-
In lunar circumstances, lunar dust has special properties such as conductivity, which can cause lunar dust to easily adhere to the surface of detection equipment. And this behavior will cause the equipment to fail to function properly and thus affecting the lunar exploration missions. According to the researches of lunar dust protection, in this article the passive protection technology of lunar dust is mainly analyzed. Firstly, the lunar-dust caused adverse factors and effects on detection equipment are analyzed. Then the mechanism of lunar dust adhesion is studied, and the theoretical basis of the two main forces that cause adhesion is discussed. Secondly, the main methods of reducing the adhesion of lunar dust particles are systematically explained according to different adhesion mechanisms, and the latest progress of the passive protection technology of the lunar dust is introduced in detail. Combined with the different protection methods, the method of testing the adhesion of the lunar dust is summarized. These studies lay the foundation for effectively protecting the surface of detection equipment from being affected by the lunar dust.
-
Keywords:
- lunar dust /
- passive protection technology /
- adhesion mechanism /
- testing method
[1] Zhang H, Wang Y, Chen L, Zhang H, Li C, Zhuang J, Li D, Wang Y, Yang S, Li X, Wang W 2020 Sci. China Ser. E: Technol. Sci. 63 520Google Scholar
[2] 裴照宇, 侯军, 王琼 2020 红外与激光工程 49 19Google Scholar
Pei Z Y, Hou J, Wang Q 2020 Infrared Laser Eng. 49 19Google Scholar
[3] Gaier J R 2011 SAE Int. J. Aerosp. 4 279Google Scholar
[4] Mcallister F 1972 NASA Technical Report TN D-6737
[5] [6] Buhler C R, Calle C I, Clements J S, Mantovani J, Ritz M I 2007 IEEE Aerospace Conference Big Sky, USA, March 3–10, 2007 p1
[7] 潘万竞 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Pan W J 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[8] Sun Y, Liu J, Zheng Y, Xiao C, Wan B, Guo L, Wang X, Bo W 2017 J. Chin. Med. Assoc. 81 133Google Scholar
[9] Walton O R 2007 NASA Technical Report 214685
[10] Berkebile S, Street K, Gaier J 2011 3rd AIAA Atmospheric Space Environments Conference Honolulu, USA, June 27–30, 2011 p3675
[11] Greenberg P S, Chen D R, Smith S A 2007 NASA Technical Report 214956
[12] Yang L, Jaesung P, Darren S, Eddy H, Lawrence A T 2008 J. Aerosp. Eng. 21 272Google Scholar
[13] Heavens N G, Richardson M I, Kleinböhl A 2011 J. Geophys. Res.Planets 4 116Google Scholar
[14] Grün E, Horanyi M, Sternovsky Z 2011 Planet. Space Sci. 59 1672Google Scholar
[15] Horanyi M 1996 Annu. Rev. Astron. Astrophys. 34 383Google Scholar
[16] Rima J I, Daniel J, Luis A, Benjamin F, Monhammed A 2019 Sol. Energy Mater. Sol. Cells 191 413Google Scholar
[17] Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP 1961 Adv. Phys. 10 165Google Scholar
[18] Hamed A, Geoffrey E, Roberto M A 2016 Powder Technol. 299 9Google Scholar
[19] Avijit K, Shuvojit P, Soumitro B, Banerjee A 2019 Appl. Phys. Lett. 115 123701Google Scholar
[20] Valmacco V, Elzbieciak-Wodka M, Besnard C, Maroni P, Trefalt G, Borkovec M 2016 Nanoscale Horiz. 1 325Google Scholar
[21] Holger G, Miltiadis V P 2017 Powder Technol. 322 185Google Scholar
