Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and properties of multi-effect potassium sodium niobate based transparent ferroelectric ceramics

Liu Yong Xu Zhi-Jun Fan Li-Qun Yi Wen-Tao Yan Chun-Yan Ma Jie Wang Kun-Peng

Liu Yong, Xu Zhi-Jun, Fan Li-Qun, Yi Wen-Tao, Yan Chun-Yan, Ma Jie, Wang Kun-Peng. Preparation and properties of multi-effect potassium sodium niobate based transparent ferroelectric ceramics. Acta Phys. Sin., 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
Citation:

Preparation and properties of multi-effect potassium sodium niobate based transparent ferroelectric ceramics

Liu Yong, Xu Zhi-Jun, Fan Li-Qun, Yi Wen-Tao, Yan Chun-Yan, Ma Jie, Wang Kun-Peng
PDF
HTML
Get Citation
  • Traditional transparent materials, including glasses and polymers, are chemically unstable and mechanically weak. Single crystals of some inorganic materials are also optically transparent, which are more stable than glasses and polymers. The fabrication of crystals, however, is relatively slow. Fortunately, transparent ceramics emerge as a promising candidate. Transparent ferroelectric ceramic is a kind of transparent ceramic with electro-optic effect, which also has excellent characteristics of conventional ceramics with excellent mechanical properties, resistance to high temperature, resistance against corrosion, and high hardness. Lead based transparent ferroelectric ceramic dominates this field for many years due to its superior electro-optic effect. Owing to the high toxicity of lead oxide, however, its development is significantly hampered. Therefore, it is greatly urgent to develop the lead-free transparent ferroelectric ceramics with excellent properties to replace the traditional lead based ceramics. In this paper, (K0.5Na0.5)0.94–3xLi0.06LaxNb0.95Ta0.05O3 (KNLTN-Lax; x = 0, 0.01, 0.015, 0.02) lead-free transparent ferroelectric materials are fabricated by the conventional solid state reaction method and ordinary sintering process. The dependence of microstructure, phase structure, optical transmittance and electrical properties of the ceramic on composition are systemically investigated. The transparent ferroelectric ceramic with relaxor-behavior is obtained at x = 0.02. The optical transmittance of the ceramic near infrared region is as high as 60%. Meanwhile, the electrical properties of the ceramic at x = 0.01 still maintains a relatively high level (d33 = 110 pC/N, kp = 0.267). In addition, the Curie temperature for each of all the samples is higher than 400 ℃. These results suggest that this material might be a novel and promising lead-free material that could be used in a large variety of electro-optical devices.
      Corresponding author: Liu Yong, liuyong2049@126.com

    传统陶瓷材料具有高熔点、高硬度、耐氧化等优点, 但通常都是不透明的. 在20世纪60年代, 科研人员在研究过程中发现一些致密多晶的陶瓷材料除具有传统陶瓷的典型特性外, 还表现出高透明性[1]. 这类陶瓷材料在某些光学性能上与同材质的单晶材料相近, 在光学、激光技术、高温技术、无线电子技术以及特种仪器制造等国防和民用领域具有特殊的作用[2-6]. 透明铁电陶瓷作为新型光电功能材料受到国际上的广泛关注, 是功能材料的研究热点之一.

    锆钛酸镧铅(PLZT)陶瓷是一种典型的具有高的光学透过率以及优异的铁电、压电、电光等多种效应的透明铁电陶瓷材料[7-10]. 但是这种材料和锆钛酸铅(PZT)压电陶瓷一样, 主要成分是氧化铅(PbO), 对人类和生态环境危害严重. 此外, 当前制备透明铁电陶瓷的工艺相对复杂[11-14], 限制了其工业化应用. 因此开发和研究无铅透明铁电陶瓷, 实现器件的无铅化以及常规化制备是一项紧迫且具有重大社会经济意义的课题. 当前铌酸钾钠(KNbO3-NaNbO3, KNN)基无铅压电陶瓷由于具有优异的压电性能和高的居里温度而成为替代铅基陶瓷的理想材料[15,16].

    在对KNN基陶瓷进行掺杂改性的研究中, 发现La掺杂后KNN陶瓷样品透明度良好. 在La掺杂KNN基陶瓷体系中, La3+(离子半径1.06 Å)进入到KNN陶瓷钙钛矿结构(ABO3)中的A位, 取代Na+ (离子半径1.39 Å)和K+ (离子半径1.64 Å), 形成铌酸镧(LaNbO4)[17,18], 从而与铌酸钾(KNbO3)和铌酸钠(NaNbO3)形成新的系统. 而LaNbO4是一种稀土铌酸盐, 室温下为单斜结构, 具有铁弹性, 在形状记忆效应方面具有十分独特的应用价值[18,19]. 本文利用La3+掺杂, 采用传统陶瓷制备工艺制备出透明度良好的陶瓷体, 在此基础上, 对其相结构、透过率和电学性能做了进一步的研究.

    实验原料为K2CO3 (99%), Na2CO3 (99.8%), Li2CO3 (98%), Nb2O5 (99.5%), Ta2O5 (4N)和La2O3 (4N). 将上述原料放入烘箱(设置温度为80 ℃)干燥2 h后, 按照化学式(K0.5Na0.5)0.94–3xLi0.06LaxNb0.95Ta0.05O3 (KNLTN-Lax; x = 0, 0.01, 0.015, 0.02)进行称量配料. 利用行星式球磨机(尼龙罐、氧化锆球)以无水乙醇为球磨介质, 按照120 r/min的转速球磨8 h. 球磨后烘干, 压块后在850 ℃的温度下预烧2 h. 将预烧后得到的块料粉碎后进行二次球磨. 将瓷料烘干后, 在550 ℃的温度下进行烧杂处理, 除去在混料过程中可能引入的有机杂质. 然后在瓷料中加入占料重8%左右的聚乙烯醇(PVB)黏结剂, 研磨均匀, 在3 MPa条件下进行预压, 然后研碎过筛(50目筛), 将这些颗粒作为干压原料. 将上一步骤得到的瓷料颗粒在1.25 MPa下压成直径12 mm, 厚度0.5—1.0 mm的陶瓷片. 陶瓷片经过排塑处理后, 在1100—1180 ℃温度区间内进行常规常压烧结. 鉴于碱金属元素K和Na的易挥发性, 在烧结过程中采用埋烧法, 并用坩埚密封. 在陶瓷样品周围埋以与样品化学成分相同的熟料粉. 由于熟料粉中的碱金属元素较易挥发, 从而在密闭的坩埚中形成K, Na等气氛, 从而抑制了样品中K, Na等的挥发, 保持化学计量比的稳定. 为测试样品的相关电学性能, 还需对样品进行烧银上电极处理(烧银温度为740 ℃).

    材料表征利用德国Bruker公司的D8 Advance X射线粉末衍射仪测定陶瓷样品的相组成及晶体结构, 利用日本电子公司生产的JSM-6380型扫描电子显微镜对陶瓷样品的微观形貌进行分析表征, 用日本岛津公司的UV-3600紫外可见近红外光光谱仪测试样品的透过率, 利用美国安捷伦公司生产的Agilent 4294A精密阻抗分析仪来测试样品介电性能, 采用德国aix-ACCT公司生产的TF Analyzer 2000 FE-Module铁电分析仪测试样品的铁电性能, 使用南京民盛电子仪器有限公司生产的耐压测试仪MS2671A对样品进行极化处理, 用江苏联能电子技术有限公司生产的YE2730A型准静态测量仪测试样品的压电常数, 使用美国安捷伦公司生产的Agilent 4294A精密阻抗分析仪测量陶瓷样品的谐振频率fr和反联谐振频率fa, 并根据IEEE标准, 用谐振法和反谐振法测量kp. 计算公式如下:

    $\frac{1}{{k_{{\rm{p}}}^{\rm{2}}}} = 0.395\frac{{f_{\rm{r}}}}{{f_{\rm{a}} - f_{\rm{r}}}} + 0.574.$

    (1)

    图1为KNLTN-Lax陶瓷的X射线衍射(XRD)图谱. 对于纯的KNLTN陶瓷, 其主晶相为正交相结构. 从XRD图谱可以看出La3+掺杂明显改变了陶瓷的相结构. 陶瓷样品在45o左右的衍射峰发生了明显的变化, 其分峰形状由前高后低变为前低后高, 然后分峰情况逐渐减弱, 表明晶体结构的对称性不断提高, 样品的主晶相由正交相过渡到四方相, 然后逐渐变为赝立方相[20]. 此外随着La3+掺杂量的增加, 逐渐产生了第二相, 经分析确定第二相为α-LaNb5O14 (PDF#310664). Zhang和Zhao[21]在研究过程中也发现此杂相. α-LaNb5O14是由于La3+过量, 然后与Nb5+进一步反应生成的[18,21]. α-LaNb5O14属于稀土铌酸盐类化合物, 具有正交相结构, 是一种亚稳相[18]. 从XRD图谱还可以得出, 随La3+掺杂量的增加, 晶体结构的对称性不断提高, 而对称性的提高有助于削弱各向异性, 从而在一定程度上提高陶瓷的透明度.

