Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures

Chen Shang-Feng Sun Nai-Kun Zhang Xian-Min Wang Kai Li Wu Han Yan Wu Li-Jun Dai Qin

Citation:

Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures

Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin
PDF
HTML
Get Citation
  • Cd3As2, especially its various nanostructures, has been considered as an excellent candidate for application in novel optoelectronic devices due to its ultrahigh mobility and good air-stability. Recent researches exhibited Cd3As2 as a candidate of thermoelectric materials by virtue of its ultralow thermal conductivity in comparison with other semimetals or metals. In this work, at first ( Cd1–xMnx)3As2 (x = 0, 0.05, 0.1) bulk alloys are prepared by high-pressure sintering to suppress the volatilization of As element, and then several kinds of Mn3As2-doped Cd3As2 nanostructures are obtained on mica substrates by chemical vapor deposition (CVD), with bamboo-shoot-nanowire structure forming in a high-temperature region and films in a low-temperature region. Effects of Mn3As2 doping on the crystalline structure, phase compositions, microstructures and thermoelectric properties of the Cd3As2 nanostructures are systematically studied. Energy-dispersive spectrometer (EDS) analysis at various typical positions of the Mn3As2-doped Cd3As2 nanostructures shows that the Mn content in these nanostructures is in a range of 0.02%–0.18% (atomic percent), which is much lower than the Mn content in ( Cd1–xMnx)3As2 (x = 0, 0.05, 0.1) parent alloys. The main phases of these nanostructures are all body centered tetragonal α phase with a small amount of primitive tetragonal α′ phase. Doping results in the α″ phase and Mn2As impurity phase occurring. The Cd3As2 film presents a self-assembled cauliflower microstructure. Upon Mn3As2 doping, this morphology finally transforms into a vertical-growth seashell structure. In a high temperature region of the mica substrate, a unique bamboo-shoot-nanowire structure is formed, with vertical-growth bamboo shoots connected by nanowires, and at the end of these nanowires grows a white pentagonal flower structure with the highest Mn content of 0.18% (atomic percent) for all the nanostructures. Conductivity of the Cd3As2 film and the bamboo-shoot-nanowire structure are ~20 and 320 S/cm, respectively. The remarkable conductivity enhancement can be attributed to higher crystallinity and the formation of nanowire conductive network, which significantly increase carrier concentration and Hall mobility. The Hall mobility values of the nanowire structures range from 2271 to 3048 cm2/(V·s) much higher than the values of 378–450 cm2/(V·s) for the films. The Seebeck coefficient for the bamboo-shoot-nanowire structure is in a range of 59–68 µV/K, which is about 15% higher than those for the films (50–61 µV/K). Although maximal power factor of the bamboo-shoot-nanowire structure is 14 times as high as that of the thin film, reaching 0.144 mW/(m·K2) at room temperature, this value is still one order of magnitude lower than the previously reported value of 1.58 mW/(m·K2) for Cd3As2 single crystal.
      Corresponding author: Sun Nai-Kun, naikunsun@163.com ; Wu Li-Jun, wulijun20070915@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52171187) and the Shenyang Ligong University High-level Results-based Development Funding Program, China (Grant No. SYLUXM202107).
    [1]

    Kaleem U, Meng Y F, Sun Y, et al. 2020 Appl. Phys. Lett. 117 011102Google Scholar

    [2]

    Wang H L, Ma J L, Wei Q Q, Zhao J H 2020 J. Semicond. 41 072903Google Scholar

    [3]

    Zhang Y X, Nappini S, Sankar R, Bondino F, Gao J F, Politano A 2021 J. Mater. Chem. C 9 1235Google Scholar

    [4]

    Liang T, Gibson Q, Ali M N, Liu M H, Cava R J, Ong N P 2015 Nat. Mater. 14 280Google Scholar

    [5]

    Cheng P H, Zhang C, Liu Y W, et al. 2016 New J. Phys. 18 083003Google Scholar

    [6]

    Park K, Jung M, Kim D, Bayogan J R, Lee J H, An S J, Seo J, Seo J, Ahn J P, Park J 2020 Nano Lett. 20 4939Google Scholar

    [7]

    Suslov A V, Davydov A B, Oveshnikov L N, et al. 2019 Phys. Rev. B 99 094512Google Scholar

    [8]

    Zhou T, Zhang C, Zhang H S, Xiu F X, Yang Z Q 2016 Inorg. Chem. Front. 3 1637Google Scholar

    [9]

    Zhang C, Zhou T, Liang S H, et al. 2016 Chin. Phys. B 25 017202Google Scholar

    [10]

    Wang H H, Luo X G, Peng K L, et al. 2019 Adv. Funct. Mater. 29 1902437Google Scholar

    [11]

    Pariari A, Khan N, Singha R, Satpati B, Mandal P 2016 Phys. Rev. B 94 165139Google Scholar

    [12]

    杨亮亮, 勤源浩, 魏江涛, 宋培帅, 张明亮, 杨富华, 王晓东 2021 物理学报 70 076802Google Scholar

    Yang L L, Qin Y H, Wei J T, Song P S, Zhang M L, Yang F H, Wang X D 2021 Acta Phys. Sin. 70 076802Google Scholar

    [13]

    李彩云, 何文科, 王东洋, 张潇, 赵立东 2021 物理学报 70 208401Google Scholar

    Li C Y, He W K, Wang D Y, Zhang X, Zhao L D 2021 Acta Phys. Sin. 70 208401Google Scholar

    [14]

    Sun N K, Li W, Pang C, Zhong D H, Li M L 2021 Solid State Commun. 339 114505Google Scholar

    [15]

    Liao W W, Yang L, Chen J, et al. 2019 Chem. Eng. J. 371 593Google Scholar

    [16]

    Yue Z M, Zhao K P, Chen H Y, Qiu P F, Zhao L D, Shi X 2021 Chin. Phys. Lett. 38 117201Google Scholar

    [17]

    胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健 2022 物理学报 71 047101Google Scholar

    Hu W W, Sun J C, Zhang Y, Guo Y, Fan Y T, Tang X F, Tan G J 2022 Acta Phys. Sin. 71 047101Google Scholar

    [18]

    Chen R K, Lee J, Lee W, Li D Y 2019 Chem. Rev. 119 9260Google Scholar

    [19]

    Zhu G P, Zhao C W, Wang X W, Wang J 2021 Chin. Phys. Lett. 38 024401Google Scholar

    [20]

    Guo J, Zhao X G, Sun N K, Xiao X F, Liu W, Zhang Z D 2021 J. Mater. Sci. Technol. 76 247Google Scholar

    [21]

    Celinski Z, Burian A, Rzepa B, Zdanowicz W 1987 Mat. Res. Bull. 22 419Google Scholar

    [22]

    Ril A I, Marenkin S F, Volkov V V, Oveshnikov L N, Kozlov V V 2021 J. Alloys Compd. 892 162082

    [23]

    Oveshnikov L N, Davydov A B, Suslov A V, Ril A I, Marenkin S F, Vasiliev A L, Aronzon B A 2020 Sci. Rep. 10 4601Google Scholar

    [24]

    Wei S, Lu J, Yu W C, Zhang H B, Qian Y T 2006 Cryst. Growth Des. 6 849Google Scholar

    [25]

    Weszka J 1999 Phys. Stat. Sol. (b) 211 605Google Scholar

    [26]

    Davydov A B, Oveshnikov L N, SuSlov A V, Ril A I, Marenkin S F, Aronzon B A 2020 Phys. Solid State 62 419Google Scholar

    [27]

    Marenkin S F, Trukhan V M, Fedorchenko I V, TruKhanov S V, Shoukavaya T V 2014 Russ. J. Inorg. Chem. 59 355Google Scholar

    [28]

    Li C Z, Zhu R, Ke X X, Zhang J M, Wang L X, Zhang L, Liao Z M, Yu D P 2015 Cryst. Growth Des. 15 3264Google Scholar

    [29]

    Rice A D, Park K, Hughes E T, Mukherjee K, Alberi K 2019 Phys. Rev. Mater. 3 121201Google Scholar

    [30]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [31]

    Schonherr P, Hesjedal T 2015 Appl. Phys. Lett. 106 013115Google Scholar

    [32]

    Hwang Y, Choi J, Dung D D, Shin Y, Cho S 2011 J. Appl. Phys. 109 063914Google Scholar

    [33]

    Dai Z J, Manjappa M, Yang Y K, Tan T C W, Qiang B, Han S, Wong L J, Xiu F X, Liu W W, Singh R 2021 Adv. Funct. Mater. 31 2011011Google Scholar

    [34]

    Nishihaya S, Uchida M, Nakazawa Y, Akiba K, Kriener M, Kozuka Y, Miyake A, Taguchi Y, Tokunaga M, Kawasaki M 2018 Phys. Rev. B 97 245103Google Scholar

    [35]

    Jia Z Z, Li C Z, Li X Q, Shi J R, Liao Z M, Yu D P, Wu X S 2016 Nat. Commun. 7 13013Google Scholar

  • 图 1  Mn3As2掺杂Cd3As2纳米结构制备流程示意图

    Figure 1.  Schematic diagram of preparation process of Mn3As2-doped Cd3As2 nanostructures.

    图 2  Mn3As2掺杂Cd3As2薄膜、竹笋纳米线结构的XRD, 以及3种Cd3As2晶体结构标准卡片图

    Figure 2.  XRD patterns of Mn3As2-doped Cd3As2 films and bamboo-shoot-nanowire structures and standard XRD cards of three Cd3As2 crystalline structures.

    图 3  Mn3As2掺杂Cd3As2竹笋纳米线结构的拉曼光谱图

    Figure 3.  Laman spectra of Mn3As2-doped bamboo-shoot-nanowire structures.

    图 4  Mn3As2掺杂Cd3As2薄膜的SEM图(第1和第2列)及EDS分析结果(第3列) (a)—(c) F0样品 ((a)插图为薄膜横截面图); (d)—(f) F0.05样品; (g)—(i) F0.1样品

    Figure 4.  SEM images (the first and second column) and EDS analysis results (the third column) of Mn3As2-doped Cd3As2 films: (a)–(c) F0 sample (the inset of (a) shows the fracture morphology); (d)–(f) F0.05 sample; (g)–(i) F0.1 sample.

    图 5  Mn3As2掺杂Cd3As2纳米线的SEM (第1和第2列)及EDS分析结果(第3和第4列) (a)—(d) N0 样品; (e)—(h) N0.05 样品; (i)—(l) N0.1样品

    Figure 5.  SEM images (the first and second column) and EDS analysis results (the third and fourth column) of Mn3As2-doped Cd3As2 nanowires: (a)–(d) N0 sample; (e)–(h) N0.05 sample; (i)–(l) N0.1 sample.

    图 6  Cd3As2竹笋纳米线结构横截面的SEM图(a)—(c)及EDS元素成分分析结果(d), (e)

    Figure 6.  SEM images of the fracture cross section (a)–(c) and EDS analysis and compositional distributions (d), (e) of Cd3As2 bamboo-shoot-nanowire structure.

    图 7  Cd3As2纳米线的微结构表征 (a) TEM图; (b) 元素成分; (c) HRTEM图; (d) 电子衍射花样图

    Figure 7.  Microstructure characteristics of Cd3As2 nanowires: (a) TEM image; (b) elemental compositions; (c) HRTEM image; (d) selected area electron diffraction image.

    图 8  (a)—(c) Mn3As2掺杂Cd3As2薄膜的电导率 (a)、塞贝克系数(b)、功率因子(c)随温度的变化曲线; (d) Mn3As2掺杂Cd3As2薄膜的室温载流子浓度和霍尔迁移率

    Figure 8.  (a)–(c) Temperature dependence of electrical conductivity (a), Seebeck coefficient (b), and power factor (c) of Mn3As2-doped Cd3As2 films; (d) room-temperature carrier concentration and Hall mobility (d) of Mn3As2-doped Cd3As2 films.

    图 9  (a)—(c) Mn3As2掺杂Cd3As2竹笋纳米线结构的电导率 (a)、塞贝克系数 (b)、功率因子(c)随温度的变化曲线; (d) Mn3As2掺杂Cd3As2竹笋纳米线结构的室温载流子浓度和霍尔迁移率

    Figure 9.  (a)–(c) Temperature dependence of electrical conductivity (a), Seebeck coefficient (b), and power factor (c) of Mn3As2-doped Cd3As2 bamboo-shoot-nanowire structure; (d) room-temperature carrier concentration and Hall mobility of Mn3As2-doped Cd3As2 bamboo-shoot-nanowire structure.

  • [1]

    Kaleem U, Meng Y F, Sun Y, et al. 2020 Appl. Phys. Lett. 117 011102Google Scholar

    [2]

    Wang H L, Ma J L, Wei Q Q, Zhao J H 2020 J. Semicond. 41 072903Google Scholar

    [3]

    Zhang Y X, Nappini S, Sankar R, Bondino F, Gao J F, Politano A 2021 J. Mater. Chem. C 9 1235Google Scholar

    [4]

    Liang T, Gibson Q, Ali M N, Liu M H, Cava R J, Ong N P 2015 Nat. Mater. 14 280Google Scholar

    [5]

    Cheng P H, Zhang C, Liu Y W, et al. 2016 New J. Phys. 18 083003Google Scholar

    [6]

    Park K, Jung M, Kim D, Bayogan J R, Lee J H, An S J, Seo J, Seo J, Ahn J P, Park J 2020 Nano Lett. 20 4939Google Scholar

    [7]

    Suslov A V, Davydov A B, Oveshnikov L N, et al. 2019 Phys. Rev. B 99 094512Google Scholar

    [8]

    Zhou T, Zhang C, Zhang H S, Xiu F X, Yang Z Q 2016 Inorg. Chem. Front. 3 1637Google Scholar

    [9]

    Zhang C, Zhou T, Liang S H, et al. 2016 Chin. Phys. B 25 017202Google Scholar

    [10]

    Wang H H, Luo X G, Peng K L, et al. 2019 Adv. Funct. Mater. 29 1902437Google Scholar

    [11]

    Pariari A, Khan N, Singha R, Satpati B, Mandal P 2016 Phys. Rev. B 94 165139Google Scholar

    [12]

    杨亮亮, 勤源浩, 魏江涛, 宋培帅, 张明亮, 杨富华, 王晓东 2021 物理学报 70 076802Google Scholar

    Yang L L, Qin Y H, Wei J T, Song P S, Zhang M L, Yang F H, Wang X D 2021 Acta Phys. Sin. 70 076802Google Scholar

    [13]

    李彩云, 何文科, 王东洋, 张潇, 赵立东 2021 物理学报 70 208401Google Scholar

    Li C Y, He W K, Wang D Y, Zhang X, Zhao L D 2021 Acta Phys. Sin. 70 208401Google Scholar

    [14]

    Sun N K, Li W, Pang C, Zhong D H, Li M L 2021 Solid State Commun. 339 114505Google Scholar

    [15]

    Liao W W, Yang L, Chen J, et al. 2019 Chem. Eng. J. 371 593Google Scholar

    [16]

    Yue Z M, Zhao K P, Chen H Y, Qiu P F, Zhao L D, Shi X 2021 Chin. Phys. Lett. 38 117201Google Scholar

    [17]

    胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健 2022 物理学报 71 047101Google Scholar

    Hu W W, Sun J C, Zhang Y, Guo Y, