-
Traditional transparent materials, including glasses and polymers, are chemically unstable and mechanically weak. Single crystals of some inorganic materials are also optically transparent, which are more stable than glasses and polymers. The fabrication of crystals, however, is relatively slow. Fortunately, transparent ceramics emerge as a promising candidate. Transparent ferroelectric ceramic is a kind of transparent ceramic with electro-optic effect, which also has excellent characteristics of conventional ceramics with excellent mechanical properties, resistance to high temperature, resistance against corrosion, and high hardness. Lead based transparent ferroelectric ceramic dominates this field for many years due to its superior electro-optic effect. Owing to the high toxicity of lead oxide, however, its development is significantly hampered. Therefore, it is greatly urgent to develop the lead-free transparent ferroelectric ceramics with excellent properties to replace the traditional lead based ceramics. In this paper, (K0.5Na0.5)0.94–3xLi0.06LaxNb0.95Ta0.05O3 (KNLTN-Lax; x = 0, 0.01, 0.015, 0.02) lead-free transparent ferroelectric materials are fabricated by the conventional solid state reaction method and ordinary sintering process. The dependence of microstructure, phase structure, optical transmittance and electrical properties of the ceramic on composition are systemically investigated. The transparent ferroelectric ceramic with relaxor-behavior is obtained at x = 0.02. The optical transmittance of the ceramic near infrared region is as high as 60%. Meanwhile, the electrical properties of the ceramic at x = 0.01 still maintains a relatively high level (d33 = 110 pC/N, kp = 0.267). In addition, the Curie temperature for each of all the samples is higher than 400 ℃. These results suggest that this material might be a novel and promising lead-free material that could be used in a large variety of electro-optical devices.
[1] 兰国政 2008 化学工程与装备 1 46
Google Scholar
Lan G Z 2008 Chem. Eng. Equip. 1 46
Google Scholar
[2] 许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第207页
Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p207 (in Chinese)
[3] Xiao Z H, Yu S J, Li Y M, Ruan S C, Kong L B, Huang Q, Huang Z G, Zhou K, Su H B, Yao Z J, Que W X, Liu Y, Zhang T S, Wang J, Liu P, Shen D Y, Allix M, Zhang J, Tang D Y 2020 Mater. Sci. Eng., R. 139 100518
Google Scholar
[4] Zhu Q Q, Yang P F, Wang Z Y, Hu P C 2020 J. Eur. Ceram. Soc. 40 2426
Google Scholar
[5] Peng B, Shi Q W, Huang W X, Wang S S, Qi J Q, Lu T C 2018 Ceram. Int. 44 13674
Google Scholar
[6] Terakado N, Yoshimine T, Kozawa R, Takahashi Y, Fujiwara T 2020 RSC Adv. 10 22352
Google Scholar
[7] Haertling G H 1987 Ferroelectrics 75 25
Google Scholar
[8] Feng Z H, Lin L, Wang Z Z, Zheng Z Q 2017 Opt. Commun. 399 40
Google Scholar
[9] Chen Y J, Sun D Z, Zhu Y Y, Zeng X, Ling L, Qiu P S, He X Y 2020 Ceram. Int. 46 6738
Google Scholar
[10] Zeng X, Xu C X, Xu L 2019 J. Lumin. 213 61
Google Scholar
[11] Zhang H, Wang H, Gu H G, Zong X, Tu B T, Xu P Y, Wang B, Wang W M, Liu S Y, Fu Z Y 2018 J. Eur. Ceram. Soc. 38 4057
Google Scholar
[12] Wu X, Lu S B, Kwok K W 2017 J. Alloys Compd. 695 3573
Google Scholar