    Figure 1.  XRD patterns of KNLTN-Lax ceramics.

    利用GwBasic软件结合XRD数据计算陶瓷样品的晶胞参数. 表1列出了KNLTN-Lax陶瓷样品的晶胞参数. 从表1可以明显地看出, 掺杂量较小时, 样品晶体结构的对称性是不断提高的, 其中掺杂量为0.015时对称性最高, 接近立方相. 但当掺杂量为0.02时, 由于晶格畸变以及第二相的增加影响了陶瓷晶体结构的对称性.

    Table 1.  Lattice parameters of KNLTN-Lax ceramics.
    KNLTN-Laxa标准差b标准差c标准差
    x = 04.001340.003273.926090.004243.960780.02185
    x = 0.013.967850.007073.967850.007073.892680.07532
    x = 0.0153.962250.003933.962250.003933.960670.04487
    x = 0.023.963680.002293.963680.002294.011920.02727
     | Show Table
    DownLoad: CSV

    图2为KNLTN-Lax陶瓷的扫描电子显微镜(SEM)图. 可以明显看出La3+掺杂可以有效抑制晶粒尺寸. 掺杂量为0.01和0.015的样品, 晶粒尺寸普遍都在1 μm以下. 随着La3+掺杂量继续增加, 晶粒出现团簇现象, 晶界变得模糊, 类似的实验现象也同样出现在KNN-LaAlO3体系中[22]. 根据丁达尔效应原理, 微粒尺寸越小对光的散射截面越小, 越有利于光线通过[23]. 因此足够小的晶粒尺寸能够提高陶瓷的透明度. 此外还可以看出掺杂量为0.015的陶瓷样品较为致密, 气孔较少.

    Figure 2.  SEM images of KNLTN-Lax ceramics.

    图3为KNLTN-Lax陶瓷的密度以及相对密度和组分变化之间的关系图. 利用阿基米德原理测定了陶瓷样品的密度, 利用XRD测出的晶胞参数, 结合(2)式和(3)式可计算出陶瓷样品的理论密度和相对密度:

    Figure 3.  Density and relative density of KNLTN-Lax ceramics.

    ${\rho _{{\rm{theory}}}} = \frac{{Z \cdot M}}{{{N_{\rm{A}}} \cdot V}}, $

    (2)

    ${\rho _{{\rm{relative}}}} = \frac{\rho }{{{\rho _{{\rm{theory}}}}}}{\rm{ \times }}100\%.$

    (3)

    在(2)式和(3)式中ρtheory为理论密度, ρ为实验密度, ρrelative为相对密度, Z为单位晶胞原子数, M为摩尔质量, NA为阿伏伽德罗常数, V为晶胞体积. 从图3可看出陶瓷密度在KNLTN-La0.015处达到了最大值. 此处的实验结果也与图2的SEM图形成了很好的对应关系. 此外所有陶瓷样品的相对密度都在95%以上, 其中掺杂量为0.015和0.02的陶瓷样品相对密度超过了98%. 高的致密度有利于陶瓷样品透明度的提高.

    图4为KNLTN-Lax陶瓷的透过率, 可以看出, La3+掺杂显著提高了陶瓷样品的透过率, 对于x = 0.02的陶瓷样品, 其在可见光范围透过率达到50%, 相比于未掺杂的样品(透过率为22.34%)提高了122%. 在红外光附近的透过率则接近60%, 相比于未掺杂的样品(透过率为27.78%)提高了116%. 这是由于随着La3+掺杂量的增加, 陶瓷样品晶体结构的立方化程度提高, 削弱了各向异性, 从而大幅提高了样品透过率. 图5为KNLTN-Lax陶瓷样品的数码照片. 样品厚度均为0.25 mm, 从图5可以清晰地对比各组分样品的透明度. 与铅基透明铁电陶瓷比较, KNLTN-Lax陶瓷的透过率仍有待提高.

    Figure 4.  Optical transmittance of KNLTN-Lax ceramics.
    Figure 5.  Digital pictures of KNLTN-Lax ceramics.

    图6为KNLTN-Lax陶瓷在室温下, 10 Hz频率下测试出的电滞回线. 从图6可以看出La3+掺杂后, 陶瓷样品电滞回线矩形度逐渐下降, 表明La3+掺杂削弱了陶瓷的铁电性, 这是由于La3+掺杂造成晶体结构的对称性增加, 但同时从图6可以确定掺杂后的陶瓷样品仍具有铁电体特征. La3+掺杂在一定程度上提高了透明性, 但是同时也弱化了KNN的铁电性能. 对于压电陶瓷而言, 其电学性能源于结构的不对称性. 但对称的结构更有利于获得较高的透明度, 因此需要均衡二者之间关系.