[22] Javid M, Amin K M, Vahid A, Shokoufeh A, Matthew S 2019 J. Electrostat. 97 58Google Scholar
[23] Wang J, Wang X, Zhu T, Zhao Y 2018 J. Electrostat. 94 14Google Scholar
[24] Zhao Y, Fang J, Wang Y, Shen Y, Wang C 2019 Powder Technol. 357 33Google Scholar
[25] Zhu K, Rao S M, Huang H Q, Wang C H, Matsusaka S, Masuda H 2004 Chem. Eng. Sci. 59 3201Google Scholar
[26] Nein M E, Davis B 1991 Proc. SPIE 98 110Google Scholar
[27] Polizos G, Sharma J K, Smith D B, Tuncer E, Park J, Voylov D, Sololov A P, Meyer H M, Aman M 2018 Sol. Energy Mater. Sol. Cells 188 255Google Scholar
[28] 薛伟, 郑蓓蓉, 张淼, 解国新, 王权 2009 物理学报 4 2518Google Scholar
Xue W, Zheng R R, Zhang M, Xie G X, Wang Q 2009 Acta Phys. Sin. 4 2518Google Scholar
[29] 颜晨曦, 宋娟娟, 曹建平 2019 电镀与精饰 41 14Google Scholar
Yan C X, Song J J, Cao J P 2019 Plat. Finish. 41 14Google Scholar
[30] Zhan W, Wang W, Xiao Z, Yu X, Zhang Y 2018 Surf. Coat. Technol. 356 123Google Scholar
[31] Amiriafshar M, Rafieazad M, Duan X, AliNasiri A 2020 Surf. Interfaces 100526Google Scholar
[32] Peillon S, Autricque A, Redolfi M, Stancu C, Pluchery O 2019 J. Aerosol Sci. 137 105431Google Scholar
[33] Moutinho H R, Jiang C S, To B, Perkins, Muller M, Al-Jassim M M, Simpson L 2017 Sol. Energy Mater. Sol. Cells 172 145Google Scholar
[34] Wu S, Altenried S, Zogg A, Zuber F, Maniura K, Ren Q 2018 ACS Omega 3 6456Google Scholar
[35] Li D, Li N, Su X, Liu K, Ji P, Wang B 2019 Appl. Surf. Sci. 489 648Google Scholar
[36] Ji Z, Bao L, Wang H, Chen R 2017 Mater. Lett. 207 21Google Scholar
[37] Gotlib-Vainstein K, Gouzman I, Girshevitz O, Bolker A, Atar N, Grossman E, Sukenlk, Chaim N 2015 ACS Appl. Mater. Interfaces 7 3539Google Scholar
[38] Du Q, Ai J, Qin Z, Liu J, Zeng X 2018 J. Mater. Process. Technol. 251 188Google Scholar
[39] Critchlow G, Webb P, Tremlett C, Brown K 2000 Int. J. Adhes. Adhes. 20 113Google Scholar
[40] Van Dam J P B, Abrahami S T, Yilmaz A, Gonzalez G, Trrryn H 2020 Int. J. Adhes. Adhes. 96 102450Google Scholar
[41] Chen J, Qi A, Rodriguez R D, Sheremmet E, Wang Y, Sowade E, Baumann R R, Feng Z 2019 Appl. Surf. Sci. 487 503Google Scholar
[42] Quan Y Y, Zhang L Z 2017 Sol. Energy Mater. Sol. Cells 160 382Google Scholar
[43] Chi F T, Liu D J, Wu H Y, Lei J H 2019 Sol. Energy Mater. Sol. Cells 200 109939Google Scholar
[44] Maharjan S, Liao K, Wang A, Barton K, Curran S A 2020 Mater. Chem. Phys. 239 122000Google Scholar
[45] Cui H, Zheng Z 2019 Thin Solid Films 691 137612Google Scholar
[46] Choi D Y, Jung S H, Song D K, An E J, Park D, Kim T O, Jung J H, Lee H M 2017 ACS Appl. Mater. Interfaces 9 16495Google Scholar
[47] Masuda S, Fujibayashi K, Ishida K, Inaba H 1972 Electr. Eng. Jpn. 92 43Google Scholar
[48] Kawamoto H, Uchiyama M, Cooper B L, McKay D S 2011 J. Electrostat. 69 370Google Scholar
[49] Kawamoto H, Guo B 2018 J. Electrostat. 91 28Google Scholar
[50] Yilbas B S, Al-Qahtani H, Al-Sharafi A, Bahattab S, Kassas M 2019 Sci. Rep. 9 8703Google Scholar
[51] [52] Manyapu K K, De Leon P, Peltz L, Gaier J R, Waters D 2017 Acta Astronaut. 137 472Google Scholar
[53] Kavya K M, Leora P, Pablo D L 2019 J. Space Saf. Eng. 6 248Google Scholar
[54] Richard D, Norman J W, Maria K 2018 48th International Conference on Environmental Systems. Albuquerque, New Mexico, July 8-12, 2018 p183
