Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stability and corrosion behavior of AlOx coating on T91 steel and SIMP steel in static liquid Pb-Bi eutectic at 600 ℃

Liao Qing Li Bing-Sheng Ge Fang-Fang Zhang Hong-Peng Shen Tie-Long Mao Xue-Li Wang Ren-Da Sheng Yan-Bin Chang Hai-Long Wang Zhi-Guang Xu Shuai Chen Li-Ming He Xiao-Xun

Citation:

Stability and corrosion behavior of AlOx coating on T91 steel and SIMP steel in static liquid Pb-Bi eutectic at 600 ℃

Liao Qing, Li Bing-Sheng, Ge Fang-Fang, Zhang Hong-Peng, Shen Tie-Long, Mao Xue-Li, Wang Ren-Da, Sheng Yan-Bin, Chang Hai-Long, Wang Zhi-Guang, Xu Shuai, Chen Li-Ming, He Xiao-Xun
PDF
HTML
Get Citation
  • Ferritic/martensitic steels, such as T91 steel and SIMP steel, are chosen as the main candidates of structural materials for the Generation IV lead-cooled fast reactors and accelerator driven system. However, the compatibility between container steel and liquid Pb-Bi eutectic (LBE) at high temperature limits their applications. The corrosion of ferritic/martensitic steels is serious in LBE at 600 ℃. In order to avoid corroding the ferritic/martensitic steels in LBE, it is proposed to coat AlOx (x < 1.5) on the steel surface. The AlOx coating is conducted on T91 steel and SIMP steel by magnetron sputtering. In this exploratory work, the corrosion results of AlOx coating steel are compared with the corrosion results of the uncoated steel in LBE with a saturated oxygen concentration at 600 ℃ for 300 h and 700 h. The results show that the AlOx coating can effectively prevent the iron chromium and oxygen from diffusing, so the oxide scale of the coated steel is thinner than that of the uncoated steel. However, the coating cracks after 700 h corrosion in LBE. Meanwhile, T91 steel and SIMP steel also suffer serious oxidative corrosion, indicating that the coating can protect the substrate from being corroded by 600 ℃ static LBE in a short time. However, the coating cannot keep stable for a long time in LBE at 600 ℃. This may be due to the weak film base bonding force of AlOx coating prepared under the experimental conditions, or a large number of metal aluminum and structural defects existing in AlOx coating. It is needed to further study the stability of AlOx coating in LBE at elevated temperature.
      Corresponding author: Li Bing-Sheng, libingshengmvp@163.com
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. U1832133, 12075194) and the Scientific Research Fundation of the Science and Technology Department of Sichuan Province, China (Grant No. 2020ZYD055).
    [1]

    Sar F, Mhiaoui S, Gasser J G 2007 J. Non. Cryst. Solids. 353 3622Google Scholar

    [2]

    Sobolev V 2007 J. Nucl. Mater. 362 235Google Scholar

    [3]

    Zhang J 2014 Adv. Eng. Mater. 16 349Google Scholar

    [4]

    Zhang J, Ning L 2008 J. Nucl. Mater. 373 351Google Scholar

    [5]

    Xu Y C, Zhang Y G, Li X Y, Liu W, Li D D, Liu C S, Pan B C, Wang Z G 2017 Corros. Sci. 118 1Google Scholar

    [6]

    Barbier F, Rusanov A 2001 J. Nucl. Mater. 296 231Google Scholar

    [7]

    Martinelli L, Jean-Louis C, Fanny B C 2011 Nucl. Eng. Des. 241 1288Google Scholar

    [8]

    Concetta F 2015 Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies (2015 Edition-Introduction) (OECD Nuclear Energy Agency)

    [9]

    Zhang J 2009 Corros. Sci. 51 1207Google Scholar

    [10]