    Figure 6.  P-E hysteresis loops of KNLTN-Lax ceramics in room temperature.

    图7给出了KNLTN-Lax陶瓷样品的介电常数在不同测试频率下随温度的变化. 所有组分的陶瓷样品在测试温度区间范围内均具有2个介电峰. 分别对应着正交→四方结构的铁电-铁电相变和四方→立方结构的铁电-顺电相变[20]. 对于同一测试频率下的陶瓷样品, 随着La3+掺杂量的增加, 陶瓷样品的介电峰不断宽化, 表现出弥散相变的特征, 同时介电峰值不断减小, 居里温度不断下降. 而对于单个组分的陶瓷样品, 其介电峰随频率的增加不断宽化, 且峰值下降, 表现出频率色散的特征. 图7所反映的弥散相变和频率弥散均为典型的铁电弛豫现象[24].

    Figure 7.  Temperature dependence of dielectric constant for KNLTN-Lax ceramics measured at different frequency.

    对于弛豫性铁电体, 其还有一个重要特征就是具有非居里-外斯行为, 即在高于Tmax的温度区间内, 介电常数与温度的关系不符合居里-外斯定律[25,26].

    居里-外斯定律用来描述典型铁电体的介电常数εr在居里温度Tc以上时与温度T之间的几何关系:

    $\varepsilon _{\rm{r}} = C{(T - T_{\rm{o}})^{ - 1}}, \;T > T_{\rm{o}},$

    (4)

    其中εr为介电常数, C为居里-外斯常数, T为温度, To为居里-外斯温度.

    此外另一个参数$\Delta T_{\rm{m}}$用来表征偏离居里-外斯定律的程度, 定义为

    $\Delta T_{\rm{m}} = T_{\rm{cw}} - T_{\rm{m}}{(^{\rm{o}}}{\rm{C)}},$

    (5)

    其中, Tcw代表介电常数εr开始符合居里-外斯定律的起始温度, Tm代表介电常数出现峰值时的温度(即Tc). $\Delta T_{\rm{m}}$的数值可以通过作图得出.

    另外Uchino和Nomura[27]提出一个经验公式来描述呈现弥散相变铁电体的相变的弛豫度, 表示为

    $1/\varepsilon _{\rm{r}} - 1/(\varepsilon _{\rm{r}})_{\max } = (T - T_{\rm{c}}{)^\gamma }/C, $

    (6)

    式中, (εr)max为介电常数的峰值, Cγ都是常数, C为居里-外斯常数, γ为弥散性指数, 其数值介于1—2, 值越大, 弥散越明显, 1表示正常铁电体, 2表示理想的弛豫铁电体.

    通过推导弥散性指数γ, 对本体系的弛豫相变现象进行进一步的分析研究. 目前常用的计算弥散性指数γ的方法具体步骤如下: 对介电常数的倒数1000/εr大于Tm的部分做切线, 切线与介电常数倒数的交点对应的温度就是Tcw, 即介电常数εr开始符合居里-外斯定律的起始温度(图8). 在TcwTm的温度范围内对(6)式两边同取对数后作曲线(图9), 作图得出曲线的斜率即为弥散性指数γ. 各组分对应的数值列于表2中.

    Table 2.  The parameters Tcw, Tm, ΔTm and γ for the ceramics at 10 kHz.
    x00.010.0150.02
    Tcw433443440437
    Tm427421408403
    ΔTm6223234
    γ1.4241.6241.7141.918
     | Show Table
    DownLoad: CSV
    Figure 8.  Inverse dielectric constant (1/εr) as a function of temperature at 10 kHz for KNLTN-Lax ceramics.
    Figure 9.  Plot of log(1/ε–1/εm) as a function of log(TTm) for KNLTN-Lax ceramics.

    图9以及表2可以看出, 对于这一体系的陶瓷, 随着掺杂量的增加, 陶瓷的弥散性指数逐渐增大, 说明陶瓷材料的弛豫度不断增大.

    在掺杂量x = 0.02时, 弥散性指数达到1.918, 已接近理想弛豫铁电体状态对应的弥散性指数值2.

