-
Atomic manipulation technique with scanning tunneling microscopy (STM) has been used to control the structural and physical properties of materials at an atomic level. Recently, this technique has been extended to modifying the physical properties of low-dimensional materials. Unlike conventional single atom lateral manipulation, the STM manipulation technique in the study of low-dimensional materials has additional manipulation modes and focuses on the modification of physical properties. In this review paper, we introduce the recent experimental progress of tuning the physical properties of low-dimensional materials through STM atomic manipulation technique. There are mainly four manipulation modes: 1) tip-induced local electric field; 2) controlled tip approach or retract; 3) tip-induced non-destructive geometry manipulation; 4) tip-induced kirigami and lithography. Through using these manipulation modes, the STM tip effectively introduces the attractive force or repulsive force, local electronic field or magnetic field and local strain, which results in the atomically precise modification of physical properties including charge density wave, Kondo effect, inelastic tunneling effect, Majorana bound states, and edge states.
-
Keywords:
- scanning tunneling microscopy /
- atomic manipulation /
- low-dimensional materials /
- physical properties modification
[1] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar
[2] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar
[3] Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S 2016 Nat. Phys. 12 1105Google Scholar
[4] Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W 2011 Physica B 406 2254Google Scholar
[5] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013
[6] Xu C, Li B, Jiao W, Zhou W, Qian B, Sankar R, Zhigadlo N D, Qi Y, Qian D, Chou F C, Xu X 2018 Chem. Mater. 30 4823Google Scholar
[7] Vafek O, Vishwanath A 2014 Annu. Rev. Condens. Matter phys. 5 83Google Scholar
[8] den Heijer M, Fokkema V, Saedi A, Schakel P, Rost M J 2014 Rev. Sci. Instrum. 85 055007Google Scholar
[9] Eigler D M, Schweizer E K 1990 Nature 344 524Google Scholar
[10] 李宇昂, 吴迪, 王栋立, 胡昊, 潘毅 2021 物理学报 70 020701Google Scholar
Li Y A, Wu D, Wang L D, Hu H, Pan Y 2021 Acta Phys. Sin. 70 020701Google Scholar
[11] Castellanos-Gomez A, Rubio-Bollinger G, Garnica M, Barja S, Vazquez de Parga A L, Miranda R, Agrait N 2012 Ultramicroscopy 122 1Google Scholar
[12] Baek H, Ha J, Zhang D M, Natarajan B, Winterstein J P, Sharma R, Hu R W, Wang K F, Ziemak S, Paglione J, Kuk Y, Zhitenev N B, Stroscio J A 2015 Phys. Rev. B 92 094510Google Scholar
[13] Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542Google Scholar
[14] Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Li L F, Zhou H T, Wang Y L, Du S X, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Sci. Rep. 3 1210Google Scholar
[15] Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Song S R, Du S X, Min O Y, Hofer W A, Neto A H C, Gao H J 2015 Phys. Rev. Lett. 114 126601Google Scholar
[16] Yang K, Liu L W, Zhang L Z, Xiao W D, Fei X M, Chen H, Du S X, Ernst K H, Goo H J 2014 ACS Nano 8 2246Google Scholar
[17] Repicky J, Wu P K, Liu T, Corbett J P, Zhu T C, Cheng S Y, Ahmed A S, Takeuchi N, Guerrero-Sanchez J, Randeria M, Kawakami R K, Gupta J A 2021 Science 374 abd9225Google Scholar
[18] Chang K, Kuster F, Miller B J, Ji J R, Zhang J L, Sessi P, Barraza-Lopez S, Parkin S S P 2020 Nano Lett. 20 6590Google Scholar
[19] Zhao Y X, Zhou X F, Zhang Y, He L 2021 Phys. Rev. Lett. 127 266801Google Scholar
[20] Liu Y W, Su Y, Zhou X F, Yin L J, Yan C, Li S Y, Yan W, Han S, Fu Z Q, Zhang Y, Yang Q, Ren Y N, He L 2020 Phys. Rev. Lett. 125 236102Google Scholar
[21] Gerhard L, Yamada T K, Balashov T, Takacs A F, Wesselink R J H, Dane M, Fechner M, Ostanin S, Ernst A, Mertig I, Wulfhekel W 2010 Nat. Nanotechnol. 5 792Google Scholar
[22] Zhang Q Z, Wen H F, Adachi Y, Miyazaki M, Sugawara Y, Xu R, Cheng Z H, Li Y J 2019 J. Phys. Chem. C 123 22595Google Scholar
[23] Wong D, Velasco Jr J, Ju L, Lee J, Kahn S, Tsai H Z, Germany C, Taniguchi T, Watanabe K, Zettl A, Wang F, Crommie M F 2015 Nat. Nanotechnol. 10 949Google Scholar
[24] Sullivan S P, Schmeders A, Mbugua S K, Beebe T P 2005 Langmuir 21 1322Google Scholar
[25] Mao J H, Jiang Y H, Moldovan D, Li G H, Watanabe K, Taniguchi T, Masir M R, Peeters F M, Andrei E Y 2016 Nat. Phys. 12 545Google Scholar
[26] Chan Y, Khan S B, Mahmood A, Saleemi A S, Lian Z, Ren Y, Zeng X M, Lee S L 2020 J. Phys. Chem. C 124 815Google Scholar
[27] Wang H, Lee J, Dreyer M, Barker B I 2009 J. Phys.: Condens. Mat. 21 265005Google Scholar
[28] Chen W, Madhavan V, Jamneala T, Crommie M F 1998 Phys. Rev. Lett. 80 1469Google Scholar
[29] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z, Gao H J 2021 Nature 599 222Google Scholar
[30] Chen H, Xiao W, Wu X, Yang K, Gao H J 2014 J. Vac. Sci. Technol. B 32 061801Google Scholar
[31] Oh M, Nuckolls K P, Wong D, Lee R L, Liu X M, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar
[32] Kuester F, Montero A M, Guimaraes F S M, Brinker S, Lounis S, Parkin S S P, Sessi P 2021 Nat. Commun. 12 1108Google Scholar
[33] Jack B, Eltschka M, Assig M, Etzkorn M, Ast C R, Kern K 2016 Phys. Rev. B 93 020504Google Scholar
[34] Jack B, Eltschka M, Assig M, Hardock A, Etzkorn M, Ast C R, Kern K 2015 Appl. Phys. Lett. 106 013109Google Scholar
[35] Mashoff T, Pratzer M, Geringer V, Echtermeyer T J, Lemme M C, Liebmann M, Morgenstern M 2010 Nano Lett. 10 461Google Scholar
[36] Xu P, Yang Y R, Barber S D, Ackerman M L, Schoelz J K, Qi D, Kornev I A, Dong L F, Bellaiche L, Barraza-Lopez S, Thibado P M 2012 Phys. Rev. B 85 121406Google Scholar
[37] Klimov N N, Jung S, Zhu S Z, Li T, Wright C A, Solares S D, Newell D B, Zhitenev N B, Stroscio J A 2012 Science 336 1557Google Scholar
[38] Zhu S Z, Huang Y, Klimov N N, Newell D B, Zhitenev N B, Stroscio J A, Solares S D, Li T 2014 Phys. Rev. B 90 075426Google Scholar
[39] Breitwieser R, Hu Y C, Chao Y C, Li R J, Tzeng Y R, Li L J, Liou S C, Lin K C, Chen C W, Pai W W 2014 Carbon 77 236Google Scholar
[40] Neek-Amal M, Xu P, Schoelz J K, Ackerman M L, Barber S D, Thibado P M, Sadeghi A, Peeters F M 2014 Nat. Commun. 5 4962Google Scholar
[41] Yankowitz M, Watanabe K, Taniguchi T, San-Jose P, LeRoy B J 2016 Nat. Commun. 7 13168Google Scholar
[42] Georgi A, Nemes-Incze P, Carrillo-Bastos R, Faria D, Kusminskiy S V, Zhai D W, Schneider M, Subramaniam D, Mashoff T, Freitag N M, Liebmann M, Pratzer M, Wirtz L, Woods C R, Gorbachey R V, Cao Y, Novoselov K S, Sandier N, Morgenstern M 2017 Nano Lett. 17 2240Google Scholar
[43] Breitwieser R, Hu Y C, Chao Y C, Tzeng Y R, Liou S C, Lin K C, Chen C W, Pai W W 2017 Phys. Rev. B 96 085433Google Scholar
[44] van der Lit J, Jacobse P H, Vanmaekelbergh D, Swart I 2015 New J. Phys. 17 053013Google Scholar