[13] Lin C, Wang H J, Ma J Z, Deng B Y, Wu X, Lin T F, Zheng X H, Yu X 2020 J. Alloys Compd. 826 154249
Google Scholar
[14] Yu S, Carloni D, Wu Y 2020 J. Am. Ceram. Soc. 103 4159
Google Scholar
[15] Zhang M, Yang H B, Li D, Lin Y 2020 J. Alloys Compd. 829 154565
Google Scholar
[16] Liu Y, Chu R Q, Xu Z J, Zhang Y J, Chen Q, Li G R 2011 Mater. Sci. Eng., B 176 1463
Google Scholar
[17] Yang D, Yang Z Y, Zhang X S, Wei L L, Chao X L, Yang Z P 2017 J. Alloys Compd. 716 21
Google Scholar
[18] 李艳艳 2010 硕士学位论文 (南昌: 南昌航空大学)
Li Y Y 2010 M.S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)
[19] Jian L, Wayman C M 1995 Acta Mater. 43 3893
Google Scholar
[20] Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121
Google Scholar
[21] Zhang P, Zhao Y G 2015 Mater. Lett. 161 620
Google Scholar
[22] 杨振宇 2016 硕士学位论文 (西安: 陕西师范大学)
Yang Z Y 2016 M.S. Thesis (Xi'an: Shaanxi Normal University) (in Chinese)
[23] 耿志明 2015 硕士学位论文 (常州: 常州大学)
Geng Z M 2015 M. S. Thesis (Changzhou: Changzhou University) (in Chinese)
[24] Thomas N W 1990 J. Phys. Chem. Solids 51 1419
Google Scholar
[25] 郝继功 2010 硕士学位论文 (聊城: 聊城大学)
Hao J G 2010 M.S. Thesis (Liaocheng: Liaocheng University) (in Chinese)
[26] 刘涛 2007 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)
Liu T 2007 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences) (in Chinese)
[27] Uchino K, Nomura S 1982 Ferroelectr. Lett. Sect. 44 55
Google Scholar
期刊类型引用(9)
1. 周建,廖星川,刘福深,尚肖楠,沈君逸. 应用卷积近场动力学快速模拟随机裂纹扩展. 岩土力学. 2025(02): 625-639 . 百度学术
2. 侯昭飞,唐发满,张杨,杨佺忠,尚立涛,孙逊,赵福垚. 冲击波致裂在青海一里坪卤水开采中的增渗效果(英文). 盐湖研究. 2024(03): 78-86 . 百度学术
3. 魏德葆,纪佑军,王泽根,蒋国斌. 微裂缝对灰岩地层固体废弃物回注能力的影响. 吉林大学学报(地球科学版). 2024(04): 1339-1349 . 百度学术
4. 寻之朋,郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟. 物理学报. 2022(06): 365-370 . 百度学术
5. 李滔,李骞,胡勇,彭先,冯曦,朱占美,赵梓寒. 不规则微裂缝网络定量表征及其对多孔介质渗流能力的影响. 石油勘探与开发. 2021(02): 368-378 . 百度学术
6. LI Tao,LI Qian,HU Yong,PENG Xian,FENG Xi,ZHU Zhanmei,ZHAO Zihan. Quantitative characterization of irregular microfracture network and its effect on the permeability of porous media. Petroleum Exploration and Development. 2021(02): 430-441 . 必应学术
7. 董少群,王涛,曾联波,刘凯,梁锋,尹启航,曹东升. 地下空间逾渗与裂缝属性的关系分析. 地学前缘. 2019(03): 140-146 . 百度学术
8. 李乐. 开裂孔隙材料渗透率的细观力学模型研究. 力学学报. 2018(05): 1032-1040 . 百度学术
9. 钱鹏,徐千军. 基于单元嵌入技术和弹性比拟的含裂纹混凝土三维渗流模拟方法. 工程力学. 2017(04): 125-133 . 百度学术
其他类型引用(8)
-
表 1 KNLTN-Lax陶瓷的晶胞参数
Table 1. Lattice parameters of KNLTN-Lax ceramics.
KNLTN-Lax a/Å 标准差 b/Å 标准差 c/Å 标准差 x = 0 4.00134 0.00327 3.92609 0.00424 3.96078 0.02185 x = 0.01 3.96785 0.00707 3.96785 0.00707 3.89268 0.07532 x = 0.015 3.96225 0.00393 3.96225 0.00393 3.96067 0.04487 x = 0.02 3.96368 0.00229 3.96368 0.00229 4.01192 0.02727 表 2 KNLTN-Lax陶瓷在10 kHz下的Tcw, Tm, ΔTm和γ的数值
Table 2. The parameters Tcw, Tm, ΔTm and γ for the ceramics at 10 kHz.
x 0 0.01 0.015 0.02 Tcw 433 443 440 437 Tm 427 421 408 403 ΔTm 6 22 32 34 γ 1.424 1.624 1.714 1.918 -
[1] 兰国政 2008 化学工程与装备 1 46
Google Scholar
Lan G Z 2008 Chem. Eng. Equip. 1 46
Google Scholar
[2] 许煜寰 1978 铁电与压电材料 (北京: 科学出版社) 第207页
Xu Y H 1978 Ferroelectric and Piezoelectric Materials (Beijing: Science Press) p207 (in Chinese)
[3] Xiao Z H, Yu S J, Li Y M, Ruan S C, Kong L B, Huang Q, Huang Z G, Zhou K, Su H B, Yao Z J, Que W X, Liu Y, Zhang T S, Wang J, Liu P, Shen D Y, Allix M, Zhang J, Tang D Y 2020 Mater. Sci. Eng., R. 139 100518