    图10为KNLTN-Lax陶瓷的压电常数d33和机电耦合系数kpx的变化. 从图10可以看出, d33kp随La3+掺杂量的增加先增加后降低. 掺杂量x = 0.01时, 压电性能最好, d33达到110 pC/N, kp达0.267, 相比于未掺杂的样品分别提高了32.53%和33.50%. 这是由于陶瓷结构由正交相向四方相结构转变, 在两相共存的状态有利于压电性能的提高. 随着掺杂量的进一步提高, 压电性能下降, 这是由于陶瓷结构的对称性提高, 弱化了压电性能.

    Figure 10.  The d33 and kp of KNLTN-Lax ceramics as a function of x.

    本文利用传统的陶瓷制备工艺制备出了具有较高透过率的无铅铁电陶瓷体系. 实验结果表明, La3+掺杂能够提高KNN陶瓷结构的对称性, 抑制陶瓷晶粒的生长, 提高材料的致密度, 从而提高陶瓷的透过率. 掺杂量x = 0.02的陶瓷样品, 其在可见光范围内的透过率达到50%, 在红外光附近的透过率则接近60%, 相比于未掺杂的样品分别提高了122%和116%. 并且掺杂后的KNN陶瓷仍具有良好的电学性能, 陶瓷样品具有明显的铁电体特征, 居里温度高于400 ℃, 掺杂量x = 0.01时 d33达到110 pC/N, kp达到0.267, 相比于未掺杂的样品分别提高了32.53%和33.50%. 此外, 掺杂后陶瓷样品呈现出理想的驰豫铁电体特征. 相比于单晶材料以及铅基透明铁电陶瓷, 其制备工艺相对简单, 成本较低, 在光电器件领域具有实际应用前景.

    感谢烟台大学环境与材料工程学院徐志军教授和烟台大学核装备与核工程学院初瑞清教授的大力支持和讨论.

    [1]

    兰国政 2008 化学工程与装备 1 46Google Scholar

    Lan G Z 2008 Chem. Eng. Equip. 1 46Google Scholar

    [2]

    许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第207页

    Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p207 (in Chinese)

    [3]

    Xiao Z H, Yu S J, Li Y M, Ruan S C, Kong L B, Huang Q, Huang Z G, Zhou K, Su H B, Yao Z J, Que W X, Liu Y, Zhang T S, Wang J, Liu P, Shen D Y, Allix M, Zhang J, Tang D Y 2020 Mater. Sci. Eng., R. 139 100518Google Scholar

    [4]

    Zhu Q Q, Yang P F, Wang Z Y, Hu P C 2020 J. Eur. Ceram. Soc. 40 2426Google Scholar

    [5]

    Peng B, Shi Q W, Huang W X, Wang S S, Qi J Q, Lu T C 2018 Ceram. Int. 44 13674Google Scholar

    [6]

    Terakado N, Yoshimine T, Kozawa R, Takahashi Y, Fujiwara T 2020 RSC Adv. 10 22352Google Scholar

    [7]

    Haertling G H 1987 Ferroelectrics 75 25Google Scholar

    [8]

    Feng Z H, Lin L, Wang Z Z, Zheng Z Q 2017 Opt. Commun. 399 40Google Scholar

    [9]

    Chen Y J, Sun D Z, Zhu Y Y, Zeng X, Ling L, Qiu P S, He X Y 2020 Ceram. Int. 46 6738Google Scholar

    [10]

    Zeng X, Xu C X, Xu L 2019 J. Lumin. 213 61Google Scholar

    [11]

    Zhang H, Wang H, Gu H G, Zong X, Tu B T, Xu P Y, Wang B, Wang W M, Liu S Y, Fu Z Y 2018 J. Eur. Ceram. Soc. 38 4057Google Scholar

    [12]

    Wu X, Lu S B, Kwok K W 2017 J. Alloys Compd. 695 3573Google Scholar

    [13]

    Lin C, Wang H J, Ma J Z, Deng B Y, Wu X, Lin T F, Zheng X H, Yu X 2020 J. Alloys Compd. 826 154249Google Scholar

    [14]

    Yu S, Carloni D, Wu Y 2020 J. Am. Ceram. Soc. 103 4159Google Scholar

    [15]

    Zhang M, Yang H B, Li D, Lin Y 2020 J. Alloys Compd. 829 154565Google Scholar

    [16]

    Liu Y, Chu R Q, Xu Z J, Zhang Y J, Chen Q, Li G R 2011 Mater. Sci. Eng., B 176 1463Google Scholar

    [17]

    Yang D, Yang Z Y, Zhang X S, Wei L L, Chao X L, Yang Z P 2017 J. Alloys Compd. 716 21Google Scholar

    [18]

