-
Space solar cell array is the only power source for satellites, and the mechanical impact on solar array during its in-orbit service will directly affect the normal operation of the satellites. Therefore, it is of great significance to study the stress and strain law of space solar array. In this paper, we establish a strain-testing system for space solar array, and this system can help test the strain data of space solar array under simulated space vacuum and thermal cycling field. We find that the space solar cells suffer compression deformation at high temperature and tensile deformation at low temperature. The total maximum strain of the free cell and pasted cell under the same conditions are 1270 and 1320 με, respectively. In addition, the strain of middle area is 113% higher than that of the edge area in one space solar cell. The rupturing strain of space solar cell is 2080 με. These measured data conduce to studying the deformation characteristics of solar cells in space environment, which can help researchers get the deformation regularity of space solar cells. They also provide experimental basis for stress-relieving arrangement of space solar array. This research provides technical support for studying the deformation resistance of space solar cells.
-
Keywords:
- space solar cell array /
- strain /
- thermal vacuum test
[1] Hoang B, Wong F K, Corey R L, Gardiner G, Funderburk V V, Gahart R L, Wright K H J, Schneider T A, Vaughn J A 2012 IEEE Trans. on Pla. Sci. 40 324Google Scholar
[2] Shin G H, Kim D G, Kwon S J, Lee H S, Toyota H 2019 J. Kor. Phy. Soc. 74 1079Google Scholar
[3] Hoang B, Beyene S, Harty T, Huang W, Hisiro W 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) Chicago, USA, June 16–21, 2019 p2781
[4] Banik J A, Carpenter B F 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) New Orleans, USA, June 14–19, 2015 p1
[5] John Gibb 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) Waikoloa Village, USA, June 10–15, 2018 p3530
[6] 吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 钱勇, 陈鸣波 2011 物理学报 60 098110Google Scholar
Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110Google Scholar
[7] 王晓燕, 何世禹, 郑双 2005 太阳能学报 26 631Google Scholar
Wang X Y, He S Y, Zheng S 2005 Acta Ener. Sol. Sin. 26 631Google Scholar
[8] 黄后学, 刘振宇, 陈娅琪, 吴慧英 2012 上海交通大学学报 46 790
Huang H X, Liu Z Y, Chen Y Q, Wu H Y 2012 J. Shanghai Jiaotong Univ. 46 790
[9] 张丽新, 杨士勤, 何世禹 2006 中国胶粘剂 11 1Google Scholar
Zhang L X, Yang S Q, He S Y 2006 China Adhe. 11 1Google Scholar
[10] Dixit K K, Yadav I, Gupta G K, Maurya S K 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC) Mathura, India, Feb. 28–29, 2020 p360
[11] Lisbona E F, Baur C, Witteveen B, Guiot M 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) Denver, USA, June 8–13, 2014 p1802
[12] Nguyen D H, Skladnay L M, Prats B D 2001 4th International Symposium on Environmental Testing for Space Programmes, Proceedings Liege, Belgium, June 12–14, 2001 p165
[13] Li J L, Yan S Z, Cai R Y 2013 Aerospace Sci. Tech. 27 84Google Scholar
[14] 黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银 2008 物理学报 57 7950Google Scholar
Huang J G, Han J W, Li H W, Cai M H, Li X Y 2008 Acta Phys. Sin. 57 7950Google Scholar
[15] 王晓燕, 耿洪滨, 何世禹, 杨德庄 2006 航天器环境工程 23 34Google Scholar
Wang X Y, Geng H B, He S Y, Yang D Z 2006 Spacecraft Env. Engin. 23 34Google Scholar
[16] 刘振宇, 陈娅琪, 吴慧英 2013 上海交通大学学报 47 1762
Liu Z Y, Chen Y Q, Wu H Y 2013 Jour. Shanghai Jiaotong Univ. 47 1762
[17] 王晓燕, 耿洪滨, 何世禹, 杨德庄 2007 太阳能学报 28 345Google Scholar
Wang X Y, Geng H B, He S Y, Yang D Z 2007 Acta Ener. Sol. Sin. 28 345Google Scholar
[18] 张冠敏, 杜晓光, 田茂诚 2015 太阳能学报 36 2094Google Scholar
Zhang G M, Du X G, Tian M C 2015 Acta Ener. Sol. Sin. 36 2094Google Scholar
[19] 史加贝, 刘铸永, 洪嘉振 2017 宇航学报 38 789
Shi J B, Liu Z Y, Hong J Z 2017 J. Astro. 38 789
[20] 王晓燕, 耿洪滨, 何世禹, 刘勇, Pokhyl Y O, Koval V K 2005 绝缘材料 2 34Google Scholar
Wang X Y, Geng H B, He S Y, Liu Y, Pokhyl Y O, Koval V K 2005 Insulation Mat. 2 34Google Scholar
[21] Zhang S J, Zhang Y H 2013 Adv. Mechat. Control Engineer, PTS 1–3 278 500
[22] 丁延卫, 王晓耕, 张立华, 潘增富 2009 航天器工程 18 44Google Scholar
Ding Y W, Wang X G, Zhang L H, Pan Z F 2009 Spacecraft Eng. 18 44Google Scholar
[23] Sun B, Li Y, Wang Z L, Ren Y, Feng Q, Yang D Z, Jiang H F 2019 IEEE Acce. 7 80840Google Scholar
-
图 2 (a)电池粘贴应变传感器示意图; (b)应变信号采集线路连接示意图; (c)热真空实验温度曲线; (d)空间太阳电池热真空实验应变数据, 黑色为粘接在太阳翼基板上电池应变数据, 红色为未粘接自由状态电池应变数据
Figure 2. (a) Schematic diagram of strain sensor pasted on a space solar cell; (b) schematic diagram for strain signal collection circuit; (c) temperature curve of thermal vacuum test; (d) strain curves of space solar cell during thermal vacuum test. The black line is strain data for solar cells bonded on the substrate, and the red one for free solar cells not bonded on substrate.
图 4 (a) 同片电池粘贴应变传感器的示意图; (b) 热真空实验温度曲线; (c) 同片空间太阳电池不同位置热真空实验应变数据, 红色为太阳电池中心区域应变数据, 黑色为太阳电池边缘区域应变数据; (d) 同片空间太阳电池片应变规律总结
Figure 4. (a) Schematic diagram of strain sensors pasted on one space solar cell; (b) temperature curve of thermal vacuum test; (c) strain curves test from different area in one space solar cell during thermal vacuum test, where the red line is strain data from the middle area of the solar cell, and the black one from the edge area of the solar cell; (d) strain summary of one space solar cell.
表 1 不同弯曲半径条件下电池应变值
Table 1. Strain data of space solar cell under different bending radius conditions.
弯曲半径/cm 20 17.5 15 12.5 10 7.5 5 电池应变值/με 401 577 810 945 1210 1550 2080 -
[1] Hoang B, Wong F K, Corey R L, Gardiner G, Funderburk V V, Gahart R L, Wright K H J, Schneider T A, Vaughn J A 2012 IEEE Trans. on Pla. Sci. 40 324Google Scholar
[2] Shin G H, Kim D G, Kwon S J, Lee H S, Toyota H 2019 J. Kor. Phy. Soc. 74 1079Google Scholar
[3] Hoang B, Beyene S, Harty T, Huang W, Hisiro W 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) Chicago, USA, June 16–21, 2019 p2781
[4] Banik J A, Carpenter B F 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) New Orleans, USA, June 14–19, 2015 p1
[5] John Gibb 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) Waikoloa Village, USA, June 10–15, 2018 p3530
[6] 吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 钱勇, 陈鸣波 2011 物理学报 60 098110Google Scholar
Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110Google Scholar
[7] 王晓燕, 何世禹, 郑双 2005 太阳能学报 26 631Google Scholar
Wang X Y, He S Y, Zheng S 2005 Acta Ener. Sol. Sin. 26 631Google Scholar
[8] 黄后学, 刘振宇, 陈娅琪, 吴慧英 2012 上海交通大学学报 46 790
Huang H X, Liu Z Y, Chen Y Q, Wu H Y 2012 J. Shanghai Jiaotong Univ. 46 790
[9] 张丽新, 杨士勤, 何世禹 2006 中国胶粘剂 11 1Google Scholar
Zhang L X, Yang S Q, He S Y 2006 China Adhe. 11 1Google Scholar
[10] Dixit K K, Yadav I, Gupta G K, Maurya S K 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC) Mathura, India, Feb. 28–29, 2020 p360
[11] Lisbona E F, Baur C, Witteveen B, Guiot M 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) Denver, USA, June 8–13, 2014 p1802
[12] Nguyen D H, Skladnay L M, Prats B D 2001 4th International Symposium on Environmental Testing for Space Programmes, Proceedings Liege, Belgium, June 12–14, 2001 p165
[13] Li J L, Yan S Z, Cai R Y 2013 Aerospace Sci. Tech. 27 84Google Scholar
[14] 黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银 2008 物理学报 57 7950Google Scholar
Huang J G, Han J W, Li H W, Cai M H, Li X Y 2008 Acta Phys. Sin. 57 7950Google Scholar
[15] 王晓燕, 耿洪滨, 何世禹, 杨德庄 2006 航天器环境工程 23 34Google Scholar
Wang X Y, Geng H B, He S Y, Yang D Z 2006 Spacecraft Env. Engin. 23 34Google Scholar
[16] 刘振宇, 陈娅琪, 吴慧英 2013 上海交通大学学报 47 1762
Liu Z Y, Chen Y Q, Wu H Y 2013 Jour. Shanghai Jiaotong Univ. 47 1762
[17] 王晓燕, 耿洪滨, 何世禹, 杨德庄 2007 太阳能学报 28 345Google Scholar
Wang X Y, Geng H B, He S Y, Yang D Z 2007 Acta Ener. Sol. Sin. 28 345Google Scholar
[18] 张冠敏, 杜晓光, 田茂诚 2015 太阳能学报 36 2094Google Scholar
Zhang G M, Du X G, Tian M C 2015 Acta Ener. Sol. Sin. 36 2094Google Scholar
[19] 史加贝, 刘铸永, 洪嘉振 2017 宇航学报 38 789
Shi J B, Liu Z Y, Hong J Z 2017 J. Astro. 38 789
[20] 王晓燕, 耿洪滨, 何世禹, 刘勇, Pokhyl Y O, Koval V K 2005 绝缘材料 2 34Google Scholar
Wang X Y, Geng H B, He S Y, Liu Y, Pokhyl Y O, Koval V K 2005 Insulation Mat. 2 34Google Scholar
[21] Zhang S J, Zhang Y H 2013 Adv. Mechat. Control Engineer, PTS 1–3 278 500
[22] 丁延卫, 王晓耕, 张立华, 潘增富 2009 航天器工程 18 44Google Scholar
Ding Y W, Wang X G, Zhang L H, Pan Z F 2009 Spacecraft Eng. 18 44Google Scholar
[23] Sun B, Li Y, Wang Z L, Ren Y, Feng Q, Yang D Z, Jiang H F 2019 IEEE Acce. 7 80840Google Scholar
Catalog
Metrics
- Abstract views: 4850
- PDF Downloads: 71
- Cited By: 0