    Takaya S, Furukawa T, Müller G, Heinzel A, Jianu A, Weisenburger A, Aoto K, Inoue M, Okuda T, Abe F, Ohnuki S, Fujisawa T, Kimura A 2012 J. Nucl. Mater. 428 125Google Scholar

    [11]

    Srinivasan P B, Kumar M 2009 Mater. Chem. Phys. 115 179Google Scholar

    [12]

    Müller G, Schumacher G, Zimmermann F 2000 J. Nucl. Mater. 278 85Google Scholar

    [13]

    Deloffre P, Balbaud-Célérier F, Terlain A 2004 J. Nucl. Mater. 335 180Google Scholar

    [14]

    Weisenburger A, Heinzel A, Müller G, Muscher H, Rousanov A 2008 J. Nucl. Mater. 376 274Google Scholar

    [15]

    Fetzer R, Weisenburger A, Jianu A, Müller G 2012 Corros. Sci. 55 213Google Scholar

    [16]

    Short M P, Ballinger R G, Hänninen H E 2013 J. Nucl. Mater. 434 259Google Scholar

    [17]

    Hosemann P, Thau H T, Johnson A L, Maloy S A, Li N 2008 J. Nucl. Mater. 373 246Google Scholar

    [18]

    Takaya S, Furukawa T, Aoto K, Müller G, Weisenburger A, Heinzel A, Inoue M, Okuda T, Abe F, Ohnuki S, Fujisawa T and Kimura A 2009 J. Nucl. Mater. 386–388 507Google Scholar

    [19]

    Takaya S, Furukawa T, Inoue M, Fujisawa T, Okuda T, Abe F, Ohnuki S, Kimura A 2010 J. Nucl. Mater. 398 132Google Scholar

    [20]

    Heinzel A, Kondo M, Takahashi M 2006 J. Nucl. Mater. 350 264Google Scholar

    [21]

    Kurata Y, Futakawa M, Saito S 2004 J. Nucl. Mater. 335 501Google Scholar

    [22]

    Ferré F G, Mairov A, Iadicicco D, Vanazzi M, Bassini S, Utili M, Tarantino M, Bragaglia M, Lamastra F R, Nanni F, Ceseracciu L, Serruys Y, Trocellier P, Beck L, Sridharan K, Beghi M G , Di Fonzo F 2017 Corros. Sci. 124 80Google Scholar

    [23]

    Glasbrenner H, Gröschel F 2006 J. Nucl. Mater. 356 213Google Scholar

    [24]

    Weisenburger A, Jianu A, Doyle S, Bruns M, Fetzer R, Heinzel A, Del Giacco M, An W, Müller G 2013 J. Nucl. Mater 437 282Google Scholar

    [25]

    Ferré G, Ormellese M, Fonzo F D, Beghi M G 2013 Corros. Sci. 77 375Google Scholar

    [26]

    Sordo F, Abánades A, Lafuente A, Martínez-Val J M, Perlado M 2009 Nucl. Eng. Des. 239 2573Google Scholar

    [27]

    Borgstedt H U, Frees G 1995 Liquid Metal Systems. (New York: Springer) p339

    [28]

    Ellingham H J T 1994 J. Soc. Chem. Ind. 63 125

    [29]

    Yeliseyeva O, Tsisar V, Zhou Z 2013 J. Nucl. Mater. 442 434Google Scholar

    [30]

    Weisenburger A, Schroer C, Jianu A, Heinzel A, Konys J, Steiner H, Müller G, Fazio C, Gessi A, Babayan S, Kobzova A, Martinelli L, Ginestar K, Balbaud-Célerier F, Martín-Muñoz F J, Soler Crespo L 2011 J. Nucl. Mater. 415 260Google Scholar

    [31]

    Weisenburger A, Mansani L, Schumacher G, Müller G 2014 Nucl. Eng. Des. 273 584Google Scholar

    [32]

    Martinelli L, Balbaud-Célérier F, Terlain A, Bosonnet S, Picard G, Santarini G 2008 Corros. Sci. 50 2537Google Scholar

