Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of electrode materials and bias polarities on breakdown behaviors of oxide dielectrics and their mechanisms

Wang Yan-Bin Liu Qian Wang Yong Dai Bo Wei Xian-Hua

Citation:

Effects of electrode materials and bias polarities on breakdown behaviors of oxide dielectrics and their mechanisms

Wang Yan-Bin, Liu Qian, Wang Yong, Dai Bo, Wei Xian-Hua
PDF
HTML
Get Citation
  • The memristors and the energy storage capacitors have the same sandwich structure, but the operating voltages required by the two devices are significantly different. Therefore, in the same device, it is necessary to study the influencing factors of operating voltage and adjust the operating voltage of the devices to realize the applications of the device in diverse fields. The polycrystalline ZrO2 and amorphous TaOx thin films are deposited on ITO conductive glass and Pt/Si substrates by reactive magnetron sputtering technology. Au, Ag and Al metal materials are selected as the top electrodes to construct a variety of metal/insulator/metal sandwich capacitors. The breakdown strengths of these devices under different bias polarities are studied. The results demonstrate that the breakdown strength is slightly larger for the ZrO2 based capacitor with ITO as the bottom electrode than for the Pt electrode device under negative bias. The breakdown electric field of the device with Ag as the top electrode shows obvious dependence on bias polarity, no matter whether the bottom electrode is ITO or Pt. The breakdown strength is reduced by more than an order of magnitude under a positive bias (2.13 MV/cm) compared with under a negative bias (0.17 MV/cm) of Ag/ZrO2/ITO device. The breakdown strength of the Al/TaOx/Pt device is enhanced under the forward bias (3.6 MV/cm), contrary to the Ag electrode device, which is nearly twice higher than the breakdown electric field under the negative bias (1.81 MV/cm). The different breakdown behaviors of the above devices can be explained by the migration and rearrangement of oxygen between the oxide electrode and the dielectric interface layer; the dissolution, migration and reduction of the electrochemically active metal electrode; and the redox reaction between the chemically active metal electrode and the oxide dielectric interface. The ZrO2 based capacitor with ITO electrode undergoes a redox reaction of Sn4+ in the ITO under negative bias, forming an insulating layer at the interface between the dielectric layer and the ITO electrode, which contributes a larger breakdown electric field. In addition, the electrochemical metallization process happens to the Ag electrode device under positive bias, and the breakdown electric field is smaller than negative bias due to the large diffusion coefficient of Ag ions in the film, while breakdown is dominated by the defect characteristics of the dielectric film under negative bias. The Al/TaOx/Pt devices can form AlOx oxide layer under positive bias, spontaneously, which can inhibit the leakage current, and also act as a series resistance to disperse part of the voltage and enhance the breakdown voltage of the device. The experimental results have guided significance in designing and operating the devices with different operating voltage requirements, such as memristors and dielectric energy storage capacitors.
      Corresponding author: Wei Xian-Hua, weixianhua@swust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51772252), the Science and Technology Program of Sichuan Province, China (Grant No. 2020JDRC0062), and the State Key Laboratory of Environment-friendly Energy Materials Program, Southwest University of Science and Technology, Mianyang, China (Grant Nos. 18FKSY0202, 19FKSY09)
    [1]

    Chua L 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [2]

    Hao X 2013 J. Adv. Dielectr. 3 1330001Google Scholar

    [3]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [4]

    Zheng T, Wu J, Xiao D, Zhu J 2018 Prog. Mater Sci. 98 552Google Scholar

    [5]

    Wang Y, Jie W, Yang C, Wei X, Hao J 2019 Adv. Funct. Mater. 29 1808118Google Scholar

    [6]

    Wang Y, Hu L, Wei X, Zhuge F 2020 Appl. Phys. Lett. 116 221602Google Scholar

    [7]

    Choi J, Park S, Lee J, Hong K, Kim D H, Moon C W, Park G D, Suh J, Hwang J, Kim S Y, Jung H S, Park N G, Han S, Nam K T, Jang H W 2016 Adv. Mater. 28 6562Google Scholar

    [8]

    Hu L, Fu S, Chen Y, Cao H, Liang L, Zhang H, Gao J, Wang J, Zhuge F 2017 Adv. Mater. 29 1606927Google Scholar

    [9]

