Y, Fu Z Y 2018 J. Eur. Ceram. Soc. 38 4057Google Scholar

    [12]

    Wu X, Lu S B, Kwok K W 2017 J. Alloys Compd. 695 3573Google Scholar

    [13]

    Lin C, Wang H J, Ma J Z, Deng B Y, Wu X, Lin T F, Zheng X H, Yu X 2020 J. Alloys Compd. 826 154249Google Scholar

    [14]

    Yu S, Carloni D, Wu Y 2020 J. Am. Ceram. Soc. 103 4159Google Scholar

    [15]

    Zhang M, Yang H B, Li D, Lin Y 2020 J. Alloys Compd. 829 154565Google Scholar

    [16]

    Liu Y, Chu R Q, Xu Z J, Zhang Y J, Chen Q, Li G R 2011 Mater. Sci. Eng., B 176 1463Google Scholar

    [17]

    Yang D, Yang Z Y, Zhang X S, Wei L L, Chao X L, Yang Z P 2017 J. Alloys Compd. 716 21Google Scholar

    [18]

    李艳艳 2010 硕士学位论文 (南昌: 南昌航空大学)

    Li Y Y 2010 M.S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)

    [19]

    Jian L, Wayman C M 1995 Acta Mater. 43 3893Google Scholar

    [20]

    Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar

    [21]

    Zhang P, Zhao Y G 2015 Mater. Lett. 161 620Google Scholar

    [22]

    杨振宇 2016 硕士学位论文 (西安: 陕西师范大学)

    Yang Z Y 2016 M.S. Thesis (Xi'an: Shaanxi Normal University) (in Chinese)

    [23]

    耿志明 2015 硕士学位论文 (常州: 常州大学)

    Geng Z M 2015 M. S. Thesis (Changzhou: Changzhou University) (in Chinese)

    [24]

    Thomas N W 1990 J. Phys. Chem. Solids 51 1419Google Scholar

    [25]

    郝继功 2010 硕士学位论文 (聊城: 聊城大学)

    Hao J G 2010 M.S. Thesis (Liaocheng: Liaocheng University) (in Chinese)

    [26]

    刘涛 2007 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)

    Liu T 2007 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences) (in Chinese)

    [27]