    [33]

    Martinelli L, Balbaud-Célérier F, Picard G, Santarini G 2008 Corros. Sci. 50 2549Google Scholar

    [34]

    Miorin E, Montagner F, Zin V, Giuranno D, Deambrosis S M 2019 Surf. Coat. Technol. 377 124890Google Scholar

    [35]

    Comstock M 2009 J. Nucl. Mater. 382 272Google Scholar

    [36]

    Tan L, Machut M T, Sridharan K 2007 J. Nucl. Mater. 371 161Google Scholar

    [37]

    Li B S, Liao Q, Zhang H P, Shen T L, Ge F F, Nabil D 2021 Corros. Sci. 187 109477Google Scholar

    [38]

    Zhang L L, Yan W, Shi Q Q, Li Y F, Shen Y Y, Yang K 2020 Corros. Sci. 167 108519Google Scholar

    [39]

    Liu J, Yan W, Sha W, Wang W, Shan Y Y, Yang K 2016 J. Nucl. Mater. 473 189Google Scholar

    [40]

    Li Y, Wang S, Sun P, Xu D, Ren M, Guo Y, Lin G 2017 Corros. Sci. 128 241Google Scholar

    [41]

    Shi Q, Liu J, Luan H, Yang Z, Wang W, Yan W, Shan Y, Yang K 2015 J. Nucl. Mater. 457 135Google Scholar

    [42]

    Behnamian Y, Mostafaei A, Kohandehghan A, Amirkhiz B S, Serate D, Sun Y, Liu S, Aghaie E, Zeng Y, Chmielus M, Zheng W, Guzonas D 2016 Corros. Sci. 106 188Google Scholar

    [43]

    Martinelli L, Balbaud-Célérier F, Terlian A, Delpech S, Santarini G, Favergeon J, Moulin G, Tabarant M, Picard G 2008 Corros. Sci. 50 2523Google Scholar

    [44]

    Bian L Z, Chen Z Y, Wang L J, Li F S, Chou K C 2017 J. Iron. Steel. Res. Int. 24 77Google Scholar

    [45]

    Huntz A M, Maréchal L, Lesage B, Molins R 2006 Appl. Surf. Sci. 252 7781Google Scholar

    [46]

    Melander A 1997 Int. J. Fatigue 19 13Google Scholar

    [47]

    Wang Q S, Wang W Q, Shi Z M 2018 E. Science. 113 012146Google Scholar

    [48]

    Echsler H, Martinez E A, Singheiser L, Quadakkers W J 2004 Mater. Sci. Eng. A 384 1Google Scholar

    [49]

    Hayashi H, Watanabe M, Inaba H 2000 Thermochim Acta. 359 77Google Scholar

    [50]

    Mavko G, Mukerji T, Dvorkin J 2009 The Rock Physics Handbook: Elasticity and Hooke's law 2 21Google Scholar

  • 图 1  腐蚀实验设备的简单示意图

    Figure 1.  A simple schematic diagram of the corrosion test equipment.

    图 2  简化的Ellingham图, 铁、铅、铬和铝氧化物的热力学数据见文献[8]

    Figure 2.  Experimental condition of thermodynamics in a simplified Ellingham diagram. Thermodynamic data for Fe, Pb, Cr and Al oxides are obtained in Ref. [8].

    图 3  T91钢和SIMP钢在600 ℃ LBE中暴露300 h和700 h后的X射线衍射图 (a) T91钢; (b) SIMP钢

    Figure 3.  X-ray diffraction patterns of T91 steel and SIMP steel after exposing in oxygen-saturated static liquid LBE at 600 ℃ for 300 h and 700 h: (a) T91 steel; (b) SIMP.