    Guo J, Wang L, Liu Y, Zhao Z, Zhu E, Lin Z, Wang P, Jia C, Yang S, Lee S J, Huang W, Huang Y, Duan X 2020 Matter 2 965Google Scholar

    [10]

    Guo X, Wang Q, Lü X, Yang H, Sun K, Yang D, Zhang H, Hasegawa T, He D 2020 Nanoscale 12 4320Google Scholar

    [11]

    Liu Y, Ye C, Chang K C, Li L, Jiang B, Xia C, Liu L, Zhang X, Liu X, Xia T, Peng Z, Cao G, Cheng G, Ke S, Wang J 2020 Small 16 2004619Google Scholar

    [12]

    McPherson J W, Jinyoung K, Shanware A, Mogul H, Rodriguez J 2003 IEEE Trans. Electron Devices 50 1771Google Scholar

    [13]

    Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J F, Zhang S 2019 Prog. Mater Sci. 102 72Google Scholar

    [14]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. R. 83 1Google Scholar

    [15]

    庞华, 邓宁 2014 物理学报 63 147301Google Scholar

    Pang H, Deng N 2014 Acta Phys. Sin. 63 147301Google Scholar

    [16]

    Liu Q, Sun J, Lü H, Long S, Yin K, Wan N, Li Y, Sun L, Liu M 2012 Adv. Mater. 24 1844Google Scholar

    [17]

    Liu S, Lu N, Zhao X, Xu H, Banerjee W, Lü H, Long S, Li Q, Liu Q, Liu M 2016 Adv. Mater. 28 10623Google Scholar

    [18]

    Li Q, Qiu L, Wei X, Dai B, Zeng H 2016 Sci. Rep. 6 29347Google Scholar

    [19]

    Tian B, Nukala P, Hassine M B, Zhao X, Wang X, Shen H, Wang J, Sun S, Lin T, Sun J, Ge J, Huang R, Duan C, Reiss T, Varela M, Dkhil B, Meng X, Chu J 2017 Phys. Chem. Chem. Phys. 19 16960Google Scholar

    [20]

    Gao W, Yao M, Yao X 2017 Ceram. Int. 43 13069Google Scholar

    [21]

    Gao W, Yao M, Yao X 2018 ACS Appl. Mater. Interfaces 10 28745Google Scholar

    [22]

    Hou C, Huang W, Zhao W, Zhang D, Yin Y, Li X 2017 ACS Appl. Mater. Interfaces 9 20484Google Scholar

    [23]

    Panda D, Tseng T Y 2013 Thin Solid Films 531 1Google Scholar

    [24]

    Kudoh Y, Akami K, Matsuya Y 1999 Synth. Met. 102 973Google Scholar

    [25]

    Matsuhashi H, Nishikawa S 1994 Jpn. J. Appl. Phys. 33 1293Google Scholar

    [26]

    Atanassova E, Paskaleva A 2007 Microelectron. Reliab. 47 913Google Scholar

    [27]

    Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K, Kim K 2011 Nat. Mater. 10 625Google Scholar

    [28]

    Wu M C, Wu T H, Tseng T Y 2012 J. Appl. Phys. 111 014505Google Scholar

    [29]

    Liu Q, Long S, Wang W, Tanachutiwat S, Li Y, Wang Q, Zhang M, Huo Z, Chen J, Liu M 2010 IEEE Electron Device Lett. 31 1299Google Scholar

    [30]

    Li Y, Long S, Zhang M, Liu Q, Shao L, Zhang S, Wang Y, Zuo Q, Liu S, Liu M 2009 IEEE Electron Device Lett. 31 117Google Scholar

    [31]

    Li C, Wang F, Zhang J, She Y, Zhang Z, Liu L, Liu Q, Hao Y, Zhang K 2020 ECS J. Solid State Sci. Technol 9 041005Google Scholar

    [32]

    Atanassova E, Spassov D, Paskaleva A 2006 Microelectron. Eng. 83 1918Google Scholar

    [33]

    Kindsmüller A, Meledin A, Mayer J, Waser R, Wouters D J 2019 Nanoscale 11 18201Google Scholar

    [34]

    Yuan X C, Tang J L, Zeng H Z, Wei X H 2014 Nanoscale Res. Lett. 9 268Google Scholar

    [35]

    Ye C, Zhan C, Tsai T M, Chang K C, Chen M C, Chang T C, Deng T, Wang H 2014 Appl. Phys. Express 7 034101Google Scholar

    [36]

    Zhang J, Wang F, Li C, Shan X, Liang A, Hu K, Li Y, Liu Q, Hao Y, Zhang K 2020 Appl. Surf. Sci. 526 146723Google Scholar

    [37]

    Wu M C, Ting Y H, Chen J Y, Wu W W 2019 Adv. Sci. 6 1902363Google Scholar

    [38]

    Kuo C C, Chen I C, Shih C C, Chang K C, Huang C H, Chen P H, Chang T, Tsai T M, Chang J S, Huang J C 2015 IEEE Electron Device Lett. 36 1321Google Scholar

  • 图 1  MIM器件用于阻变及储能电容器时的机理图以及对工作电压的要求

    Figure 1.  Schematic diagram of the MIM devices for resistive switching and energy storage with different operation voltages.

    图 2  ZrO2和TaOx薄膜的XRD, AFM和SEM图 (a) ITO基底上沉积的ZrO2薄膜; (b) Pt/Si基底上沉积的ZrO2薄膜; (c) Pt/Si 基底上沉积的TaOx薄膜

    Figure 2.  XRD, AFM and SEM patterns of the ZrO2 and TaOx thin films: (a) The ZrO2 thin film deposited on ITO/glass; (b) the ZrO2 thin film deposited on Pt/Si; (c) the TaOx thin film deposited on Pt/Si.

    图 3  ZrO2基电容器的I-E特征曲线 (a) Ag/ZrO2/Pt和Au/ZrO2/Pt器件; (b) Ag/ZrO2/ITO和Au/ZrO2/ITO器件

    Figure 3.  I-E characteristics of ZrO2 based capacitors: (a) Ag/ZrO2/Pt and Au/ZrO2/Pt; (b) Ag/ZrO2/ITO and Au/ZrO2/ITO.

    图 4  ZrO2基电容器在正负偏压下的击穿电场统计图

    Figure 4.  Statistical charts of positive and negative breakdown electric field of ZrO2-based capacitors.

    图 5  Pt/Si基底上TaOx基器件 (a) I-E特征曲线; (b)正负偏压下击穿电场值统计图

    Figure 5.  Positive and negative breakdown electric field of TaOx based devices: (a) I-E characteristics; (b) statistical charts.

    图 6  器件在施加偏压下的击穿机理示意图 (a)负偏压下的Au/ZrO2/ITO器件; (b), (c) 正负偏压下的Ag/ZrO2/Pt器件; (d) 正偏压下的Al/TaOx/Pt器件

    Figure 6.  Schematic diagrams of the breakdown mechanisms of the devices under different applied biases: (a) The Au/ZrO2/ITO device under negative bias; (b), (c) Ag/ZrO2/Pt devices under positive and negative biases, respectively; (d) the Al/TaOx/Pt device under positive bias.

  • [1]

    Chua L 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [2]

    Hao X 2013 J. Adv. Dielectr. 3 1330001Google Scholar

    [3]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [4]

    Zheng T, Wu J, Xiao D, Zhu J 2018 Prog. Mater Sci. 98 552Google Scholar

    [5]

    Wang Y, Jie W, Yang C, Wei X, Hao J 2019 Adv. Funct. Mater. 29 1808118Google Scholar

    [6]

    Wang Y, Hu L, Wei X, Zhuge F 2020 Appl. Phys. Lett. 116 221602Google Scholar

    [7]

    Choi J, Park S, Lee J, Hong K, Kim D H, Moon C W, Park G D, Suh J, Hwang J, Kim S Y, Jung H S, Park N G, Han S, Nam K T, Jang H W 2016 Adv. Mater. 28 6562Google Scholar

    [8]

    Hu L, Fu S, Chen Y, Cao H, Liang L, Zhang H, Gao J, Wang J, Zhuge F 2017 Adv. Mater. 29 1606927Google Scholar

    [9]

    Guo J, Wang L, Liu Y, Zhao Z, Zhu E, Lin Z, Wang P, Jia C, Yang S, Lee S J, Huang W, Huang Y, Duan X 2020 Matter 2 965Google Scholar

    [10]

    Guo X, Wang Q, Lü X, Yang H, Sun K, Yang D, Zhang H, Hasegawa T, He D 2020 Nanoscale 12 4320Google Scholar

    [11]