[45] Leicht P, Zielke L, Bouvron S, Moroni R, Voloshina E, Hammerschmidt L, Dedkov Y S, Fonin M 2014 ACS Nano 8 3735Google Scholar
[46] Chen H, Bao D L, Wang D F, Que Y D, Xiao W D, Zhang Y Y, Sun J T, Du S X, Gao H J 2020 Nano Res. 13 3286Google Scholar
[47] Chen H, Zhang X L, Zhang Y Y, Wang D F, Bao D L, Que Y D, Xiao W D, Du S X, Ouyang M, Pantelides S T, Gao H J 2019 Science 365 1036Google Scholar
[48] Thomas L K, Reichling M 2019 Beilstein J. Nanotechnol. 10 804Google Scholar
[49] Shi L J, Yang L Z, Deng J Q, Tong L H, Wu Q L, Zhang L, Zhang L J, Yin L J, Qin Z H 2020 Carbon 165 169Google Scholar
[50] Yin L J, Wang W X, Feng K K, Nie J C, Xiong C M, Dou R F, Naugle D G 2015 Nanoscale 7 14865Google Scholar
[51] Yu M, Xu W, Benjalal Y, Barattin R, Lægsgaard E, Stensgaard I, Hliwa M, Bouju X, Gourdon A, Joachim C J N R 2009 Nano Res. 2 254Google Scholar
[52] Koch M, Ample F, Joachim C, Grill L 2012 Nat. Nanotechnol. 7 713Google Scholar
[53] Lafferentz L, Ample F, Yu H, Hecht S, Joachim C, Grill L 2009 Science 323 1193Google Scholar
[54] Magda G Z, Jin X Z, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C Y, Biro L P, Tapaszto L 2014 Nature 514 608Google Scholar
[55] Tapaszto L, Dobrik G, Lambin P, Biro L P 2008 Nat. Nanotechnol. 3 397Google Scholar
[56] Liu G Y, Xu S, Qian Y 2000 Acc. Chem. Res. 33 457Google Scholar
[57] Pavlova T V, Shevlyuga V M, Andryushechkin B V, Zhidomirov G M, Eltsov K N 2020 Appl. Surf. Sci. 509 145235Google Scholar
[58] Nemes-Incze P, Tapasztó L, Magda G Z, Osváth Z, Dobrik G, Jin X, Hwang C, Biró L P 2014 Appl. Surf. Sci. 291 48Google Scholar
[59] He Y, Gorman S K, Keith D, Kranz L, Keizer J G, Simmons M Y 2019 Nature 571 371Google Scholar
[60] Ruess F J, Pok W, Goh K E J, Hamilton A R, Simmons M Y 2007 Phys. Rev. B 75 121303Google Scholar
[61] Weber B, Mahapatra S, Ryu H, Lee S, Fuhrer A, Reusch T C G, Thompson D L, Lee W C T, Klimeck G, Hollenberg L C L, Simmons M Y 2012 Science 335 64Google Scholar
[62] Fuechsle M, Mahapatra S, Zwanenburg F A, Friesen M, Eriksson M A, Simmons M Y 2010 Nat. Nanotechnol. 5 502Google Scholar
[63] Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G, Simmons M Y 2012 Nat. Nanotechnol. 7 242Google Scholar
[64] Schofield S R, Curson N J, Simmons M Y, Ruess F J, Hallam T, Oberbeck L, Clark R G 2003 Phys. Rev. Lett. 91 136104Google Scholar
[65] Weber B, Tan Y H M, Mahapatra S, Watson T F, Ryu H, Rahman R, Hollenberg L C L, Klimeck G, Simmons M Y 2014 Nat. Nanotechnol. 9 430Google Scholar
[66] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[67] Butler S Z, Hollen S M, Cao L Y, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J X, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar
[68] Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar
[69] Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar
[70] Ma L G, Ye C, Yu Y J, Lu X F, Niu X H, Kim S, Feng D L, Tomanek D, Son Y W, Chen X H, Zhang Y B 2016 Nat. Commun. 7 10956Google Scholar
[71] Cho D, Cheon S, Kim K S, Lee S H, Cho Y H, Cheong S W, Yeom H W 2016 Nat. Commun. 7 10453Google Scholar
[72] Song X, Liu L, Chen Y, Yang H, Huang Z, Hou B, Hou Y, Han X, Yang H, Zhang Q, Zhang T, Zhou J, Huang Y, Zhang Y, Gao H J, Wang Y 2022 Nat. Commun. 13 1843Google Scholar
[73] Chen Z, Fu W, Wang L, Yu W, Li H H, Tan C K Y, Abdelwahab I, Shao Y, Su C L, Sun M Z, Huang B L, Loh K P 2021 Adv. Sci. 8 2100713Google Scholar
[74] Zhang Z M, Nie J H, Zhang Z H, Yuan Y, Fu Y S, Zhang W H 2022 Adv. Mater. 34 2106951Google Scholar
[75] Wang Y F, Kroger J, Berndt R, Hofer W A 2009 J. Am. Chem. Soc. 131 3639Google Scholar
[76] Pivetta M, Ternes M, Patthey F, Schneider W D 2007 Phys. Rev. Lett. 99 126104Google Scholar
[77] Strozecka A, Soriano M, Pascual J I, Palacios J J 2012 Phys. Rev. Lett. 109 147202Google Scholar
[78] Gopakumar T G, Tang H, Morillo J, Berndt R 2012 J. Am. Chem. Soc. 134 11844Google Scholar
[79] Chen H, Pope T, Wu Z Y, Wang D F, Tao L, Bao D L, Xiao W D, Zhang J L, Zhang Y Y, Du S X, Gao S, Pantelides S T, Hofer W A, Gao H J 2017 Nano Lett. 17 4929Google Scholar
[80] Xu P, Neek-Amal M, Barber S D, Schoelz J K, Ackerman M L, Thibado P M, Sadeghi A, Peeters F M 2014 Nat. Commun. 5 3720Google Scholar
[81] Li S Y, Bai K K, Zuo W J, Liu Y W, Fu Z Q, Wang W X, Zhang Y, Yin L J, Qiao J B, He L 2018 Phys. Rev. Appl. 9 054031Google Scholar
[82] Yoo H, Engelke R, Carr S, Fang S A, Zhang K, Cazeaux P, Sung S H, Hoyden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, Kim P 2019 Nat. Mater. 18 448Google Scholar
[83] Nam N N T, Koshino M 2017 Phys. Rev. B 96 075311Google Scholar
[84] Li Z, Zhuang J C, Wang L, Feng H F, Gao Q, Xu X, Hao W C, Wang X L, Zhang C, Wu K H, Dou S X, Chen L, Hu Z P, Du Y 2018 Sci. Adv. 4 eaau4511Google Scholar
[85] Li Z, Zhuang J C, Chen L, Ni Z Y, Liu C, Wang L, Xu X, Wang J O, Pi X D, Wang X L, Du Y, Wu K H, Dou S X 2016 ACS Cent. Sci. 2 517Google Scholar
[86] Chen L, Li H, Feng B J, Ding Z J, Qiu J L, Cheng P, Wu K H, Meng S 2013 Phys. Rev. Lett. 110 085504Google Scholar
[87] Chen J, Du Y, Li Z, Li W B, Feng B J, Qiu J L, Cheng P, Dou S X, Chen L, Wu K H 2015 Sci. Rep. 5 13590Google Scholar
[88] Xing Y, Shen J, Chen H, Huang L, Gao Y, Zheng Q, Zhang Y Y, Li G, Hu B, Qian G, Cao L, Zhang X, Fan P, Ma R, Wang Q, Yin Q, Lei H, Ji W, Du S, Yang H, Wang W, Shen C, Lin X, Liu E, Shen B, Wang Z, Gao H J 2020 Nat. Commun. 11 5613Google Scholar
[89] Setvin M, Schmid M, Diebold U 2015 Phys. Rev. B 91 195403Google Scholar
[90] Nguyen G D, Liang L B, Zou Q, Fu M M, Oyedele A D, Sumpter B G, Liu Z, Gai Z, Xiao K, Li A P 2018 Phys. Rev. Lett. 121 086101Google Scholar
[91] Selcuk S, Selloni A 2014 J. Chem. Phys. 141 084705Google Scholar
[92] Setvin M, Aschauer U, Scheiber P, Li Y F, Hou W Y, Schmid M, Selloni A, Diebold U 2013 Science 341 988Google Scholar
[93] Zhu S, Kong L, Cao L, Chen H, Papaj M, Du S, Xing Y, Liu W, Wang D, Shen C, Yang F, Schneeloch J, Zhong R, Gu G, Fu L, Zhang Y Y, Ding H, Gao H J 2020 Science 367 189Google Scholar
[94] Blonder G E, Tinkham M, Klapwijk T M 1982 Phys. Rev. B 25 4515Google Scholar
[95] Roy D K, Singh A 1995 Int. J. Mod. Phys. B 9 3039Google Scholar
[96] Crespo V, Maldonado A, Galvis J A, Kulkarni P, Guillamon I, Rodrigo J G, Suderow H, Vieira S, Banerjee S, Rodiere P 2012 Physica C 479 19Google Scholar
[97] Wu B H, Hassan S A, Gong W J, Xu X F, Wang C R, Cao J C 2021 J. Phys.: Condens. Mat. 33 025301Google Scholar
[98] Yazdani A, Jones B A, Lutz C P, Crommie M F, Eigler D M 1997 Science 275 1767Google Scholar
[99] Farinacci L, Ahmadi G, Reecht G, Ruby M, Bogdanoff N, Peters O, Heinrich B W, von Oppen F, Franke K J 2018 Phys. Rev. Lett. 121 196803Google Scholar
[100] Meservey R, Tedrow P M 1994 Phys. Rep. 238 173Google Scholar
[101] Eltschka M, Jack B, Assig M, Kondrashov O V, Skvortsov M A, Etzkorn M, Ast C R, Kern K 2014 Nano Lett. 14 7171Google Scholar