[55] Jiang J, Lu Y, Zhao H, Wang L 2019 Acta Astronaut. 165 17Google Scholar
[56] Lu Y, Jiang J, Yan X, Wang L 2019 Smart Mater. Struct. 28 085010Google Scholar
[57] Zhang J, Zhu C, Lv J, Wei C, Feng J 2018 ACS Appl. Mater. Interfaces 10 40219Google Scholar
[58] Crowder M S, Stover R, Lawitzke A, Devaud G, Dove A, Wang X 2010 Optical System Contamination: Effects, Measurements, and Control San Diego, USA, August 10, 2008 p77940G
[59] Nguyen T T, Rambanapasi C, Boer A H D, Fruhkubj H W, Ven P, Vries J, Busscher H, Maarschalk K 2010 Int. J. Pharm. 393 89Google Scholar
[60] 徐阳, 齐振一, 王志浩, 田东波 2019 表面技术 48 167Google Scholar
Xu Y, Qi Z Y, Wang Z H, Tian D P 2019 Surf. Technol. 48 167Google Scholar
[61] Gaier J, Waters D L, Misconin R, Banks B, Crowder M 2011 41st International Conference on Environmental System Portland, Oregon, July 17-21, 2011 p5183
[62] 孙旗霞, 杨宁宁, 蔡小兵, 胡更开 2012 力学进展 6 113Google Scholar
Sun Q X, Yang N N, Cai X B, Hu G K 2012 Adv. Mech. 6 113Google Scholar
[63] Gaier J R, Jaworske D A 2007 AIP Conference Proc. 880 27Google Scholar
[64] Kulvanich P, Stewart P 1987 Int. J. Pharm. 35 111Google Scholar
[65] Booth S W, Newton J M 1987 J. Pharm. Pharmacol. 39 679Google Scholar
[66] Salazar-Banda G R, Felicetti M A, Concalves J A S, Coury J R, Aguiar M L 2007 Powder Technol. 173 107Google Scholar
[67] Markelonis A, Wang J S, Ullrich B U, Chien M W, Brown G J 2014 Appl. Nanoscience 5 457Google Scholar
[68] Schulze H, Wahl B, Gottschalk G 1989 J. Colloid Interface Sci. 128 57Google Scholar
[69] Kawamoto H, Seki K 2005 Trans. Jpn. Soc. Mech. Eng. C 71 1161Google Scholar
[70] Kawamoto H 2012 Proceedings of Earth and Space Conference Shanghai, China, June 8–11, 2012 p94
[71] 王志浩, 白羽, 田东波, 李蔓 2015 装备环境工程 12 75Google Scholar
Wang Z H, Bai Y, Tian D B, Li M 2015 Equip. Environ. Eng. 12 75Google Scholar
[72] 李青, 任德鹏, 王闯, 张熇 2018 航天器工程 27 137Google Scholar
Li Q, Ren D P, Wang C, Zhang H 2018 Spacecraft Eng. 27 137Google Scholar
-
图 3 不同方式处理后的玻璃表面的黏附力 (a), (b)太阳能玻璃表面上的粒子组件的AFM图像; (c)用PDMS预处理的太阳能玻璃、太阳能玻璃、涂有纳米结构粒子组件的太阳能玻璃上的黏附力值; 在10个不同的区域进行测量, 值的误差小于10%, 灰色区域对应于将二氧化硅球从表面分离所需的能量[27]
Figure 3. Adhesion force of solar glass surface treated in different ways: (a), (b) AFM images of the particle assemblies on the solar glass surface; (c) adhesion force values on the surface of solar glass pretreated with PDMS, solar glass, and solar glass coated with nanostructured particle assemblies. Measurements were performed on ten different areas. The error in the values is less than 10%. The grey areas correspond to the energy required to separate a silica sphere from the surface[27].
图 4 纳米结构涂层的制备及表面特征 (a)纳米结构涂层的制备; (b)—(e)在700 °C进行2 h相分离处理后的涂层SEM图像, 其中(b)酸预处理后的表面图像; (c)酸蚀刻处理后的表面低倍率图像和(d)高倍率图像; (e)热处理后的涂层的SEM图像[30]
Figure 4. Preparation and surface characteristics of nanostructured coatings. (a) Preparation of the nanostructured coatings. (b)–(e) SEM images of coatings after phase separation treatment at 700 °C for 2 h: (b) Image of the surface after acid pretreatment; (c) low-magnification and (d) high-magnification images of the surface after acid etching treatment; (e) SEM image of the coating after heat treatment[30].