    Liu Y, Ye C, Chang K C, Li L, Jiang B, Xia C, Liu L, Zhang X, Liu X, Xia T, Peng Z, Cao G, Cheng G, Ke S, Wang J 2020 Small 16 2004619Google Scholar

    [12]

    McPherson J W, Jinyoung K, Shanware A, Mogul H, Rodriguez J 2003 IEEE Trans. Electron Devices 50 1771Google Scholar

    [13]

    Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J F, Zhang S 2019 Prog. Mater Sci. 102 72Google Scholar

    [14]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. R. 83 1Google Scholar

    [15]

    庞华, 邓宁 2014 物理学报 63 147301Google Scholar

    Pang H, Deng N 2014 Acta Phys. Sin. 63 147301Google Scholar

    [16]

    Liu Q, Sun J, Lü H, Long S, Yin K, Wan N, Li Y, Sun L, Liu M 2012 Adv. Mater. 24 1844Google Scholar

    [17]

    Liu S, Lu N, Zhao X, Xu H, Banerjee W, Lü H, Long S, Li Q, Liu Q, Liu M 2016 Adv. Mater. 28 10623Google Scholar

    [18]

    Li Q, Qiu L, Wei X, Dai B, Zeng H 2016 Sci. Rep. 6 29347Google Scholar

    [19]

    Tian B, Nukala P, Hassine M B, Zhao X, Wang X, Shen H, Wang J, Sun S, Lin T, Sun J, Ge J, Huang R, Duan C, Reiss T, Varela M, Dkhil B, Meng X, Chu J 2017 Phys. Chem. Chem. Phys. 19 16960Google Scholar

    [20]

    Gao W, Yao M, Yao X 2017 Ceram. Int. 43 13069Google Scholar

    [21]

    Gao W, Yao M, Yao X 2018 ACS Appl. Mater. Interfaces 10 28745Google Scholar

    [22]

    Hou C, Huang W, Zhao W, Zhang D, Yin Y, Li X 2017 ACS Appl. Mater. Interfaces 9 20484Google Scholar

    [23]

    Panda D, Tseng T Y 2013 Thin Solid Films 531 1Google Scholar

    [24]

    Kudoh Y, Akami K, Matsuya Y 1999 Synth. Met. 102 973Google Scholar

    [25]

    Matsuhashi H, Nishikawa S 1994 Jpn. J. Appl. Phys. 33 1293Google Scholar

    [26]

    Atanassova E, Paskaleva A 2007 Microelectron. Reliab. 47 913Google Scholar

    [27]

    Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K, Kim K 2011 Nat. Mater. 10 625Google Scholar

    [28]

    Wu M C, Wu T H, Tseng T Y 2012 J. Appl. Phys. 111 014505Google Scholar

    [29]

    Liu Q, Long S, Wang W, Tanachutiwat S, Li Y, Wang Q, Zhang M, Huo Z, Chen J, Liu M 2010 IEEE Electron Device Lett. 31 1299Google Scholar

    [30]

    Li Y, Long S, Zhang M, Liu Q, Shao L, Zhang S, Wang Y, Zuo Q, Liu S, Liu M 2009 IEEE Electron Device Lett. 31 117Google Scholar

    [31]

    Li C, Wang F, Zhang J, She Y, Zhang Z, Liu L, Liu Q, Hao Y, Zhang K 2020 ECS J. Solid State Sci. Technol 9 041005Google Scholar

    [32]

    Atanassova E, Spassov D, Paskaleva A 2006 Microelectron. Eng. 83 1918Google Scholar

    [33]

    Kindsmüller A, Meledin A, Mayer J, Waser R, Wouters D J 2019 Nanoscale 11 18201Google Scholar

    [34]

    Yuan X C, Tang J L, Zeng H Z, Wei X H 2014 Nanoscale Res. Lett. 9 268Google Scholar

    [35]

    Ye C, Zhan C, Tsai T M, Chang K C, Chen M C, Chang T C, Deng T, Wang H 2014 Appl. Phys. Express 7 034101Google Scholar

    [36]

    Zhang J, Wang F, Li C, Shan X, Liang A, Hu K, Li Y, Liu Q, Hao Y, Zhang K 2020 Appl. Surf. Sci. 526 146723Google Scholar

    [37]

    Wu M C, Ting Y H, Chen J Y, Wu W W 2019 Adv. Sci. 6 1902363Google Scholar

    [38]