    李艳艳 2010 硕士学位论文 (南昌: 南昌航空大学)

    Li Y Y 2010 M.S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)

    [19]

    Jian L, Wayman C M 1995 Acta Mater. 43 3893Google Scholar

    [20]

    Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar

    [21]

    Zhang P, Zhao Y G 2015 Mater. Lett. 161 620Google Scholar

    [22]

    杨振宇 2016 硕士学位论文 (西安: 陕西师范大学)

    Yang Z Y 2016 M.S. Thesis (Xi'an: Shaanxi Normal University) (in Chinese)

    [23]

    耿志明 2015 硕士学位论文 (常州: 常州大学)

    Geng Z M 2015 M. S. Thesis (Changzhou: Changzhou University) (in Chinese)

    [24]

    Thomas N W 1990 J. Phys. Chem. Solids 51 1419Google Scholar

    [25]

    郝继功 2010 硕士学位论文 (聊城: 聊城大学)

    Hao J G 2010 M.S. Thesis (Liaocheng: Liaocheng University) (in Chinese)

    [26]

    刘涛 2007 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)

    Liu T 2007 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences) (in Chinese)

    [27]

    Uchino K, Nomura S 1982 Ferroelectr. Lett. Sect. 44 55Google Scholar

  • 图 1  KNLTN-Lax陶瓷的XRD图谱

    Figure 1.  XRD patterns of KNLTN-Lax ceramics.

    图 2  KNLTN-Lax陶瓷的SEM图

    Figure 2.  SEM images of KNLTN-Lax ceramics.

    图 3  KNLTN-Lax陶瓷的密度和相对密度

    Figure 3.  Density and relative density of KNLTN-Lax ceramics.

    图 4  KNLTN-Lax陶瓷的透过率

    Figure 4.  Optical transmittance of KNLTN-Lax ceramics.

    图 5  KNLTN-Lax陶瓷的数码照片

    Figure 5.  Digital pictures of KNLTN-Lax ceramics.

    图 6  室温下KNLTN-Lax陶瓷的电滞回线

    Figure 6.  P-E hysteresis loops of KNLTN-Lax ceramics in room temperature.

    图 7  KNLTN-Lax陶瓷的介电常数在不同测试频率下随温度的变化

    Figure 7.  Temperature dependence of dielectric constant for KNLTN-Lax ceramics measured at different frequency.

    图 8  10 kHz下KNLTN-Lax陶瓷的介电常数倒数与温度的关系

    Figure 8.  Inverse dielectric constant (1/εr) as a function of temperature at 10 kHz for KNLTN-Lax ceramics.

    图 9  KNLTN-Lax陶瓷的log(1/ε–1/εm)与log(TTm)的关系

    Figure 9.  Plot of log(1/ε–1/εm) as a function of log(TTm) for KNLTN-Lax ceramics.

    图 10  KNLTN-Lax陶瓷的压电常数、机电耦合系数随x的变化

    Figure 10.  The d33 and kp of KNLTN-Lax ceramics as a function of x.

    表 1  KNLTN-Lax陶瓷的晶胞参数

    Table 1.  Lattice parameters of KNLTN-Lax ceramics.

    KNLTN-Laxa标准差b标准差c标准差
    x = 04.001340.003273.926090.004243.960780.02185
    x = 0.013.967850.007073.967850.007073.892680.07532
    x = 0.0153.962250.003933.962250.003933.960670.04487
    x = 0.023.963680.002293.963680.002294.011920.02727
    DownLoad: CSV

    表 2  KNLTN-Lax陶瓷在10 kHz下的Tcw, Tm, ΔTmγ的数值

    Table 2.  The parameters Tcw, Tm, ΔTm and γ for the ceramics at 10 kHz.

    x00.010.0150.02
    Tcw433443440437
    Tm427421408403
    ΔTm6223234
    γ1.4241.6241.7141.918
    DownLoad: CSV
  • [1]

    兰国政 2008 化学工程与装备 1 46Google Scholar

    Lan G Z 2008 Chem. Eng. Equip. 1 46Google Scholar

    [2]

    许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第207页

    Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p207 (in Chinese)

    [3]

    Xiao Z H, Yu S J, Li Y M, Ruan S C, Kong L B, Huang Q, Huang Z G, Zhou K, Su H B, Yao Z J, Que W X, Liu Y, Zhang T S, Wang J, Liu P, Shen D Y, Allix M, Zhang J, Tang D Y 2020 Mater. Sci. Eng., R. 139 100518Google Scholar

    [4]

    Zhu Q Q, Yang P F, Wang Z Y, Hu P C 2020 J. Eur. Ceram. Soc. 40 2426Google Scholar