    图 4  T91钢和SIMP钢在600 ℃的LBE中腐蚀300 h和700 h后的表面SEM图  (a) LBE中腐蚀300 h后无涂层的T91钢表面; (b) LBE中腐蚀300 h后有涂层的T91钢表面; (c) LBE中腐蚀300 h后无涂层的SIMP钢表面; (d) LBE中腐蚀300 h后有涂层的SIMP钢表面; (e) LBE中腐蚀700 h后无涂层的T91钢表面; (f) LBE中腐蚀700 h后有涂层的T91钢表面; (g) LBE中腐蚀700 h后无涂层的SIMP钢表面; (h) LBE中腐蚀700 h后无涂层的SIMP钢表面

    Figure 4.  SEM images showing the surface morphology of SIMP and T91 steels after 300 h and 700 h corrosion in LBE at 600 ℃: (a) The uncoated surface of T91 steel in LBE for 300 h; (b) the coated surface of T91 steel in LBE for 300 h; (c) the uncoated surface of SIMP steel in LBE for 300 h; (d) the coated surface of SIMP steel in LBE for 300 h; (e) the uncoated surface of T91 steel in LBE for 700 h; (f) the coated surface of T91 steel in LBE for 700 h; (g) the uncoated surface of SIMP steel in LBE for 700 h; (h) the coated surface of SIMP steel in LBE for 700 h.

    图 5  在600 ℃的LBE中腐蚀300 h后SIMP钢涂层表面的SEM显微照片和表框区域Al, O, Cr和Fe分布图

    Figure 5.  SEM micrograph of the coated surface of SIMP steel after 300 h corrosion in LBE at 600 ℃ and the elemental mapping images of Al, O, Cr and Fe.

    图 6  涂层T91钢和SIMP钢在600 ℃的 LBE中腐蚀300 h后表面扫描电子显微镜显微照片 (a) T91钢; (b) SIMP钢

    Figure 6.  SEM micrograph of the coated surface of T91 and SIMP steels after 300 h corrosion in LBE at 600 ℃: (a) T91 steel; (b) SIMP steel

    图 7  在600 ℃的LBE中腐蚀300 h后T91钢和SIMP钢的横截面SEM图像和EDS线性分析(扫描方向从左到右) (a), (b)涂层T91钢; (c), (d)无涂层T91钢; (e), (f)涂层SIMP钢; (g), (h)无涂层SIMP钢

    Figure 7.  Cross-sectional SEM images and EDS linear analysis of T91 and SIMP steels after 300 h corrosion in LBE at 600 ℃: (a), (b) The coated T91; (c), (d) the uncoated T91; (e), (f) the coated SIMP; (g), (h) the uncoated SIMP.

    图 8  在600 ℃的LBE中腐蚀LBE中腐蚀300 h后T91钢和SIMP钢的SEM 图和EDS图谱 (a)涂层T91钢; (b)涂层SIMP钢

    Figure 8.  Cross-sectional SEM image and EDS mapping of T91 and SIMP steels after 300 h corrosion in LBE at 600 ℃ : (a) The coated T91 steel; (b) coated SIMP steel.

    图 9  T91钢和SIMP钢在600℃的LBE中腐蚀700 h后的横截面SEM图像和EDS线性分析(扫描方向从左到右) (a), (b)涂层T91钢; (c), (d)无涂层T91钢; (e), (f)涂层SIMP钢; (g), (h)无涂层SIMP钢.

    Figure 9.  Cross-sectional SEM images and EDS linear analysis of T91 and SIMP steels after 700 h corrosion in LBE at 600 ℃: (a), (b) The coated T91; (c), (d) the uncoated T91; (e), (f) the coated SIMP; (g), (h) the uncoated SIMP.