    Kuo C C, Chen I C, Shih C C, Chang K C, Huang C H, Chen P H, Chang T, Tsai T M, Chang J S, Huang J C 2015 IEEE Electron Device Lett. 36 1321Google Scholar

  • [1] Sun Yu-Ting, Li Ming-Ming, Wang Ling-Rui, Fan Zhen, Guo Er-Jia, Guo Hai-Zhong. Research progress of control of physical properties of topological phase change oxide films by external field. Acta Physica Sinica, 2023, 72(9): 096801. doi: 10.7498/aps.72.20222266
    [2] Hu Wei, Liao Jian-Bin, Du Yong-Qian. An analytic modeling strategy for memristor cell applicable to large-scale memristive networks. Acta Physica Sinica, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [3] Deng Wen, Wang Li-Sheng, Liu Jia-Ning, Yu Xue-Ling, Chen Feng-Xiang. Resistive switching behavior and mechanism of multilayer MoS2 memtransistor under control of back gate bias and light illumination. Acta Physica Sinica, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [4] Shi Chen-Yang, Min Guang-Zong, Liu Xiang-Yang. Research progress of protein-based memristor. Acta Physica Sinica, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [5] Dong Jiu-Feng, Deng Xing-Lei, Niu Yu-Juan, Pan Zi-Zhao, Wang Hong. Research progress of polymer based dielectrics for high-temperature capacitor energy storage. Acta Physica Sinica, 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [6] Shao Nan,  Zhang Sheng-Bing,  Shao Shu-Yuan. Mathematical model of memristor with sensory memory. Acta Physica Sinica, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [7] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Analysis of memristor model with learning-experience behavior. Acta Physica Sinica, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [8] Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity. Acta Physica Sinica, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [9] Liu Yi-Chun, Lin Ya, Wang Zhong-Qiang, Xu Hai-Yang. Oxide-based memristive neuromorphic synaptic devices. Acta Physica Sinica, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [10] Yu Zhi-Qiang, Liu Min-Li, Lang Jian-Xun, Qian Kai, Zhang Chang-Hua. Resistive switching characteristics and resistive switching mechanism of Au/TiO2/FTO memristor. Acta Physica Sinica, 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [11] Wu Jie-Ning, Wang Li-Dan, Duan Shu-Kai. A memristor-based time-delay chaotic systems and pseudo-random sequence generator. Acta Physica Sinica, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [12] Wu Quan-Tan, Shi Tuo, Zhao Xiao-Long, Zhang Xu-Meng, Wu Fa-Cai, Cao Rong-Rong, Long Shi-Bing, Lü Hang-Bing, Liu Qi, Liu Ming. Two-dimensional hexagonal boron nitride based memristor. Acta Physica Sinica, 2017, 66(21): 217304. doi: 10.7498/aps.66.217304
    [13] Xu Ya-Ming, Wang Li-Dan, Duan Shu-Kai. A memristor-based chaotic system and its field programmable gate array implementation. Acta Physica Sinica, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [14] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Modification of memristor model with synaptic characteristics and mechanism analysis of the model's learning-experience behavior. Acta Physica Sinica, 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [15] Yuan Ze-Shi, Li Hong-Tao, Zhu Xiao-Hua. A digital-analog hybrid random number generator based on memristor. Acta Physica Sinica, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [16] Guo Yu-Quan, Duan Shu-Kai, Wang Li-Dan. Influence of length parameter on the characteristics of nanoscale titanium oxide memristor. Acta Physica Sinica, 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [17] Xu Hui, Tian Xiao-Bo, Bu kai, Li Qing-Jiang. Influence of temperature change on conductive characteristics of titanium oxide memristor. Acta Physica Sinica, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [18] Tian Xiao-Bo, Xu Hui, Li Qing-Jiang. Influence of the cross section area on the conductive characteristics of titanium oxide memristor. Acta Physica Sinica, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [19] Liu Dong-Qing, Cheng Hai-Feng, Zhu Xuan, Wang Nan-Nan, Zhang Chao-Yang. Research progress of memristors and memristive mechanism. Acta Physica Sinica, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [20] Jia Lin-Nan, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Progress of memristor modulated by interfacial effect. Acta Physica Sinica, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
Metrics
  • Abstract views:  6427
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  04 August 2020
  • Accepted Date:  15 December 2020
  • Available Online:  01 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回