Google Scholar
[4] Zhu Q Q, Yang P F, Wang Z Y, Hu P C 2020 J. Eur. Ceram. Soc. 40 2426
Google Scholar
[5] Peng B, Shi Q W, Huang W X, Wang S S, Qi J Q, Lu T C 2018 Ceram. Int. 44 13674
Google Scholar
[6] Terakado N, Yoshimine T, Kozawa R, Takahashi Y, Fujiwara T 2020 RSC Adv. 10 22352
Google Scholar
[7] Haertling G H 1987 Ferroelectrics 75 25
Google Scholar
[8] Feng Z H, Lin L, Wang Z Z, Zheng Z Q 2017 Opt. Commun. 399 40
Google Scholar
[9] Chen Y J, Sun D Z, Zhu Y Y, Zeng X, Ling L, Qiu P S, He X Y 2020 Ceram. Int. 46 6738
Google Scholar
[10] Zeng X, Xu C X, Xu L 2019 J. Lumin. 213 61
Google Scholar
[11] Zhang H, Wang H, Gu H G, Zong X, Tu B T, Xu P Y, Wang B, Wang W M, Liu S Y, Fu Z Y 2018 J. Eur. Ceram. Soc. 38 4057
Google Scholar
[12] Wu X, Lu S B, Kwok K W 2017 J. Alloys Compd. 695 3573
Google Scholar
[13] Lin C, Wang H J, Ma J Z, Deng B Y, Wu X, Lin T F, Zheng X H, Yu X 2020 J. Alloys Compd. 826 154249
Google Scholar
[14] Yu S, Carloni D, Wu Y 2020 J. Am. Ceram. Soc. 103 4159
Google Scholar
[15] Zhang M, Yang H B, Li D, Lin Y 2020 J. Alloys Compd. 829 154565
Google Scholar
[16] Liu Y, Chu R Q, Xu Z J, Zhang Y J, Chen Q, Li G R 2011 Mater. Sci. Eng., B 176 1463
Google Scholar
[17] Yang D, Yang Z Y, Zhang X S, Wei L L, Chao X L, Yang Z P 2017 J. Alloys Compd. 716 21
Google Scholar
[18] 李艳艳 2010 硕士学位论文 (南昌: 南昌航空大学)
Li Y Y 2010 M.S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)
[19] Jian L, Wayman C M 1995 Acta Mater. 43 3893
Google Scholar
[20] Guo Y P, Kakimoto K, Ohsato H 2004 Appl. Phys. Lett. 85 4121
Google Scholar
[21] Zhang P, Zhao Y G 2015 Mater. Lett. 161 620
Google Scholar
[22] 杨振宇 2016 硕士学位论文 (西安: 陕西师范大学)
Yang Z Y 2016 M.S. Thesis (Xi'an: Shaanxi Normal University) (in Chinese)
[23] 耿志明 2015 硕士学位论文 (常州: 常州大学)
Geng Z M 2015 M. S. Thesis (Changzhou: Changzhou University) (in Chinese)
[24] Thomas N W 1990 J. Phys. Chem. Solids 51 1419
Google Scholar
[25] 郝继功 2010 硕士学位论文 (聊城: 聊城大学)
Hao J G 2010 M.S. Thesis (Liaocheng: Liaocheng University) (in Chinese)
[26] 刘涛 2007 博士学位论文 (上海: 中国科学院上海硅酸盐研究所)
Liu T 2007 Ph. D. Dissertation (Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences) (in Chinese)
[27] Uchino K, Nomura S 1982 Ferroelectr. Lett. Sect. 44 55
Google Scholar
期刊类型引用(9)
1. 周建,廖星川,刘福深,尚肖楠,沈君逸. 应用卷积近场动力学快速模拟随机裂纹扩展. 岩土力学. 2025(02): 625-639 . 百度学术
2. 侯昭飞,唐发满,张杨,杨佺忠,尚立涛,孙逊,赵福垚. 冲击波致裂在青海一里坪卤水开采中的增渗效果(英文). 盐湖研究. 2024(03): 78-86 . 百度学术
3. 魏德葆,纪佑军,王泽根,蒋国斌. 微裂缝对灰岩地层固体废弃物回注能力的影响. 吉林大学学报(地球科学版). 2024(04): 1339-1349 . 百度学术
4. 寻之朋,郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟. 物理学报. 2022(06): 365-370 . 百度学术
5. 李滔,李骞,胡勇,彭先,冯曦,朱占美,赵梓寒. 不规则微裂缝网络定量表征及其对多孔介质渗流能力的影响. 石油勘探与开发. 2021(02): 368-378 . 百度学术
6. LI Tao,LI Qian,HU Yong,PENG Xian,FENG Xi,ZHU Zhanmei,ZHAO Zihan. Quantitative characterization of irregular microfracture network and its effect on the permeability of porous media. Petroleum Exploration and Development. 2021(02): 430-441 . 必应学术
7. 董少群,王涛,曾联波,刘凯,梁锋,尹启航,曹东升. 地下空间逾渗与裂缝属性的关系分析. 地学前缘. 2019(03): 140-146 . 百度学术
8. 李乐. 开裂孔隙材料渗透率的细观力学模型研究. 力学学报. 2018(05): 1032-1040 . 百度学术
9. 钱鹏,徐千军. 基于单元嵌入技术和弹性比拟的含裂纹混凝土三维渗流模拟方法. 工程力学. 2017(04): 125-133 . 百度学术
其他类型引用(8)
Catalog
Metrics
- Abstract views: 9511
- PDF Downloads: 168
- Cited By: 17