[102] Fan P, Yang F Z, Qian G J, Chen H, Zhang Y Y, Li G, Huang Z H, Xing Y Q, Kong L Y, Liu W Y, Jiang K, Shen C M, Du S X, Schneeloch J, Zhong R D, Gu G D, Wang Z Q, Ding H, Gao H J 2021 Nat. Commun. 12 1348Google Scholar
[103] Jiang K, Dai X, Wang Z 2019 Phys. Rev. X 9 011033
[104] Xing Y Q, Chen H, Hu B, Ye Y H, Hofer W A, Gao H J 2022 Nano Res. 15 1466Google Scholar
[105] Mier C, Verlhac B, Gamier L, Robles R, Limot L, Lorente N, Choi D J 2021 J. Phys. Chem. Lett. 12 2983Google Scholar
[106] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar
[107] Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar
[108] Collins J L, Tadich A, Wu W K, Gomes L C, Rodrigues J N B, Liu C, Hellerstedt J, Ryu H, Tang S J, Mo S K, Adam S, Yang S Y A, Fuhrer M S, Edmonds M T 2018 Nature 564 390Google Scholar
[109] Bork J, Zhang Y H, Diekhoner L, Borda L, Simon P, Kroha J, Wahl P, Kern K 2011 Nat. Phys. 7 901Google Scholar
[110] Ormaza M, Abufager P, Verlhac B, Bachellier N, Bocquet M L, Lorente N, Limot L 2017 Nat. Commun. 8 1974Google Scholar
[111] Verlhac B, Bachellier N, Garnier L, Ormaza M, Abufager P, Robles R, Bocquet M L, Ternes M, Lorente N, Limot L 2019 Science 366 623Google Scholar
[112] Yang K, Paul W, Natterer F D, Lado J L, Bae Y, Willke P, Choi T, Ferron A, Fernandez-Rossier J, Heinrich A J, Lutz C P 2019 Phys. Rev. Lett. 122 227203Google Scholar
[113] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39Google Scholar
[114] Vonlohneysen H, Pietrus T, Portisch G, Schlager H G, Schroder A, Sieck M, Trappmann T 1994 Phys. Rev. Lett. 72 3262Google Scholar
[115] Huang H, Padurariu C, Senkpiel J, Drost R, Yeyati A L, Cuevas J C, Kubala B, Ankerhold J, Kern K, Ast C R 2020 Nat. Phys. 16 1227
[116] Baumann S, Paul W, Choi T, Lutz C P, Ardavan A, Heinrich A J 2015 Science 350 417Google Scholar
[117] Choi T, Paul W, Rolf-Pissarczyk S, Macdonald A J, Natterer F D, Yang K, Willke P, Lutz C P, Heinrich A J 2017 Nat. Nanotechnol. 12 420Google Scholar
[118] Veldman L M, Farinacci L, Rejali R, Broekhoven R, Gobeil J, Coffey D, Ternes M, Otte A F 2021 Science 372 964Google Scholar
[119] Ormaza M, Bachellier N, Faraggi M N, Verlhac B, Abufager P, Ohresser P, Joly L, Romeo M, Scheurer F, Bocquet M L, Lorente N, Limot L 2017 Nano Lett. 17 1877Google Scholar
[120] Frota H O 1992 Phys. Rev. B 45 1096Google Scholar
[121] Choi D J, Abufager P, Limot L, Lorente N 2017 J. Chem. Phys. 146 092309Google Scholar
[122] Choi D J, Guissart S, Onnaza M, Bachellier N, Bengone O, Simon P, Limot L 2016 Nano Lett. 16 6298Google Scholar
[123] van der Wiel W G, De Franceschi S, Fujisawa T, Elzerman J M, Tarucha S, Kouwenhoven L P 2000 Science 289 2105Google Scholar
[124] Loth S, von Bergmann K, Ternes M, Otte A F, Lutz C P, Heinrich A J 2010 Nat. Phys. 6 340Google Scholar
[125] Muenks M, Jacobson P, Ternes M, Kern K 2017 Nat. Commun. 8 14119Google Scholar
[126] Czap G, Wagner P J, Xue F, Gu L, Li J, Yao J, Wu R Q, Ho W 2019 Science 364 670Google Scholar
[127] Liu Y W, Hao C Y, He L 2022 Phys. Rev. Appl. 17 034013Google Scholar
[128] Zhang Q, Zhang Y, Hou Y, Xu R, Jia L, Huang Z, Hao X, Zhou J, Zhang T, Liu L, Xu Y, Gao H J, Wang Y 2022 Nano Lett. 22 1190Google Scholar
[129] Kim K, Lee Z, Malone B D, Chan K T, Alemán B, Regan W, Gannett W, Crommie M F, Cohen M L, Zettl A 2011 Phys. Rev. B 83 245433Google Scholar
[130] Blees M K, Barnard A W, Rose P A, Roberts S P, McGill K L, Huang P Y, Ruyack A R, Kevek J W, Kobrin B, Muller D A, McEuen P L 2015 Nature 524 204Google Scholar
[131] Zhu S Z, Li T 2014 ACS Nano 8 2864Google Scholar
[132] Kim D H, Koo J Y, Kim J J 2003 Phys. Rev. B 68 113406Google Scholar
[133] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar
[134] Wang G C, Bao L H, Pei T F, Ma R S, Zhang Y Y, Sun L L, Zhang G Y, Yang H F, Li J J, Gu C Z, Du S X, Pantelides S T, Schrimpf R D, Gao H J 2016 Nano Lett. 16 6870Google Scholar
[135] Guo H, Zhang R Z, Li H, Wang X Y, Lu H L, Qian K, Li G, Huang L, Lin X, Zhang Y Y, Ding H, Du S X, Pantelides S T, Gao H J 2020 Nano Lett. 20 2674Google Scholar
[136] Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T, Gao H J 2017 Nano Lett. 17 3991Google Scholar
[137] Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T, Gao H J 2018 Adv. Mater. 30 1804650Google Scholar
[138] Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar
[139] Chen H, Que Y, Tao L, Zhang Y Y, Lin X, Xiao W, Wang D, Du S, Pantelides S T, Gao H J 2018 Nano Res. 11 3722Google Scholar
[140] Li L, Wang Y, Xie S, Li X B, Wang Y Q, Wu R, Sun H, Zhang S, Gao H J 2013 Nano Lett. 13 4671Google Scholar
[141] Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, Gao H J 2017 Adv. Mater. 29 1605407Google Scholar
[142] Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S X, Gao H J 2019 Nano Lett. 19 6323Google Scholar
[143] Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X, Gao H J 2014 Adv. Mater. 26 4820Google Scholar
[144] Deng J L, Xia B Y, Ma X C, Chen H Q, Shan H, Zhai X F, Li B, Zhao A D, Xu Y, Duan W H, Zhang S C, Wang B, Hou J G 2018 Nat. Mater. 17 1081Google Scholar
[145] Zhao A D, Wang B 2020 Appl. Mater. 8 030701Google Scholar
[146] Yan J H, Ma J J, Wang A W, Ma R S, Wu L M, Wu Z B, Liu L, Bao L H, Huan Q, Gao H J 2021 Rev. Sci. Instrum. 92 103702Google Scholar
[147] Ma R, Huan Q, Wu L, Yan J, Guo W, Zhang Y Y, Wang S, Bao L, Liu Y, Du S, Pantelides S T, Gao H J 2017 Nano Lett. 17 5291Google Scholar
[148] 李彦, 郑琦, 常霄, 黄立, 林晓, 程志海, 高鸿钧 2021 物理学报 70 136802Google Scholar
Li Y, Zheng Q, Chang X, Huang L, Lin X, Cheng Z H, Gao H J 2021 Acta Phys. Sin. 70 136802Google Scholar
[149] Jiang N, Zarkadoula E, Narang P, Maksov A, Kravchenko I, Borisevich A, Jesse S, Kalinin S V 2017 MRS Bull. 42 653Google Scholar
[150] Dyck O, Ziatdinov M, Lingerfelt D B, Unocic R R, HudaK B M, Lupini A R, Jesse S, Kalinin S V 2019 Nat. Rev. Mater. 4 497Google Scholar
[151] Krull A, Hirsch P, Rother C, Schiffrin A, Krull C 2020 Commu. Phys. 3 54Google Scholar
[152] Rashidi M, Wolkow R A 2018 ACS Nano 12 5185Google Scholar
[153] Roccapriore K M, Zou Q, Zhang L Z, Xue R, Yan J Q, Ziatdinov M, Fu M M, Mandrus D G, Yoon M, Sumpter B G, Gai Z, Kalinin S V 2021 ACS Nano 15 11806Google Scholar
[154] Zhao J, Swartz L A, Lin W F, Schlenoff P S, Frommer J, Schlenoff J B, Liu G Y 2016 ACS Nano 10 5656Google Scholar
[155] Zhao P, Wang R, Lien D H, Zhao Y, Kim H, Cho J, Ahn G H, Javey A 2019 ADv. Mater. 31 1900136Google Scholar
[156] Fan P, Gao J, Mao H, Geng Y, Yan Y, Wang Y, Goel S, Luo X 2022 Micromachines 13 228Google Scholar
[157] Garcia R, Knoll A W, Riedo E 2014 Nat. Nanotechnol. 9 577Google Scholar
-
图 1 扫描隧道显微操纵调控低维材料的四种操纵模式 (a) 探针局域电场调控; (b) 探针-样品垂直间距调控; (c) 探针无损形态调控; (d) 探针裁剪刻蚀调控
Figure 1. Four types of low-dimension material manipulation by STM: (a) Tip-induced local electrical field; (b) controlled tip approach/retract; (c) tip-induced non-destructive geometry manipulation; (d) tip-induced kirigami or lithography.