图 5 (a)接收样品、(b)喷砂样品和(c)研磨样品表面SEM图像; (d), (e), (f) EDX叠加在接收、喷砂、研磨样品的SEM图像; (g) 研磨样品(f)的高倍扫描电镜显微图; (h)涂Zn涂层的研磨样品截面图[31]
Figure 5. SEM micrographs taken from the surface of (a) as-received, (b) sand-blasted, and (c) ground samples. The EDX chemical concentration maps superimposed on the SEM images of the coated (d) as-received, (e) sand-blasted, and (f) ground surfaces. (g) Higher magnification SEM micrograph of the ground surface shown in (f). (h) SEM image showing the applied Zn coating cross-sectional view on the ground surface[31].
图 9 不同激光功率强度及强度处理的聚酰亚胺表面的水接触角[38] (a) 7.7 × 104 W/cm2, 40%; (b) 7.7 × 104 W/cm2, 60%; (c) 7.7 × 104 W/cm2, 90%; (d)前进角7.7 × 104 W/cm2, 90%; (e)滞后角7.7 × 104 W/cm2, 90%; (f) 1.0 × 106 W/cm2, –40%; (g) 1.0 × 106 W/cm2, 0%; (h) 1.0 × 106 W/cm2, 40%
Figure 9. Water contact angle of polyimide surface treated with different laser power intensities and overlaps: (a) 7.7 × 104 W/cm2 and 40%; (b) 7.7 × 104 W/cm2 and 60%; (c) 7.7 × 104 W/cm2 and 90%; (d) advancing angle at 7.7 × 104 W/cm2 and 90%; (e) receding angle at 7.7 × 104 W/cm2 and 90%; (f) 1.0 × 106 W/cm2 and –40%; (g) 1.0 × 106 W/cm2 and 0%; (h) 1.0 × 106 W/cm2 and 40%[38].
图 10 聚酰亚胺(PI)薄膜表面形貌图[41] (a), (d), (g)原始PI薄膜的SEM, AFM, EDS图像; (b), (e), (h)使用KOH预处理后的PI薄膜的SEM, AFM, EDS图像; (c), (f), (i)使用GA-PEI进一步处理后的PI薄膜的SEM, AFM, EDS图像
Figure 10. Surface topography of polyimide film[41]: SEM images, AFM images and EDS spectra of (a), (d), (g) original PI film, (b), (e), (h) pre-modified PI film treated with KOH and (c), (f), (i) PI film further treated with GA-PEI.
-
[1] Zhang H, Wang Y, Chen L, Zhang H, Li C, Zhuang J, Li D, Wang Y, Yang S, Li X, Wang W 2020 Sci. China Ser. E: Technol. Sci. 63 520Google Scholar
[2] 裴照宇, 侯军, 王琼 2020 红外与激光工程 49 19Google Scholar
Pei Z Y, Hou J, Wang Q 2020 Infrared Laser Eng. 49 19Google Scholar
[3] Gaier J R 2011 SAE Int. J. Aerosp. 4 279Google Scholar
[4] Mcallister F 1972 NASA Technical Report TN D-6737
[5] [6] Buhler C R, Calle C I, Clements J S, Mantovani J, Ritz M I 2007 IEEE Aerospace Conference Big Sky, USA, March 3–10, 2007 p1
[7] 潘万竞 2016 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Pan W J 2016 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[8] Sun Y, Liu J, Zheng Y, Xiao C, Wan B, Guo L, Wang X, Bo W 2017 J. Chin. Med. Assoc. 81 133Google Scholar
[9] Walton O R 2007 NASA Technical Report 214685
[10] Berkebile S, Street K, Gaier J 2011 3rd AIAA Atmospheric Space Environments Conference Honolulu, USA, June 27–30, 2011 p3675
[11] Greenberg P S, Chen D R, Smith S A 2007 NASA Technical Report 214956
[12] Yang L, Jaesung P, Darren S, Eddy H, Lawrence A T 2008 J. Aerosp. Eng. 21 272Google Scholar
[13] Heavens N G, Richardson M I, Kleinböhl A 2011 J. Geophys. Res.Planets 4 116Google Scholar
[14] Grün E, Horanyi M, Sternovsky Z 2011 Planet. Space Sci. 59 1672Google Scholar
[15] Horanyi M 1996 Annu. Rev. Astron. Astrophys. 34 383Google Scholar