    [5]

    Peng B, Shi Q W, Huang W X, Wang S S, Qi J Q, Lu T C 2018 Ceram. Int. 44 13674Google Scholar

    [6]

    Terakado N, Yoshimine T, Kozawa R, Takahashi Y, Fujiwara T 2020 RSC Adv. 10 22352Google Scholar

    [7]

    Haertling G H 1987 Ferroelectrics 75 25Google Scholar

    [8]

    Feng Z H, Lin L, Wang Z Z, Zheng Z Q 2017 Opt. Commun. 399 40Google Scholar

    [9]

    Chen Y J, Sun D Z, Zhu Y Y, Zeng X, Ling L, Qiu P S, He X Y 2020 Ceram. Int. 46 6738Google Scholar

    [10]

    Zeng X, Xu C X, Xu L 2019 J. Lumin. 213 61Google Scholar

    [11]

    Zhang H, Wang H, Gu H G, Zong X, Tu B T, Xu P Y, Wang B, Wang W M, Liu S Y, Fu Z Y 2018 J. Eur. Ceram. Soc. 38 4057Google Scholar

    [12]

    Wu X, Lu S B, Kwok K W 2017 J. Alloys Compd. 695 3573Google Scholar

    [13]

    Lin C, Wang H J, Ma J Z, Deng B Y, Wu X, Lin T F, Zheng X H, Yu X 2020 J. Alloys Compd. 826 154249Google Scholar

    [14]

    Yu S, Carloni D, Wu Y 2020 J. Am. Ceram. Soc. 103 4159Google Scholar

    [15]

    Zhang M, Yang H B, Li D, Lin Y 2020 J. Alloys Compd. 829 154565Google Scholar

    [16]

    Liu Y, Chu R Q, Xu Z J, Zhang Y J, Chen Q, Li G R 2011 Mater. Sci. Eng., B 176 1463Google Scholar

    [17]

    Yang D, Yang Z Y, Zhang X S, Wei L L, Chao X L, Yang Z P 2017 J. Alloys Compd. 716 21Google Scholar

    [18]

    李艳艳 2010 硕士学位论文 (南昌: 南昌航空大学)

    Li Y Y 2010 M.S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)

    [19]

    Jian L, Wayman C M 1995 Acta Mater. 43 3893Google Scholar

    [20]

    Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121Google Scholar

    [21]

    Zhang P, Zhao Y G 2015 Mater. Lett. 161 620Google Scholar

    [22]

    杨振宇 2016 硕士学位论文 (西安: 陕西师范大学)

    Yang Z Y 2016 M.S. Thesis (Xi'an: Shaanxi Normal University) (in Chinese)

    [23]

    耿志明 2015 硕士学位论文 (常州: 常州大学)

    Geng Z M 2015 M. S. Thesis (Changzhou: Changzhou University) (in Chinese)

    [24]

    Thomas N W 1990 J. Phys. Chem. Solids 51 1419Google Scholar

    [25]

    郝继功 2010 硕士学位论文 (聊城: 聊城大学)

    Hao J G 2010 M.S. Thesis (Liaocheng: Liaocheng University) (in Chinese)

    [26]

    刘涛 2007 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)

    Liu T 2007 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences) (in Chinese)

    [27]