    Uchino K, Nomura S 1982 Ferroelectr. Lett. Sect. 44 55Google Scholar

  • [1] Zhang Na, Liu Bo, Lin Li-Wei. Effect of He ion irradiation on microstructure and electrical properties of graphene. Acta Physica Sinica, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [2] Xu Ze, Lou Lu-Yao, Zhao Chun-Lin, Tang Hao-Cheng, Liu Yi-Xuan, Li Zhao, Qi Xiao-Mei, Zhang Bo-Ping, Li Jing-Feng, Gong Wen, Wang Ke. Effect of manganese doping on ferroelectric and piezoelectric properties of KNbO3 and (K0.5Na0.5)NbO3 lead-free ceramics. Acta Physica Sinica, 2020, 69(12): 127705. doi: 10.7498/aps.69.20200277
    [3] Xing Jie, Tan Zhi, Zheng Ting, Wu Jia-Gang, Xiao Ding-Quan, Zhu Jian-Guo. Research progress of high piezoelectric activity of potassium sodium niobate based lead-free ceramics. Acta Physica Sinica, 2020, 69(12): 127707. doi: 10.7498/aps.69.20200288
    [4] Wei Xiao-Wei, Tao Hong, Zhao Chun-Lin, Wu Jia-Gang. Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics. Acta Physica Sinica, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [5] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [6] Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng. X-ray transmission characteristics and potential communication application in plasma region. Acta Physica Sinica, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [7] Liu Yan-Li, Wang Wei, Dong Yan, Chen Dun-Jun, Zhang Rong, Zheng You-Dou. Effect of structure parameters on performance of N-polar GaN/InAlN high electron mobility transistor. Acta Physica Sinica, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [8] Long Jian-Fei, Zhang Tian-Ping, Li Juan, Jia Yan-Hui. Optical transparency radial distribution of ion thruster. Acta Physica Sinica, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [9] Zhang Bin, Yang Yin-Tang, Li Yue-Jin, Xu Xiao-Bo. Electrical behavior research of silicon-on-insulator SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2012, 61(23): 238502. doi: 10.7498/aps.61.238502
    [10] Zhang Qiang, Zhu Xiao-Hong, Xu Yun-Hui, Xiao Yun-Jun, Gao Hao-Bin, Liang Da-Yun, Zhu Ji-Liang, Zhu Jian-Guo, Xiao Ding-Quan. Effect of Mn4+ doping on the microstructure and electrical property of BiFeO3 ceramic. Acta Physica Sinica, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [11] Wang Bin-Ke, Tian Xiao-Xia, Xu Zhuo, Qu Shao-Bo, Li Zhen-Rong. Preparation and performances of KNN-based lead-free transparent ceramics. Acta Physica Sinica, 2012, 61(19): 197703. doi: 10.7498/aps.61.197703
    [12] Zhao Jing-Bo, Du Hong-Liang, Qu Shao-Bo, Zhang Hong-Mei, Xu Zhuo. Effects of A-site equivalence and non-equivalence substitution on polarization properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Acta Physica Sinica, 2011, 60(10): 107701. doi: 10.7498/aps.60.107701
    [13] Pan Jia-Qi, Zhu Chen-Quan, Li Yu-Ren, Lan Wei, Su Qing, Liu Xue-Qin, Xie Er-Qing. Electrical and optical properties of Cu-Al-O thin films sputtered using non-stoichiometric target. Acta Physica Sinica, 2011, 60(11): 117307. doi: 10.7498/aps.60.117307
    [14] Zhang Chun-Min, Liu Ning, Wu Fu-Quan. Analysis and calculation of Glan-Taylor prism’s transmittance at full angle of view in a polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [15] Yuan Chang-Lai, Liu Xin-Yu, Ma Jia-Feng, Zhou Chang-Rong. Study on the microstructures and electrical properties of Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3 thermistor ceramic. Acta Physica Sinica, 2010, 59(6): 4253-4260. doi: 10.7498/aps.59.4253
    [16] Yang Yi-Fa, Li Yu-Hua, Long Hua, Lu Pei-Xiang, Yang Guang, Zheng Qi-Guang. Effect of oxygen pressure on the optical properties of ZnO/Si(100) thin films deposited by femtosecond pulse laser. Acta Physica Sinica, 2009, 58(4): 2785-2791. doi: 10.7498/aps.58.2785
    [17] Jiang Xue-Ning, Wang Hao, Ma Xiao-Ye, Meng Xian_Qin, Zhang Qing-Yu. Growth and electrical conductivity of Gd2O3 doped CeO2 ion conductor electrolyte film on sapphire substrate. Acta Physica Sinica, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [18] Ming Bao-Quan, Wang Jin-Feng, Zang Guo-Zhong, Wang Chun-Ming, Gai Zhi-Gang, Du Juan, Zheng Li-Mei. X-ray diffraction and phase transition analysis for (K, Na)NbO3-based lead-free piezoelectric ceramics. Acta Physica Sinica, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [19] Wang Lin-Jun, Liu Jian-Min, Su Qing-Feng, Shi Wei-Min, Xia Yi-Ben. Electrical properties of alpha-particle detectors based on CVD diamond films. Acta Physica Sinica, 2006, 55(5): 2518-2522. doi: 10.7498/aps.55.2518
    [20] Tan Bin, Li Zhi-Yong, Li Shi-Chen. Study of pulse transmission properties in nonlinear optical loop mirror. Acta Physica Sinica, 2004, 53(9): 3071-3076. doi: 10.7498/aps.53.3071
  • 期刊类型引用(9)

    1. 周建,廖星川,刘福深,尚肖楠,沈君逸. 应用卷积近场动力学快速模拟随机裂纹扩展. 岩土力学. 2025(02): 625-639 . 百度学术
    2. 侯昭飞,唐发满,张杨,杨佺忠,尚立涛,孙逊,赵福垚. 冲击波致裂在青海一里坪卤水开采中的增渗效果(英文). 盐湖研究. 2024(03): 78-86 . 百度学术
    3. 魏德葆,纪佑军,王泽根,蒋国斌. 微裂缝对灰岩地层固体废弃物回注能力的影响. 吉林大学学报(地球科学版). 2024(04): 1339-1349 . 百度学术
    4. 寻之朋,郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟. 物理学报. 2022(06): 365-370 . 百度学术
    5. 李滔,李骞,胡勇,彭先,冯曦,朱占美,赵梓寒. 不规则微裂缝网络定量表征及其对多孔介质渗流能力的影响. 石油勘探与开发. 2021(02): 368-378 . 百度学术
    6. LI Tao,LI Qian,HU Yong,PENG Xian,FENG Xi,ZHU Zhanmei,ZHAO Zihan. Quantitative characterization of irregular microfracture network and its effect on the permeability of porous media. Petroleum Exploration and Development. 2021(02): 430-441 . 必应学术
    7. 董少群,王涛,曾联波,刘凯,梁锋,尹启航,曹东升. 地下空间逾渗与裂缝属性的关系分析. 地学前缘. 2019(03): 140-146 . 百度学术
    8. 李乐. 开裂孔隙材料渗透率的细观力学模型研究. 力学学报. 2018(05): 1032-1040 . 百度学术
    9. 钱鹏,徐千军. 基于单元嵌入技术和弹性比拟的含裂纹混凝土三维渗流模拟方法. 工程力学. 2017(04): 125-133 . 百度学术

    其他类型引用(8)

Metrics
  • Abstract views:  9511
  • PDF Downloads:  168
  • Cited By: 17
Publishing process
  • Received Date:  12 August 2020
  • Accepted Date:  24 August 2020
  • Available Online:  10 December 2020
  • Published Online:  20 December 2020

/

返回文章
返回