    表 1  研究钢材的化学成分(质量分数)

    Table 1.  Chemical compositions of the studied steels (mass fraction%)

    元素FeCrNiMoVSiCNbNTaW
    T91Bal8.500.250.950.190.200.100.0670.05
    SIMPBal10.500.201.400.200.010.151.50
    DownLoad: CSV

    表 2  磁控溅射制备AlOx薄膜的典型工艺参数(1 sccm = 1 mL/min)

    Table 2.  Typical process parameters of the AlOx films prepared by magnetron sputtering

    靶功率/W频率 /kHzO2 流量/sccm氩气流量/sccm靶温度/℃沉积速率/(nm·min–1)
    4003508.632259
    DownLoad: CSV

    表 3  T91钢和SIMP钢在600 ℃静态LBE下表面氧化物在图4标记位置的EDS点分析

    Table 3.  EDS analyses of the surface oxides of T91 and SIMP steel exposed to static LBE at 600 ℃ in Fig. 4.

    原子分数/%元素
    FeCrOAlPbSi
    Point A43.8955.120.340.65
    Point B0.8961.936.40.81
    Point C42.754.370.382.55
    Point D3.0158.6334.63.76
    Point E44.2154.300.880.61
    Point F41.1758.260.57
    Point G40.5955.230.603.58
    Point H32.5163.803.69
    DownLoad: CSV
  • [1]

    Sar F, Mhiaoui S, Gasser J G 2007 J. Non. Cryst. Solids. 353 3622Google Scholar

    [2]

    Sobolev V 2007 J. Nucl. Mater. 362 235Google Scholar

    [3]

    Zhang J 2014 Adv. Eng. Mater. 16 349Google Scholar

    [4]

    Zhang J, Ning L 2008 J. Nucl. Mater. 373 351Google Scholar

    [5]

    Xu Y C, Zhang Y G, Li X Y, Liu W, Li D D, Liu C S, Pan B C, Wang Z G 2017 Corros. Sci. 118 1Google Scholar

    [6]

    Barbier F, Rusanov A 2001 J. Nucl. Mater. 296 231Google Scholar

    [7]

    Martinelli L, Jean-Louis C, Fanny B C 2011 Nucl. Eng. Des. 241 1288Google Scholar

    [8]

    Concetta F 2015 Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies (2015 Edition-Introduction) (OECD Nuclear Energy Agency)

    [9]

    Zhang J 2009 Corros. Sci. 51 1207Google Scholar

    [10]

    Takaya S, Furukawa T, Müller G, Heinzel A, Jianu A, Weisenburger A, Aoto K, Inoue M, Okuda T, Abe F, Ohnuki S, Fujisawa T, Kimura A 2012 J. Nucl. Mater. 428 125Google Scholar

    [11]

    Srinivasan P B, Kumar M 2009 Mater. Chem. Phys. 115 179Google Scholar

    [12]

    Müller G, Schumacher G, Zimmermann F 2000 J. Nucl. Mater. 278 85Google Scholar

    [13]

    Deloffre P, Balbaud-Célérier F, Terlain A 2004 J. Nucl. Mater. 335 180Google Scholar

    [14]

    Weisenburger A, Heinzel A, Müller G, Muscher H, Rousanov A 2008 J. Nucl. Mater. 376 274Google Scholar

    [15]

    Fetzer R, Weisenburger A, Jianu A, Müller G 2012 Corros. Sci. 55 213Google Scholar

    [16]

    Short M P, Ballinger R G, Hänninen H E 2013 J. Nucl. Mater. 434 259Google Scholar

    [17]

    Hosemann P, Thau H T, Johnson A L, Maloy S A, Li N 2008 J. Nucl. Mater. 373 246Google Scholar

    [18]

    Takaya S, Furukawa T, Aoto K, Müller G, Weisenburger A, Heinzel A, Inoue M, Okuda T, Abe F, Ohnuki S, Fujisawa T and Kimura A 2009 J. Nucl. Mater. 386–388 507Google Scholar

    [19]

    Takaya S, Furukawa T, Inoue M, Fujisawa T, Okuda T, Abe F, Ohnuki S, Kimura A 2010 J. Nucl. Mater. 398 132Google Scholar

    [20]

    Heinzel A, Kondo M, Takahashi M 2006 J. Nucl. Mater. 350 264Google Scholar

    [21]

    Kurata Y, Futakawa M, Saito S 2004 J. Nucl. Mater. 335 501Google Scholar

    [22]

    Ferré F G, Mairov A, Iadicicco D, Vanazzi M, Bassini S, Utili M, Tarantino M, Bragaglia M, Lamastra F R, Nanni F, Ceseracciu L, Serruys Y, Trocellier P, Beck L, Sridharan K, Beghi M G , Di Fonzo F 2017 Corros. Sci. 124 80Google Scholar

    [23]

    Glasbrenner H, Gröschel F 2006 J. Nucl. Mater. 356 213Google Scholar

    [24]

    Weisenburger A, Jianu A, Doyle S, Bruns M, Fetzer R, Heinzel A, Del Giacco M, An W, Müller G 2013 J. Nucl. Mater 437 282Google Scholar

    [25]

    Ferré G, Ormellese M, Fonzo F D, Beghi M G 2013 Corros. Sci. 77 375Google Scholar

    [26]

    Sordo F, Abánades A, Lafuente A, Martínez-Val J M, Perlado M 2009 Nucl. Eng. Des. 239 2573Google Scholar

    [27]

    Borgstedt H U, Frees G 1995 Liquid Metal Systems. (New York: Springer) p339

    [28]

    Ellingham H J T 1994 J. Soc. Chem. Ind. 63 125

    [29]

    Yeliseyeva O, Tsisar V, Zhou Z 2013 J. Nucl. Mater. 442 434Google Scholar

    [30]

    Weisenburger A, Schroer C, Jianu A, Heinzel A, Konys J, Steiner H, Müller G, Fazio C, Gessi A, Babayan S, Kobzova A, Martinelli L, Ginestar K, Balbaud-Célerier F, Martín-Muñoz F J, Soler Crespo L 2011 J. Nucl. Mater. 415 260Google Scholar

    [31]

    Weisenburger A, Mansani L, Schumacher G, Müller G 2014 Nucl. Eng. Des. 273 584Google Scholar

    [32]

    Martinelli L, Balbaud-Célérier F, Terlain A, Bosonnet S, Picard G, Santarini G 2008 Corros. Sci. 50 2537Google Scholar

    [33]

    Martinelli L, Balbaud-Célérier F, Picard G, Santarini G 2008 Corros. Sci. 50 2549Google Scholar

    [34]

    Miorin E, Montagner F, Zin V, Giuranno D, Deambrosis S M 2019 Surf. Coat. Technol. 377 124890Google Scholar

    [35]

    Comstock M 2009 J. Nucl. Mater. 382 272Google Scholar

    [36]

    Tan L, Machut M T, Sridharan K 2007 J. Nucl. Mater. 371 161Google Scholar

    [37]

    Li B S, Liao Q, Zhang H P, Shen T L, Ge F F, Nabil D 2021 Corros. Sci. 187 109477Google Scholar

    [38]

    Zhang L L, Yan W, Shi Q Q, Li Y F, Shen Y Y, Yang K 2020 Corros. Sci. 167 108519Google Scholar

    [39]

    Liu J, Yan W, Sha W, Wang W, Shan Y Y, Yang K 2016 J. Nucl. Mater. 473 189Google Scholar

    [40]

    Li Y, Wang S, Sun P, Xu D, Ren M, Guo Y, Lin G 2017 Corros. Sci. 128 241Google Scholar

    [41]

    Shi Q, Liu J, Luan H, Yang Z, Wang W, Yan W, Shan Y, Yang K 2015 J. Nucl. Mater. 457 135Google Scholar

    [42]

    Behnamian Y, Mostafaei A, Kohandehghan A, Amirkhiz B S, Serate D, Sun Y, Liu S, Aghaie E, Zeng Y, Chmielus M, Zheng W, Guzonas D 2016 Corros. Sci. 106 188Google Scholar