图 2 STM探针施加脉冲电压在低维材料表面诱发相变[21,27,70,74] (a) 1T-TaS2施加2.8 V的脉冲电压后在绝缘相上产生的多畴金属相的STM图, 插图为金属相中的电荷密度波超晶格; (b) 1T-TaS2上电子态空间分布, 发生从金属相到绝缘相的转变; (c) 2H-NbSe2通过脉冲电压产生的两种不同相; (d) 脉冲电压在In2Se3中诱发可逆相变; (e) 脉冲电压在Cu(111)面上的Fe岛中诱发的从反铁磁序(蓝色区域)向铁磁序(橙色区域)的转变, 红圈为探针施加脉冲电压的位置
Figure 2. STM tip pulse induced phase transition on surface of low-dimension materials[21,27,70,74] : (a) Topographical image of the multi-domain metallic phase, where the inset is a zoomed-in view of the charge density wave in the metallic phase; (b) linecut from metallic phase to insulating phase; (c) pulse-induced two different phase in 2H-NbSe2; (d) pulse-induced reversible phase transition in In2Se3; (e) switching of antiferromagnetic (blue region) and ferromagnetic (orange region) areas with electric field pulses on Fe islands grown on Cu(111), the red circle marks the tip pulse position.
图 3 STM 探针施加脉冲电压诱导分子脱氢, 实现局域自旋态的调控[14-16] (a) MnPc分子脱氢前后形貌图; (b) MnPc分子脱氢前后的dI/dV谱; (c) 逐步脱去2个、4个、6个与8个氢原子的MnPc分子的STM图像, 显示通过脉冲电压有效改变分子的结构对称性; (d) 逐步脱去2个、4个、6个与8个氢原子的MnPc分子中心上测量的dI/dV谱, 显示出了不同的Kondo共振特征, 其中红色曲线为dI/dV谱的拟合曲线
Figure 3. Dehydrogenation and local spin manipulation by applying STM pulse[14-16]: (a) Topography of MnPc before and after dehydration; (b) dI/dV spectrum of MnPc molecule before and after dehydration; (c) STM images of –2H, –4H, –6H and –8H MnPc molecules, respectively; (d) corresponding dI/dV spectra of –2H, –4H, –6H and -8H MnPc molecules, showing different Kondo resonance feature. The red curve is a fitting to the experiment data.
图 4 STM 探针施加脉冲电压调控的低维材料晶格重构和能带结构[20,86] (a) 4种典型的不同小转角的双层石墨烯, 在转角为0.87°的图中标明了AA, AB, BA堆垛和畴界; (b) 转角为1.13°的晶格重构双层转角石墨烯施加3 V, 0.1 s的脉冲电压前后的STM形貌图; (c), (d) 图(b)中AA堆垛区实心点处采得的dI/dV谱; (e)硅烯上施加脉冲电压后产生的三角形畴
Figure 4. Band structure and lattice reconstruction manipulated by applying STM pulse in low-dimension materials[20,86]: (a) Typical STM images of four different TBGs. The AA, AB, BA, and domain wall regions are marked in the figure of TBG with 0.87° twist angle; (b) STM image of a 1.13° TBG showing the reconstructed structure before and after applying a pulse of 3 V for 0.1 s; (c), (d) typical dI/dV spectrum taken at the same position marked by solid dots of AA stacking area in (b); (e) triangular domain formed after a tip pulse applied on the silicene surface.
图 5 STM探针施加局域电场调控石墨烯/氮化硼异质结与PdSe2中的缺陷态[23,90] (a) 石墨烯/氮化硼异质结表面的dI/dV空间分布图, 表面存在多种缺陷; (b) 施加第一次脉冲电压(Vs = 5 V, t = 10 s)后(a)中同一区域的dI/dV空间分布图, 蓝色箭头代表缺陷出现, 红色代表消失, 绿色代表电极性改变; (c) 施加第2次参数相近的脉冲电压后的dI/dV空间分布图, 脉冲电压施加的位置为该区域的中心; (d) PdSe2中原子缺陷的STM图; (e) –2 V, 50 pA扫描得到的同一区域STM图; (f) 1 V, 50 pA扫描得到同一区域STM图
Figure 5. Manipulating defect states in the graphene/BN heterostructure and PdSe2 surface by local electrical field induced by STM tip[23,90]: (a) A dI/dV map acquired on graphene/BN surface exhibiting various defects; (b) dI/dV maps of the same region in (a) after the first tip pulse (Vs = 5 V, t = 10 s ), red arrows mark the disappearance of defects, blue arrows mark the appearance of defects, and green arrows mark dot defects that have changed the sign of their charge; (c) dI/dV map after the second tip pulse with similar parameter, the tip pulse is applied at the center of the region; (d) STM image of atomic defect in PdSe2; (e) STM image of the same region at –2 V, 50 pA; (f) STM image of the same region at 1 V, 50 pA.
图 6 STM探针施加脉冲电压对MnGe(111)表面自旋纹理的调控[17] (a)—(d) 对靶形自旋纹理施加脉冲电压后的SP-STM图, 每张图之间均施加脉冲电压. 图(c)和图(d)中的红圈标记出被激发的向错的移动和湮灭, 蓝色点标记同一原子位, 以分辨靶心的移动
Figure 6. Manipulation of surface spin texture of MnGe(111) via STM pulses[17]: (a)–(d) SP-STM images of the target spin texture in different configurations. Between each image, pulses were applied with the STM tip. The red circle in (c) and (d) indicates a disclination defect that is generated, moved and annihilated. The blue dot represents the same atomically registered fixed point in the images to resolve movements of the target core.
图 7 调控探针样品的隧穿耦合强度实现零偏压电导平台的观测[93] (a) 通过下压探针改变隧穿电导强度的STM示意图, 图中为2.0 T, 78 mK下的dI/dV空间分布图; (b) 隧穿电导强度随探针下压的三维图, 图中只展示了(–5.0, 0.2) meV能量范围内的数据; (c) 图(b)的二维彩色电导图, 能量范围为(–1.5, 1.5) meV; (d) 零偏压的水平切线图, 电导平台值为(0.64 ± 0.04)G0
Figure 7. Experimental observation of zero-bias conductance plateau in MZM through precisely controling of the tip-sample coupling[93]: (a) A schematic of variable tunnel conductance by tip-approaching. Inset: A zero-bias dI/dV map under 2.0 T and 78 mK. (b) A three-dimensional plot of tunnel coupling dependent measurement. Only the data points in the energy range of (–5.0, 0.2) meV are shown. (c) A color-scale plot of (b) within the energy range of (–1.5, 1.5) meV. (d) A horizontal line-cut at the zero-bias. The conductance plateau equals to (0.64 ± 0.04)G0.