[16] Rima J I, Daniel J, Luis A, Benjamin F, Monhammed A 2019 Sol. Energy Mater. Sol. Cells 191 413Google Scholar
[17] Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP 1961 Adv. Phys. 10 165Google Scholar
[18] Hamed A, Geoffrey E, Roberto M A 2016 Powder Technol. 299 9Google Scholar
[19] Avijit K, Shuvojit P, Soumitro B, Banerjee A 2019 Appl. Phys. Lett. 115 123701Google Scholar
[20] Valmacco V, Elzbieciak-Wodka M, Besnard C, Maroni P, Trefalt G, Borkovec M 2016 Nanoscale Horiz. 1 325Google Scholar
[21] Holger G, Miltiadis V P 2017 Powder Technol. 322 185Google Scholar
[22] Javid M, Amin K M, Vahid A, Shokoufeh A, Matthew S 2019 J. Electrostat. 97 58Google Scholar
[23] Wang J, Wang X, Zhu T, Zhao Y 2018 J. Electrostat. 94 14Google Scholar
[24] Zhao Y, Fang J, Wang Y, Shen Y, Wang C 2019 Powder Technol. 357 33Google Scholar
[25] Zhu K, Rao S M, Huang H Q, Wang C H, Matsusaka S, Masuda H 2004 Chem. Eng. Sci. 59 3201Google Scholar
[26] Nein M E, Davis B 1991 Proc. SPIE 98 110Google Scholar
[27] Polizos G, Sharma J K, Smith D B, Tuncer E, Park J, Voylov D, Sololov A P, Meyer H M, Aman M 2018 Sol. Energy Mater. Sol. Cells 188 255Google Scholar
[28] 薛伟, 郑蓓蓉, 张淼, 解国新, 王权 2009 物理学报 4 2518Google Scholar
Xue W, Zheng R R, Zhang M, Xie G X, Wang Q 2009 Acta Phys. Sin. 4 2518Google Scholar
[29] 颜晨曦, 宋娟娟, 曹建平 2019 电镀与精饰 41 14Google Scholar
Yan C X, Song J J, Cao J P 2019 Plat. Finish. 41 14Google Scholar
[30] Zhan W, Wang W, Xiao Z, Yu X, Zhang Y 2018 Surf. Coat. Technol. 356 123Google Scholar
[31] Amiriafshar M, Rafieazad M, Duan X, AliNasiri A 2020 Surf. Interfaces 100526Google Scholar
[32] Peillon S, Autricque A, Redolfi M, Stancu C, Pluchery O 2019 J. Aerosol Sci. 137 105431Google Scholar
[33] Moutinho H R, Jiang C S, To B, Perkins, Muller M, Al-Jassim M M, Simpson L 2017 Sol. Energy Mater. Sol. Cells 172 145Google Scholar
[34] Wu S, Altenried S, Zogg A, Zuber F, Maniura K, Ren Q 2018 ACS Omega 3 6456Google Scholar
[35] Li D, Li N, Su X, Liu K, Ji P, Wang B 2019 Appl. Surf. Sci. 489 648Google Scholar
[36] Ji Z, Bao L, Wang H, Chen R 2017 Mater. Lett. 207 21Google Scholar
[37] Gotlib-Vainstein K, Gouzman I, Girshevitz O, Bolker A, Atar N, Grossman E, Sukenlk, Chaim N 2015 ACS Appl. Mater. Interfaces 7 3539Google Scholar
[38] Du Q, Ai J, Qin Z, Liu J, Zeng X 2018 J. Mater. Process. Technol. 251 188Google Scholar
[39] Critchlow G, Webb P, Tremlett C, Brown K 2000 Int. J. Adhes. Adhes. 20 113Google Scholar
[40] Van Dam J P B, Abrahami S T, Yilmaz A, Gonzalez G, Trrryn H 2020 Int. J. Adhes. Adhes. 96 102450Google Scholar
[41] Chen J, Qi A, Rodriguez R D, Sheremmet E, Wang Y, Sowade E, Baumann R R, Feng Z 2019 Appl. Surf. Sci. 487 503Google Scholar
[42] Quan Y Y, Zhang L Z 2017 Sol. Energy Mater. Sol. Cells 160 382Google Scholar
[43] Chi F T, Liu D J, Wu H Y, Lei J H 2019 Sol. Energy Mater. Sol. Cells 200 109939Google Scholar
[44] Maharjan S, Liao K, Wang A, Barton K, Curran S A 2020 Mater. Chem. Phys. 239 122000Google Scholar