    [43]

    Martinelli L, Balbaud-Célérier F, Terlian A, Delpech S, Santarini G, Favergeon J, Moulin G, Tabarant M, Picard G 2008 Corros. Sci. 50 2523Google Scholar

    [44]

    Bian L Z, Chen Z Y, Wang L J, Li F S, Chou K C 2017 J. Iron. Steel. Res. Int. 24 77Google Scholar

    [45]

    Huntz A M, Maréchal L, Lesage B, Molins R 2006 Appl. Surf. Sci. 252 7781Google Scholar

    [46]

    Melander A 1997 Int. J. Fatigue 19 13Google Scholar

    [47]

    Wang Q S, Wang W Q, Shi Z M 2018 E. Science. 113 012146Google Scholar

    [48]

    Echsler H, Martinez E A, Singheiser L, Quadakkers W J 2004 Mater. Sci. Eng. A 384 1Google Scholar

    [49]

    Hayashi H, Watanabe M, Inaba H 2000 Thermochim Acta. 359 77Google Scholar

    [50]

    Mavko G, Mukerji T, Dvorkin J 2009 The Rock Physics Handbook: Elasticity and Hooke's law 2 21Google Scholar

  • [1] Gan Shu-Yun, Xu Shuai, Li Bing-Sheng, Chai Lin-Jiang, Chen Li-Ming, He Xiao-Xun, Wang Li, Liu Si-Jie, Wen Chun-Mei, Li Jia-Qi, Wu Zhong-Zheng. Corrosion behavior of aluminum reinforced austenitic steel in liquid lead bismuth at 550 ℃. Acta Physica Sinica, 2024, 73(2): 026104. doi: 10.7498/aps.73.20231103
    [2] Liu Yue-Li, Zhao Si-Jie, Chen Wen, Zhou Jing. Numerical simulation of thermal and dielectric properties for SiO2/polytetrafluoroethylene dielectric composite. Acta Physica Sinica, 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [3] Li Jun-Wei, Jia Wei-Min, Lü Sha-Sha, Wei Ya-Xuan, Li Zheng-Cao, Wang Jin-Tao. First principles study of hydrogen adsorption and dissociation behavior on γ-U (100)/Mo surface. Acta Physica Sinica, 2022, 71(22): 226601. doi: 10.7498/aps.71.20220631
    [4] Wei Bing-Jun, Hu Li, Xiang Xin, Yang Fei-Long, Zhang Gui-Kai, Wang Huan. Preparation of Fe-Al alloy layer on CLAM steel. Acta Physica Sinica, 2021, 70(3): 036801. doi: 10.7498/aps.70.20200762
    [5] Guo Xiao-Meng, Qing Fang-Zhu, Li Xue-Song. Applications of graphene in anti-corrosion of metal surface. Acta Physica Sinica, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [6] Wang Dang-Hui, Xu Tian-Han, Song Hai-Yang. Thermal expansion behaviors of epitaxial film for wurtzite GaN studied by using temperature-dependent Raman scattering. Acta Physica Sinica, 2016, 65(13): 130702. doi: 10.7498/aps.65.130702
    [7] Huang Bin-Bin, Xiong Chuan-Bing, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Tang Ying-Wen, Quan Zhi-Jue, Xu Long-Quan, Zhang Meng, Wang Li, Fang Wen-Qing, Liu Jun-Lin, Jiang Feng-Yi. Electroluminescence properties of vertical structure GaN based LED on silicon and copper submount at different temperatures and current densities. Acta Physica Sinica, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [8] Wang Xiao-Juan, Ruan Ying, Hong Zhen-Yu. Thermophysical properties and rapid solidification of Al-Cu-Ge alloys. Acta Physica Sinica, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [9] Li