图 8 可控调节探针与样品垂直间距调控磁交换相互作用, 诱导多种激发态之间的可逆转变[102,104] (a) FTS表面Fe原子上的压探针示意图; (b) 0 T磁场下隧穿电导在第二类铁原子上下压探针的变化, 红色箭头标记YSR态出现基本简并的位置; (c) 与图(b)类似, 磁场为6 T; (d) 6 T磁场下第二类铁原子上隧穿电导随抬高探针的变化; (e) 在FePc分子上下压探针的示意图; (f) 下压Nb探针实现I型到II型转变的dI/dV谱瀑布图; (g) 下压Nb探针实现的II型向I型的转变图; (h) 连续增加和减少隧穿势垒下FePc分子中心的dI/dV彩色幅值图
Figure 8. Transition between distinct excitation states induced by changing exchange interaction through controling of tip-sample distance [102,104]: (a) Schematic of approaching tip on a Fe atom of FTS surface; (b) tunnel-barrier conductance plot on approaching tip on a type-II Fe adatom under 0 T, the red arrow indicates the position of an accidental near degeneracy of the YSR states; (c) a similar plot to panel (b) with a magnetic field of 6 T; (d) tunnel-barrier conductance plot on withdrawing tip on a type-II Fe adatom under 6 T; (e) schematic of approaching tip on a FePc molecule; (f) approaching Nb tip induced transition from type-I FePc to type-II FePc; (g) approaching Nb tip induced transition from type-II FePc to type-I FePc; (h) a color-scale plot of dI/dV spectra of center of the FePc molecule under a combined process of increasing and decreasing tunnel barrier values, respectively.
图 9 可控调节探针与样品垂直间距引入静电势[108] (a) Si(111)面上层状Na3Bi上下压探针调控电场示意图; (b)不同探针样品距离下双层Na3Bi上测得的dI/dV谱, 其中A, B, C分别对应的探针高度(电场强度)为1.45 nm (0.83 V·nm–1), 1.07 nm (1.12 V·nm–1), 1.02 nm (1.18 V·nm–1); (c)从dI/dV中得到的带隙关于电场的函数, 红色方形和黑色三角分别代表单层和双层Na3Bi
Figure 9. Electrical potential induced by controling distance between tip and sample [108]: (a) Schematic of manipulation electrical field by approaching tip on few layer Na3Bi on Si(111); (b) dI/dV spectra taken on bilayer (BL) Na3Bi at different tip--sample separations (electric fields) as labelled on the figure, where A, B and C correspond to tip heights (electric fields) of 1.45 nm (0.83 V·nm–1), 1.07 nm (1.12 V·nm–1) and 1.02 nm (1.18 V·nm–1), respectively; (c) bandgap extracted from dI/dV spectra as a function of electric field for monolayer ML (ML, red squares) and BL (black triangles) Na3Bi.
图 10 精准调节磁性探针-样品垂直间距, 实现对磁性探针与磁性单原子的交换相互作用的调控[109,112,115] (a) 实验示意图: 探针和表面上各有1个Co原子, 构成双杂质近藤系统; (b) 探针和样品表面都有Co原子时测得的增强Kondo特征dI/dV谱; (c) 在隧穿状态和点接触模式下dI/dV谱随探针样品距离变化; (d) 在超导样品的磁性原子上方下压YSR探针示意图; (e) Shiba-Shiba电流峰面积随正常态电导的变化图; (f) 表面Ti原子受到的总塞曼能随磁性探针-Ti原子距离的变化; (g) 交变磁场随探针-Ti原子距离的变化
Figure 10. Manipulation of exchange interaction by precisely controling the distance between magnetic tip and single magnetic atom[109,112,115]: (a) Schematic experiment set-up: one cobalt atom on the tip and one on the surface; (b) spectra taken with a tip with a cobalt atom on top of a second cobalt atom on the surface show the two resonances superimposed; (c) spectra as a function of tip-sample distance in the tunnelling and point-contact regimes; (d) schematic of approaching a YSR-tip on a magnetic atom on superconducting surface; (e) the dependence of the direct Shiba-Shiba current peak area on the normal-state conductance; (f) the total Zeeman energy of a single Ti atom under a magnetic tip as a function of the tip-Ti distance; (g) ac magnetic field as a function of tip-Ti distance.
图 11 精准控制探针-样品垂直间距实现对磁性单分子中自旋的探测与调控[110,111,126] (a) 隧穿模式(红色曲线)和接触模式(蓝色曲线)不同z的dI/dV谱线; (b) 下压Nc分子探针示意图; (c), (d) 探针位于Fe原子上方测得的随探针下压的d2I/dV2谱的强度分布与瀑布图; (e) 在Co岛的Co原子上方下压Nc探针测得的d2I/dV 2谱; (f) STM-IET谱随着探针高度的变化图
Figure 11. Sensing and manipulation of spin in a magnetic molecule through precisely approaching the STM tip[110,111,126]: (a) dI/dV spectra in the tunnel (bottom panel) and contact (top panel) regimes for several z; (b) schematic of approaching a Nc-coated tip; (c), (d) intensity (c) and waterfall plot (d) of d2I/dV 2 spectra acquired with the tip positioned above a Fe atom; (e) d2I/dV 2 spectra acquired with the tip approaching above a Co atom of the island; (f) variation of STM-IET spectra with different tip-sample distance.
图 12 STM平移、旋转和剪裁二维材料[45,46,128] (a) STM实现GNI的可控旋转; (b) STM操纵实现悬浮在Au(111)面上的石墨烯薄层的旋转; (c) STM旋转双层石墨烯上的1T-NbSe2岛; (d) STM平移双层石墨烯上的1T-NbSe2岛
Figure 12. Translation and rotation of two-dimensional materials through STM manipulation[45,46,128]: (a) STM tip-manipulated GNI rotation; (b) STM tip-manipulated floating graphene flake rotation on Au(111); (c) rotation of 1T-NbSe2 island by STM; (d) translation of 1T-NbSe2 island by STM.
图 13 利用STM探针提拉低维材料[35,52,53] (a) STM提拉链状分子示意图; (b) 电流-探针高度曲线图; (c) 在Au(111)面上完成聚合的聚芴高分子STM图; (d) 电流-探针高度曲线图; (e) 原子分辨单层石墨烯在不同尖端样品距离下的三维形貌图; (f) 解释石墨烯薄膜力学行为的模型; (g) 应力导致石墨烯晶格大小改变图
Figure 13. Lifting low-dimensional materials by a STM tip[35,52,53]: (a) Scheme of the chain molecule pulling by STM; (b) current as a function of tip height for different experiments; (c) overview STM image after polymerization on Au(111) surface; (d) tunneling current as a function of the tip height; (e) three-dimensional representations of an atomically resolved monolayer graphene at different tip-sample distance; (f) model explaining the mechanical behavior of the graphene; (g) lattice constant change in graphene induced by strain.
图 14 STM对石墨烯纳米岛的可逆折叠[47] (a) GNI折叠示意和实验结果图; (b) 一系列展示沿各方向可逆折叠展开单个GNI的STM图; (c) 通过折叠GNI得到的不同转角莫尔图案示意图; (d), (e) 沿两个不同方向折叠GNI得到的管状手性结构
Figure 14. Reversable folding of graphene nanoisland by STM manipulation[47]: (a) Schematic and experiment results of GNI folding; (b) series of STM images showing repeatable folding and unfolding of a single GNI along different directions; (c) schematic of moiré pattern of different twisted angles; (d), (e) STM images showing structural configurations of two chiral tubular structures acquired by folding the same GNI along different directions.
图 15 应用STM探针刻蚀技术精准构筑特定形状的纳米结构[54,55,61] (a) STM刻蚀的10 nm宽, 120 nm长的纳米带的3D图; (b) STM刻蚀的8 nm宽, 弯折30°连接扶手椅型和zigzag型的石墨烯纳米带结; (c) STM刻蚀的5 nm宽扶手椅型边界的石墨烯纳米带; (d) STM刻蚀的6.5 nm宽zigzag型边界的石墨烯纳米带; (e) H:Si(100)面经STM氢刻蚀后的STM图; (f) 基于STM氢刻蚀制备的器件.
Figure 15. Specific nanostructures patterned by precise STM lithography[54,55,61]: (a) 3D STM image of a 10-nm-wide and 120-nm-long graphene nanoribbon; (b) an 8-nm-wide 30° GNR bent junction connecting an armchair and a zigzag ribbon; (c) STM image of a 5-nm-wide graphene nanoribbon with armchair edge orientation; (d) STM image of a 6.5-nm-wide ribbon with edges of precisely zigzag orientation; (e) STM image of H:Si(100) surface after STM hydrogen lithography; (f) a device fabricated based on STM hydrogen lithography.