[45] Cui H, Zheng Z 2019 Thin Solid Films 691 137612Google Scholar
[46] Choi D Y, Jung S H, Song D K, An E J, Park D, Kim T O, Jung J H, Lee H M 2017 ACS Appl. Mater. Interfaces 9 16495Google Scholar
[47] Masuda S, Fujibayashi K, Ishida K, Inaba H 1972 Electr. Eng. Jpn. 92 43Google Scholar
[48] Kawamoto H, Uchiyama M, Cooper B L, McKay D S 2011 J. Electrostat. 69 370Google Scholar
[49] Kawamoto H, Guo B 2018 J. Electrostat. 91 28Google Scholar
[50] Yilbas B S, Al-Qahtani H, Al-Sharafi A, Bahattab S, Kassas M 2019 Sci. Rep. 9 8703Google Scholar
[51] [52] Manyapu K K, De Leon P, Peltz L, Gaier J R, Waters D 2017 Acta Astronaut. 137 472Google Scholar
[53] Kavya K M, Leora P, Pablo D L 2019 J. Space Saf. Eng. 6 248Google Scholar
[54] Richard D, Norman J W, Maria K 2018 48th International Conference on Environmental Systems. Albuquerque, New Mexico, July 8-12, 2018 p183
[55] Jiang J, Lu Y, Zhao H, Wang L 2019 Acta Astronaut. 165 17Google Scholar
[56] Lu Y, Jiang J, Yan X, Wang L 2019 Smart Mater. Struct. 28 085010Google Scholar
[57] Zhang J, Zhu C, Lv J, Wei C, Feng J 2018 ACS Appl. Mater. Interfaces 10 40219Google Scholar
[58] Crowder M S, Stover R, Lawitzke A, Devaud G, Dove A, Wang X 2010 Optical System Contamination: Effects, Measurements, and Control San Diego, USA, August 10, 2008 p77940G
[59] Nguyen T T, Rambanapasi C, Boer A H D, Fruhkubj H W, Ven P, Vries J, Busscher H, Maarschalk K 2010 Int. J. Pharm. 393 89Google Scholar
[60] 徐阳, 齐振一, 王志浩, 田东波 2019 表面技术 48 167Google Scholar
Xu Y, Qi Z Y, Wang Z H, Tian D P 2019 Surf. Technol. 48 167Google Scholar
[61] Gaier J, Waters D L, Misconin R, Banks B, Crowder M 2011 41st International Conference on Environmental System Portland, Oregon, July 17-21, 2011 p5183
[62] 孙旗霞, 杨宁宁, 蔡小兵, 胡更开 2012 力学进展 6 113Google Scholar
Sun Q X, Yang N N, Cai X B, Hu G K 2012 Adv. Mech. 6 113Google Scholar
[63] Gaier J R, Jaworske D A 2007 AIP Conference Proc. 880 27Google Scholar
[64] Kulvanich P, Stewart P 1987 Int. J. Pharm. 35 111Google Scholar
[65] Booth S W, Newton J M 1987 J. Pharm. Pharmacol. 39 679Google Scholar
[66] Salazar-Banda G R, Felicetti M A, Concalves J A S, Coury J R, Aguiar M L 2007 Powder Technol. 173 107Google Scholar
[67] Markelonis A, Wang J S, Ullrich B U, Chien M W, Brown G J 2014 Appl. Nanoscience 5 457Google Scholar
[68] Schulze H, Wahl B, Gottschalk G 1989 J. Colloid Interface Sci. 128 57Google Scholar
[69] Kawamoto H, Seki K 2005 Trans. Jpn. Soc. Mech. Eng. C 71 1161Google Scholar
[70] Kawamoto H 2012 Proceedings of Earth and Space Conference Shanghai, China, June 8–11, 2012 p94
[71] 王志浩, 白羽, 田东波, 李蔓 2015 装备环境工程 12 75Google Scholar
Wang Z H, Bai Y, Tian D B, Li M 2015 Equip. Environ. Eng. 12 75Google Scholar
[72] 李青, 任德鹏, 王闯, 张熇 2018 航天器工程 27 137Google Scholar
Li Q, Ren D P, Wang C, Zhang H 2018 Spacecraft Eng. 27 137Google Scholar
Catalog
Metrics
- Abstract views: 10333
- PDF Downloads: 246
- Cited By: 0