    Uchino K, Nomura S 1982 Ferroelectr. Lett. Sect. 44 55Google Scholar

  • [1] Zhang Na, Liu Bo, Lin Li-Wei. Effect of He ion irradiation on microstructure and electrical properties of graphene. Acta Physica Sinica, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [2] Xu Ze, Lou Lu-Yao, Zhao Chun-Lin, Tang Hao-Cheng, Liu Yi-Xuan, Li Zhao, Qi Xiao-Mei, Zhang Bo-Ping, Li Jing-Feng, Gong Wen, Wang Ke. Effect of manganese doping on ferroelectric and piezoelectric properties of KNbO3 and (K0.5Na0.5)NbO3 lead-free ceramics. Acta Physica Sinica, 2020, 69(12): 127705. doi: 10.7498/aps.69.20200277
    [3] Xing Jie, Tan Zhi, Zheng Ting, Wu Jia-Gang, Xiao Ding-Quan, Zhu Jian-Guo. Research progress of high piezoelectric activity of potassium sodium niobate based lead-free ceramics. Acta Physica Sinica, 2020, 69(12): 127707. doi: 10.7498/aps.69.20200288
    [4] Wei Xiao-Wei, Tao Hong, Zhao Chun-Lin, Wu Jia-Gang. Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics. Acta Physica Sinica, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [5] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [6] Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng. X-ray transmission characteristics and potential communication application in plasma region. Acta Physica Sinica, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [7] Liu Yan-Li, Wang Wei, Dong Yan, Chen Dun-Jun, Zhang Rong, Zheng You-Dou. Effect of structure parameters on performance of N-polar GaN/InAlN high electron mobility transistor. Acta Physica Sinica, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [8] Long Jian-Fei, Zhang Tian-Ping, Li Juan, Jia Yan-Hui. Optical transparency radial distribution of ion thruster. Acta Physica Sinica, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [9] Zhang Bin, Yang Yin-Tang, Li Yue-Jin, Xu Xiao-Bo. Electrical behavior research of silicon-on-insulator SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2012, 61(23): 238502. doi: 10.7498/aps.61.238502
    [10] Zhang Qiang, Zhu Xiao-Hong, Xu Yun-Hui, Xiao Yun-Jun, Gao Hao-Bin, Liang Da-Yun, Zhu Ji-Liang, Zhu Jian-Guo, Xiao Ding-Quan. Effect of Mn4+ doping on the microstructure and electrical property of BiFeO3 ceramic. Acta Physica Sinica, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [11] Wang Bin-Ke, Tian Xiao-Xia, Xu Zhuo, Qu Shao-Bo, Li Zhen-Rong. Preparation and performances of KNN-based lead-free transparent ceramics. Acta Physica Sinica, 2012, 61(19): 197703. doi: 10.7498/aps.61.197703
    [12] Zhao Jing-Bo, Du Hong-Liang, Qu Shao-Bo, Zhang Hong-Mei, Xu Zhuo. Effects of A-site equivalence and non-equivalence substitution on polarization properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Acta Physica Sinica, 2011, 60(10): 107701. doi: 10.7498/aps.60.107701
    [13] Pan Jia-Qi, Zhu Chen-Quan, Li Yu-Ren, Lan Wei, Su Qing, Liu Xue-Qin, Xie Er-Qing. Electrical and optical properties of Cu-Al-O thin films sputtered using non-stoichiometric target. Acta Physica Sinica, 2011, 60(11): 117307. doi: 10.7498/aps.60.117307
    [14] Zhang Chun-Min, Liu Ning, Wu Fu-Quan. Analysis and calculation of Glan-Taylor prism’s transmittance at full angle of view in a polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [15] Yuan Chang-Lai, Liu Xin-Yu, Ma Jia-Feng, Zhou Chang-Rong. Study on the microstructures and electrical properties of Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3 thermistor ceramic. Acta Physica Sinica, 2010, 59(6): 4253-4260. doi: 10.7498/aps.59.4253
    [16] Yang Yi-Fa, Li Yu-Hua, Long Hua, Lu Pei-Xiang, Yang Guang, Zheng Qi-Guang. Effect of oxygen pressure on the optical properties of ZnO/Si(100) thin films deposited by femtosecond pulse laser. Acta Physica Sinica, 2009, 58(4): 2785-2791. doi: 10.7498/aps.58.2785
    [17] Jiang Xue-Ning, Wang Hao, Ma Xiao-Ye, Meng Xian_Qin, Zhang Qing-Yu. Growth and electrical conductivity of Gd2O3 doped CeO2 ion conductor electrolyte film on sapphire substrate. Acta Physica Sinica, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [18] Ming Bao-Quan, Wang Jin-Feng, Zang Guo-Zhong, Wang Chun-Ming, Gai Zhi-Gang, Du Juan, Zheng Li-Mei. X-ray diffraction and phase transition analysis for (K, Na)NbO3-based lead-free piezoelectric ceramics. Acta Physica Sinica, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [19] Wang Lin-Jun, Liu Jian-Min, Su Qing-Feng, Shi Wei-Min, Xia Yi-Ben. Electrical properties of alpha-particle detectors based on CVD diamond films. Acta Physica Sinica, 2006, 55(5): 2518-2522. doi: 10.7498/aps.55.2518
    [20] Tan Bin, Li Zhi-Yong, Li Shi-Chen. Study of pulse transmission properties in nonlinear optical loop mirror. Acta Physica Sinica, 2004, 53(9): 3071-3076. doi: 10.7498/aps.53.3071
Metrics
  • Abstract views:  8515
  • PDF Downloads:  158
  • Cited By: 0
Publishing process
  • Received Date:  12 August 2020
  • Accepted Date:  24 August 2020
  • Available Online:  10 December 2020
  • Published Online:  20 December 2020

/

返回文章
返回