-
[1] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar
[2] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar
[3] Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S 2016 Nat. Phys. 12 1105Google Scholar
[4] Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W 2011 Physica B 406 2254Google Scholar
[5] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013
[6] Xu C, Li B, Jiao W, Zhou W, Qian B, Sankar R, Zhigadlo N D, Qi Y, Qian D, Chou F C, Xu X 2018 Chem. Mater. 30 4823Google Scholar
[7] Vafek O, Vishwanath A 2014 Annu. Rev. Condens. Matter phys. 5 83Google Scholar
[8] den Heijer M, Fokkema V, Saedi A, Schakel P, Rost M J 2014 Rev. Sci. Instrum. 85 055007Google Scholar
[9] Eigler D M, Schweizer E K 1990 Nature 344 524Google Scholar
[10] 李宇昂, 吴迪, 王栋立, 胡昊, 潘毅 2021 物理学报 70 020701Google Scholar
Li Y A, Wu D, Wang L D, Hu H, Pan Y 2021 Acta Phys. Sin. 70 020701Google Scholar
[11] Castellanos-Gomez A, Rubio-Bollinger G, Garnica M, Barja S, Vazquez de Parga A L, Miranda R, Agrait N 2012 Ultramicroscopy 122 1Google Scholar
[12] Baek H, Ha J, Zhang D M, Natarajan B, Winterstein J P, Sharma R, Hu R W, Wang K F, Ziemak S, Paglione J, Kuk Y, Zhitenev N B, Stroscio J A 2015 Phys. Rev. B 92 094510Google Scholar
[13] Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542Google Scholar
[14] Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Li L F, Zhou H T, Wang Y L, Du S X, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Sci. Rep. 3 1210Google Scholar
[15] Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Song S R, Du S X, Min O Y, Hofer W A, Neto A H C, Gao H J 2015 Phys. Rev. Lett. 114 126601Google Scholar
[16] Yang K, Liu L W, Zhang L Z, Xiao W D, Fei X M, Chen H, Du S X, Ernst K H, Goo H J 2014 ACS Nano 8 2246Google Scholar
[17] Repicky J, Wu P K, Liu T, Corbett J P, Zhu T C, Cheng S Y, Ahmed A S, Takeuchi N, Guerrero-Sanchez J, Randeria M, Kawakami R K, Gupta J A 2021 Science 374 abd9225Google Scholar
[18] Chang K, Kuster F, Miller B J, Ji J R, Zhang J L, Sessi P, Barraza-Lopez S, Parkin S S P 2020 Nano Lett. 20 6590Google Scholar
[19] Zhao Y X, Zhou X F, Zhang Y, He L 2021 Phys. Rev. Lett. 127 266801Google Scholar
[20] Liu Y W, Su Y, Zhou X F, Yin L J, Yan C, Li S Y, Yan W, Han S, Fu Z Q, Zhang Y, Yang Q, Ren Y N, He L 2020 Phys. Rev. Lett. 125 236102Google Scholar
[21] Gerhard L, Yamada T K, Balashov T, Takacs A F, Wesselink R J H, Dane M, Fechner M, Ostanin S, Ernst A, Mertig I, Wulfhekel W 2010 Nat. Nanotechnol. 5 792Google Scholar
[22] Zhang Q Z, Wen H F, Adachi Y, Miyazaki M, Sugawara Y, Xu R, Cheng Z H, Li Y J 2019 J. Phys. Chem. C 123 22595Google Scholar
[23] Wong D, Velasco Jr J, Ju L, Lee J, Kahn S, Tsai H Z, Germany C, Taniguchi T, Watanabe K, Zettl A, Wang F, Crommie M F 2015 Nat. Nanotechnol. 10 949Google Scholar
[24] Sullivan S P, Schmeders A, Mbugua S K, Beebe T P 2005 Langmuir 21 1322Google Scholar
[25] Mao J H, Jiang Y H, Moldovan D, Li G H, Watanabe K, Taniguchi T, Masir M R, Peeters F M, Andrei E Y 2016 Nat. Phys. 12 545Google Scholar
[26] Chan Y, Khan S B, Mahmood A, Saleemi A S, Lian Z, Ren Y, Zeng X M, Lee S L 2020 J. Phys. Chem. C 124 815Google Scholar
[27] Wang H, Lee J, Dreyer M, Barker B I 2009 J. Phys.: Condens. Mat. 21 265005Google Scholar
[28] Chen W, Madhavan V, Jamneala T, Crommie M F 1998 Phys. Rev. Lett. 80 1469Google Scholar
[29] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z, Gao H J 2021 Nature 599 222Google Scholar
[30] Chen H, Xiao W, Wu X, Yang K, Gao H J 2014 J. Vac. Sci. Technol. B 32 061801Google Scholar
[31] Oh M, Nuckolls K P, Wong D, Lee R L, Liu X M, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar
[32] Kuester F, Montero A M, Guimaraes F S M, Brinker S, Lounis S, Parkin S S P, Sessi P 2021 Nat. Commun. 12 1108Google Scholar
[33] Jack B, Eltschka M, Assig M, Etzkorn M, Ast C R, Kern K 2016 Phys. Rev. B 93 020504Google Scholar
[34] Jack B, Eltschka M, Assig M, Hardock A, Etzkorn M, Ast C R, Kern K 2015 Appl. Phys. Lett. 106 013109Google Scholar
[35] Mashoff T, Pratzer M, Geringer V, Echtermeyer T J, Lemme M C, Liebmann M, Morgenstern M 2010 Nano Lett. 10 461Google Scholar
[36] Xu P, Yang Y R, Barber S D, Ackerman M L, Schoelz J K, Qi D, Kornev I A, Dong L F, Bellaiche L, Barraza-Lopez S, Thibado P M 2012 Phys. Rev. B 85 121406Google Scholar
[37] Klimov N N, Jung S, Zhu S Z, Li T, Wright C A, Solares S D, Newell D B, Zhitenev N B, Stroscio J A 2012 Science 336 1557Google Scholar
[38] Zhu S Z, Huang Y, Klimov N N, Newell D B, Zhitenev N B, Stroscio J A, Solares S D, Li T 2014 Phys. Rev. B 90 075426Google Scholar
[39] Breitwieser R, Hu Y C, Chao Y C, Li R J, Tzeng Y R, Li L J, Liou S C, Lin K C, Chen C W, Pai W W 2014 Carbon 77 236Google Scholar
[40] Neek-Amal M, Xu P, Schoelz J K, Ackerman M L, Barber S D, Thibado P M, Sadeghi A, Peeters F M 2014 Nat. Commun. 5 4962Google Scholar
[41] Yankowitz M, Watanabe K, Taniguchi T, San-Jose P, LeRoy B J 2016 Nat. Commun. 7 13168Google Scholar
[42] Georgi A, Nemes-Incze P, Carrillo-Bastos R, Faria D, Kusminskiy S V, Zhai D W, Schneider M, Subramaniam D, Mashoff T, Freitag N M, Liebmann M, Pratzer M, Wirtz L, Woods C R, Gorbachey R V, Cao Y, Novoselov K S, Sandier N, Morgenstern M 2017 Nano Lett. 17 2240Google Scholar
[43] Breitwieser R, Hu Y C, Chao Y C, Tzeng Y R, Liou S C, Lin K C, Chen C W, Pai W W 2017 Phys. Rev. B 96 085433Google Scholar
[44] van der Lit J, Jacobse P H, Vanmaekelbergh D, Swart I 2015 New J. Phys. 17 053013Google Scholar
[45] Leicht P, Zielke L, Bouvron S, Moroni R, Voloshina E, Hammerschmidt L, Dedkov Y S, Fonin M 2014 ACS Nano 8 3735Google Scholar
[46] Chen H, Bao D L, Wang D F, Que Y D, Xiao W D, Zhang Y Y, Sun J T, Du S X, Gao H J 2020 Nano Res. 13 3286Google Scholar
[47] Chen H, Zhang X L, Zhang Y Y, Wang D F, Bao D L, Que Y D, Xiao W D, Du S X, Ouyang M, Pantelides S T, Gao H J 2019 Science 365 1036Google Scholar
[48] Thomas L K, Reichling M 2019 Beilstein J. Nanotechnol. 10 804Google Scholar
[49] Shi L J, Yang L Z, Deng J Q, Tong L H, Wu Q L, Zhang L, Zhang L J, Yin L J, Qin Z H 2020 Carbon 165 169Google Scholar
[50] Yin L J, Wang W X, Feng K K, Nie J C, Xiong C M, Dou R F, Naugle D G 2015 Nanoscale 7 14865Google Scholar
[51] Yu M, Xu W, Benjalal Y, Barattin R, Lægsgaard E, Stensgaard I, Hliwa M, Bouju X, Gourdon A, Joachim C J N R 2009 Nano Res. 2 254Google Scholar