Ping-Yuan, Chen Yong-Liang, Zhou Da-Jin, Chen Peng, Zhang Yong, Deng Shui-Quan, Cui Ya-Jing, Zhao Yong. Research of thermal expansion coefficient of topological insulator Bi2Te3. Acta Physica Sinica, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [10] Ye Feng-Xia, Chen Yan, Yu Peng, Luo Qiang, Qu Shou-Jiang, Shen Jun. Structured analysis of iron-based amorphous alloy coating deposited by AC-HVAF spray. Acta Physica Sinica, 2014, 63(7): 078101. doi: 10.7498/aps.63.078101
    [11] Li Wen-Sheng, Luo Shi-Jun, Huang Hai-Ming, Zhang Qin, Fu Yan-Hua. The design of tank coating based on photonic crystal. Acta Physica Sinica, 2012, 61(16): 164102. doi: 10.7498/aps.61.164102
    [12] Preparation of Fe-based thick amorphous composite. Acta Physica Sinica, 2011, 60(2): 027103. doi: 10.7498/aps.60.027103
    [13] Liu Fu-Sheng, Chen Xian-Peng, Xie Hua-Xing, Ao Wei-Qin, Li Jun-Qin. Negative thermal expansion of Sc2-xGaxW3O12 solid solution. Acta Physica Sinica, 2010, 59(5): 3350-3356. doi: 10.7498/aps.59.3350
    [14] Wang Ke-Sheng, Liu Quan-Kun, Zhang De-Yuan. Numerical simulation of the tribological behaviour of the serial coatings of D2 steel. Acta Physica Sinica, 2009, 58(13): 89-S93. doi: 10.7498/aps.58.89
    [15] Zhang Shuan-Qin, Shi Yun-Long, Huang Chang-Geng, Lian Chang-Chun. Design of spectral reflective properties of the stealth coating. Acta Physica Sinica, 2007, 56(9): 5508-5512. doi: 10.7498/aps.56.5508
    [16] Zhang Yong-Kang, Kong De-Jun, Feng Ai-Xin, Lu Jin-Zhong, Ge Tao. Study on the detection of interfacial bonding strength of coatings (Ⅱ): detecting system of bonding strength. Acta Physica Sinica, 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [17] Zou Jun, Zhang Lian-Han, Zhou Sheng-Ming, Xu Jun, Han Ping, Zhang Rong. Study on the growth, modification and thermal properties of γ-LiAlO2 single crystals. Acta Physica Sinica, 2005, 54(9): 4269-4272. doi: 10.7498/aps.54.4269
    [18] YAN ZU-TONG, SUN ZHEN-HUA. THE PRESSURE DEPENDENCE OF THE EXPANSIVITY AND OF THE ANDERSON-GRüNEISEN PARAMETER IN THE GENERAL CONDITION. Acta Physica Sinica, 1989, 38(10): 1634-1641. doi: 10.7498/aps.38.1634
    [19] RUAN YAO-ZHONG, LI LI-PING, HU XUE-LONG, PENG DING-KUN, HU JUN-BAO, ZHANG YU-HENG. THERMAL EXPANSION COEFFICIENT OF YBa2Cu3O7-x WITHORTHORHOMBIC AND TETRAGONAL PHASES. Acta Physica Sinica, 1988, 37(12): 2034-2037. doi: 10.7498/aps.37.2034
    [20] RUAN YAO-ZHONG, LI LI-PING, WU ZHI-QIANG, HE PING-SHENG. THERMAL EXPANSION COEFFICIENTS OF POLYBIS-(P-TOLUENE SULFONATE) OF 2,4-HEXADIYNE-l,6-DIAL SINGLE CRYSTAL AT LOW TEMPERATURE. Acta Physica Sinica, 1987, 36(9): 1219-1223. doi: 10.7498/aps.36.1219
Metrics
  • Abstract views:  5650
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2022
  • Accepted Date:  06 April 2022
  • Available Online:  21 July 2022
  • Published Online:  05 August 2022

/

返回文章
返回