[52] Koch M, Ample F, Joachim C, Grill L 2012 Nat. Nanotechnol. 7 713Google Scholar
[53] Lafferentz L, Ample F, Yu H, Hecht S, Joachim C, Grill L 2009 Science 323 1193Google Scholar
[54] Magda G Z, Jin X Z, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C Y, Biro L P, Tapaszto L 2014 Nature 514 608Google Scholar
[55] Tapaszto L, Dobrik G, Lambin P, Biro L P 2008 Nat. Nanotechnol. 3 397Google Scholar
[56] Liu G Y, Xu S, Qian Y 2000 Acc. Chem. Res. 33 457Google Scholar
[57] Pavlova T V, Shevlyuga V M, Andryushechkin B V, Zhidomirov G M, Eltsov K N 2020 Appl. Surf. Sci. 509 145235Google Scholar
[58] Nemes-Incze P, Tapasztó L, Magda G Z, Osváth Z, Dobrik G, Jin X, Hwang C, Biró L P 2014 Appl. Surf. Sci. 291 48Google Scholar
[59] He Y, Gorman S K, Keith D, Kranz L, Keizer J G, Simmons M Y 2019 Nature 571 371Google Scholar
[60] Ruess F J, Pok W, Goh K E J, Hamilton A R, Simmons M Y 2007 Phys. Rev. B 75 121303Google Scholar
[61] Weber B, Mahapatra S, Ryu H, Lee S, Fuhrer A, Reusch T C G, Thompson D L, Lee W C T, Klimeck G, Hollenberg L C L, Simmons M Y 2012 Science 335 64Google Scholar
[62] Fuechsle M, Mahapatra S, Zwanenburg F A, Friesen M, Eriksson M A, Simmons M Y 2010 Nat. Nanotechnol. 5 502Google Scholar
[63] Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G, Simmons M Y 2012 Nat. Nanotechnol. 7 242Google Scholar
[64] Schofield S R, Curson N J, Simmons M Y, Ruess F J, Hallam T, Oberbeck L, Clark R G 2003 Phys. Rev. Lett. 91 136104Google Scholar
[65] Weber B, Tan Y H M, Mahapatra S, Watson T F, Ryu H, Rahman R, Hollenberg L C L, Klimeck G, Simmons M Y 2014 Nat. Nanotechnol. 9 430Google Scholar
[66] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[67] Butler S Z, Hollen S M, Cao L Y, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J X, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar
[68] Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar
[69] Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar
[70] Ma L G, Ye C, Yu Y J, Lu X F, Niu X H, Kim S, Feng D L, Tomanek D, Son Y W, Chen X H, Zhang Y B 2016 Nat. Commun. 7 10956Google Scholar
[71] Cho D, Cheon S, Kim K S, Lee S H, Cho Y H, Cheong S W, Yeom H W 2016 Nat. Commun. 7 10453Google Scholar
[72] Song X, Liu L, Chen Y, Yang H, Huang Z, Hou B, Hou Y, Han X, Yang H, Zhang Q, Zhang T, Zhou J, Huang Y, Zhang Y, Gao H J, Wang Y 2022 Nat. Commun. 13 1843Google Scholar
[73] Chen Z, Fu W, Wang L, Yu W, Li H H, Tan C K Y, Abdelwahab I, Shao Y, Su C L, Sun M Z, Huang B L, Loh K P 2021 Adv. Sci. 8 2100713Google Scholar
[74] Zhang Z M, Nie J H, Zhang Z H, Yuan Y, Fu Y S, Zhang W H 2022 Adv. Mater. 34 2106951Google Scholar
[75] Wang Y F, Kroger J, Berndt R, Hofer W A 2009 J. Am. Chem. Soc. 131 3639Google Scholar
[76] Pivetta M, Ternes M, Patthey F, Schneider W D 2007 Phys. Rev. Lett. 99 126104Google Scholar
[77] Strozecka A, Soriano M, Pascual J I, Palacios J J 2012 Phys. Rev. Lett. 109 147202Google Scholar
[78] Gopakumar T G, Tang H, Morillo J, Berndt R 2012 J. Am. Chem. Soc. 134 11844Google Scholar
[79] Chen H, Pope T, Wu Z Y, Wang D F, Tao L, Bao D L, Xiao W D, Zhang J L, Zhang Y Y, Du S X, Gao S, Pantelides S T, Hofer W A, Gao H J 2017 Nano Lett. 17 4929Google Scholar
[80] Xu P, Neek-Amal M, Barber S D, Schoelz J K, Ackerman M L, Thibado P M, Sadeghi A, Peeters F M 2014 Nat. Commun. 5 3720Google Scholar
[81] Li S Y, Bai K K, Zuo W J, Liu Y W, Fu Z Q, Wang W X, Zhang Y, Yin L J, Qiao J B, He L 2018 Phys. Rev. Appl. 9 054031Google Scholar
[82] Yoo H, Engelke R, Carr S, Fang S A, Zhang K, Cazeaux P, Sung S H, Hoyden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, Kim P 2019 Nat. Mater. 18 448Google Scholar
[83] Nam N N T, Koshino M 2017 Phys. Rev. B 96 075311Google Scholar
[84] Li Z, Zhuang J C, Wang L, Feng H F, Gao Q, Xu X, Hao W C, Wang X L, Zhang C, Wu K H, Dou S X, Chen L, Hu Z P, Du Y 2018 Sci. Adv. 4 eaau4511Google Scholar
[85] Li Z, Zhuang J C, Chen L, Ni Z Y, Liu C, Wang L, Xu X, Wang J O, Pi X D, Wang X L, Du Y, Wu K H, Dou S X 2016 ACS Cent. Sci. 2 517Google Scholar
[86] Chen L, Li H, Feng B J, Ding Z J, Qiu J L, Cheng P, Wu K H, Meng S 2013 Phys. Rev. Lett. 110 085504Google Scholar
[87] Chen J, Du Y, Li Z, Li W B, Feng B J, Qiu J L, Cheng P, Dou S X, Chen L, Wu K H 2015 Sci. Rep. 5 13590Google Scholar
[88] Xing Y, Shen J, Chen H, Huang L, Gao Y, Zheng Q, Zhang Y Y, Li G, Hu B, Qian G, Cao L, Zhang X, Fan P, Ma R, Wang Q, Yin Q, Lei H, Ji W, Du S, Yang H, Wang W, Shen C, Lin X, Liu E, Shen B, Wang Z, Gao H J 2020 Nat. Commun. 11 5613Google Scholar
[89] Setvin M, Schmid M, Diebold U 2015 Phys. Rev. B 91 195403Google Scholar
[90] Nguyen G D, Liang L B, Zou Q, Fu M M, Oyedele A D, Sumpter B G, Liu Z, Gai Z, Xiao K, Li A P 2018 Phys. Rev. Lett. 121 086101Google Scholar
[91] Selcuk S, Selloni A 2014 J. Chem. Phys. 141 084705Google Scholar
[92] Setvin M, Aschauer U, Scheiber P, Li Y F, Hou W Y, Schmid M, Selloni A, Diebold U 2013 Science 341 988Google Scholar
[93] Zhu S, Kong L, Cao L, Chen H, Papaj M, Du S, Xing Y, Liu W, Wang D, Shen C, Yang F, Schneeloch J, Zhong R, Gu G, Fu L, Zhang Y Y, Ding H, Gao H J 2020 Science 367 189Google Scholar
[94] Blonder G E, Tinkham M, Klapwijk T M 1982 Phys. Rev. B 25 4515Google Scholar
[95] Roy D K, Singh A 1995 Int. J. Mod. Phys. B 9 3039Google Scholar
[96] Crespo V, Maldonado A, Galvis J A, Kulkarni P, Guillamon I, Rodrigo J G, Suderow H, Vieira S, Banerjee S, Rodiere P 2012 Physica C 479 19Google Scholar
[97] Wu B H, Hassan S A, Gong W J, Xu X F, Wang C R, Cao J C 2021 J. Phys.: Condens. Mat. 33 025301Google Scholar
[98] Yazdani A, Jones B A, Lutz C P, Crommie M F, Eigler D M 1997 Science 275 1767Google Scholar
[99] Farinacci L, Ahmadi G, Reecht G, Ruby M, Bogdanoff N, Peters O, Heinrich B W, von Oppen F, Franke K J 2018 Phys. Rev. Lett. 121 196803Google Scholar
[100] Meservey R, Tedrow P M 1994 Phys. Rep. 238 173Google Scholar
[101] Eltschka M, Jack B, Assig M, Kondrashov O V, Skvortsov M A, Etzkorn M, Ast C R, Kern K 2014 Nano Lett. 14 7171Google Scholar
[102] Fan P, Yang F Z, Qian G J, Chen H, Zhang Y Y, Li G, Huang Z H, Xing Y Q, Kong L Y, Liu W Y, Jiang K, Shen C M, Du S X, Schneeloch J, Zhong R D, Gu G D, Wang Z Q, Ding H, Gao H J 2021 Nat. Commun. 12 1348Google Scholar
[103] Jiang K, Dai X, Wang Z 2019 Phys. Rev. X 9 011033
[104] Xing Y Q, Chen H, Hu B, Ye Y H, Hofer W A, Gao H J 2022 Nano Res. 15 1466Google Scholar
[105] Mier C, Verlhac B, Gamier L, Robles R, Limot L, Lorente N, Choi D J 2021 J. Phys. Chem. Lett. 12 2983Google Scholar
[106] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar
[107] Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar
[108] Collins J L, Tadich A, Wu W K, Gomes L C, Rodrigues J N B, Liu C, Hellerstedt J, Ryu H, Tang S J, Mo S K, Adam S, Yang S Y A, Fuhrer M S, Edmonds M T 2018 Nature 564 390Google Scholar
[109] Bork J, Zhang Y H, Diekhoner L, Borda L, Simon P, Kroha J, Wahl P, Kern K 2011 Nat. Phys. 7 901Google Scholar
[110] Ormaza M, Abufager P, Verlhac B, Bachellier N, Bocquet M L, Lorente N, Limot L 2017 Nat. Commun. 8 1974Google Scholar
[111] Verlhac B, Bachellier N, Garnier L, Ormaza M, Abufager P, Robles R, Bocquet M L, Ternes M, Lorente N, Limot L 2019 Science 366 623Google Scholar
[112] Yang K, Paul W, Natterer F D, Lado J L, Bae Y, Willke P, Choi T, Ferron A, Fernandez-Rossier J, Heinrich A J, Lutz C P 2019 Phys. Rev. Lett. 122 227203Google Scholar
[113] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39Google Scholar
[114] Vonlohneysen H, Pietrus T, Portisch G, Schlager H G, Schroder A, Sieck M, Trappmann T 1994 Phys. Rev. Lett. 72 3262Google Scholar
[115] Huang H, Padurariu C, Senkpiel J, Drost R, Yeyati A L, Cuevas J C, Kubala B, Ankerhold J, Kern K, Ast C R 2020 Nat. Phys. 16 1227
[116] Baumann S, Paul W, Choi T, Lutz C P, Ardavan A, Heinrich A J 2015 Science 350 417Google Scholar
[117] Choi T, Paul W, Rolf-Pissarczyk S, Macdonald A J, Natterer F D, Yang K, Willke P, Lutz C P, Heinrich A J 2017 Nat. Nanotechnol. 12 420Google Scholar
[118] Veldman L M, Farinacci L, Rejali R, Broekhoven R, Gobeil J, Coffey D, Ternes M, Otte A F 2021 Science 372 964Google Scholar
[119] Ormaza M, Bachellier N, Faraggi M N, Verlhac B, Abufager P, Ohresser P, Joly L, Romeo M, Scheurer F, Bocquet M L, Lorente N, Limot L 2017 Nano Lett. 17 1877Google Scholar
[120] Frota H O 1992 Phys. Rev. B 45 1096Google Scholar
[121] Choi D J, Abufager P, Limot L, Lorente N 2017 J. Chem. Phys. 146 092309Google Scholar
[122] Choi D J, Guissart S, Onnaza M, Bachellier N, Bengone O, Simon P, Limot L 2016 Nano Lett. 16 6298Google Scholar
[123] van der Wiel W G, De Franceschi S, Fujisawa T, Elzerman J M, Tarucha S, Kouwenhoven L P 2000 Science 289 2105Google Scholar
[124] Loth S, von Bergmann K, Ternes M, Otte A F, Lutz C P, Heinrich A J 2010 Nat. Phys. 6 340Google Scholar
[125] Muenks M, Jacobson P, Ternes M, Kern K 2017 Nat. Commun. 8 14119Google Scholar
[126] Czap G, Wagner P J, Xue F, Gu L, Li J, Yao J, Wu R Q, Ho W 2019 Science 364 670Google Scholar
[127] Liu Y W, Hao C Y, He L 2022 Phys. Rev. Appl. 17 034013Google Scholar
[128] Zhang Q, Zhang Y, Hou Y, Xu R, Jia L, Huang Z, Hao X, Zhou J, Zhang T, Liu L, Xu Y, Gao H J, Wang Y 2022 Nano Lett. 22 1190Google Scholar
[129] Kim K, Lee Z, Malone B D, Chan K T, Alemán B, Regan W, Gannett W, Crommie M F, Cohen M L, Zettl A 2011 Phys. Rev. B 83 245433Google Scholar
[130] Blees M K, Barnard A W, Rose P A, Roberts S P, McGill K L, Huang P Y, Ruyack A R, Kevek J W, Kobrin B, Muller D A, McEuen P L 2015 Nature 524 204Google Scholar
[131] Zhu S Z, Li T 2014 ACS Nano 8 2864Google Scholar
[132] Kim D H, Koo J Y, Kim J J 2003 Phys. Rev. B 68 113406Google Scholar
[133] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar
[134] Wang G C, Bao L H, Pei T F, Ma R S, Zhang Y Y, Sun L L, Zhang G Y, Yang H F, Li J J, Gu C Z, Du S X, Pantelides S T, Schrimpf R D, Gao H J 2016 Nano Lett. 16 6870Google Scholar
[135] Guo H, Zhang R Z, Li H, Wang X Y, Lu H L, Qian K, Li G, Huang L, Lin X, Zhang Y Y, Ding H, Du S X, Pantelides S T, Gao H J 2020 Nano Lett. 20 2674Google Scholar
[136] Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T, Gao H J 2017 Nano Lett. 17 3991Google Scholar
[137] Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T, Gao H J 2018 Adv. Mater. 30 1804650Google Scholar
[138] Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar
[139] Chen H, Que Y, Tao L, Zhang Y Y, Lin X, Xiao W, Wang D, Du S, Pantelides S T, Gao H J 2018 Nano Res. 11 3722Google Scholar
[140] Li L, Wang Y, Xie S, Li X B, Wang Y Q, Wu R, Sun H, Zhang S, Gao H J 2013 Nano Lett. 13 4671Google Scholar
[141] Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, Gao H J 2017 Adv. Mater. 29 1605407Google Scholar
[142] Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S X, Gao H J 2019 Nano Lett. 19 6323Google Scholar
[143] Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X, Gao H J 2014 Adv. Mater. 26 4820Google Scholar
[144] Deng J L, Xia B Y, Ma X C, Chen H Q, Shan H, Zhai X F, Li B, Zhao A D, Xu Y, Duan W H, Zhang S C, Wang B, Hou J G 2018 Nat. Mater. 17 1081Google Scholar
[145] Zhao A D, Wang B 2020 Appl. Mater. 8 030701Google Scholar
[146] Yan J H, Ma J J, Wang A W, Ma R S, Wu L M, Wu Z B, Liu L, Bao L H, Huan Q, Gao H J 2021 Rev. Sci. Instrum. 92 103702Google Scholar
[147] Ma R, Huan Q, Wu L, Yan J, Guo W, Zhang Y Y, Wang S, Bao L, Liu Y, Du S, Pantelides S T, Gao H J 2017 Nano Lett. 17 5291Google Scholar
[148] 李彦, 郑琦, 常霄, 黄立, 林晓, 程志海, 高鸿钧 2021 物理学报 70 136802Google Scholar
Li Y, Zheng Q, Chang X, Huang L, Lin X, Cheng Z H, Gao H J 2021 Acta Phys. Sin. 70 136802Google Scholar
[149] Jiang N, Zarkadoula E, Narang P, Maksov A, Kravchenko I, Borisevich A, Jesse S, Kalinin S V 2017 MRS Bull. 42 653Google Scholar
[150] Dyck O, Ziatdinov M, Lingerfelt D B, Unocic R R, HudaK B M, Lupini A R, Jesse S, Kalinin S V 2019 Nat. Rev. Mater. 4 497Google Scholar
[151] Krull A, Hirsch P, Rother C, Schiffrin A, Krull C 2020 Commu. Phys. 3 54Google Scholar
[152] Rashidi M, Wolkow R A 2018 ACS Nano 12 5185Google Scholar
[153] Roccapriore K M, Zou Q, Zhang L Z, Xue R, Yan J Q, Ziatdinov M, Fu M M, Mandrus D G, Yoon M, Sumpter B G, Gai Z, Kalinin S V 2021 ACS Nano 15 11806Google Scholar
[154] Zhao J, Swartz L A, Lin W F, Schlenoff P S, Frommer J, Schlenoff J B, Liu G Y 2016 ACS Nano 10 5656Google Scholar
[155] Zhao P, Wang R, Lien D H, Zhao Y, Kim H, Cho J, Ahn G H, Javey A 2019 ADv. Mater. 31 1900136Google Scholar
[156] Fan P, Gao J, Mao H, Geng Y, Yan Y, Wang Y, Goel S, Luo X 2022 Micromachines 13 228Google Scholar
[157] Garcia R, Knoll A W, Riedo E 2014 Nat. Nanotechnol. 9 577Google Scholar
Catalog
Metrics
- Abstract views: 9089
- PDF Downloads: 473
- Cited By: 0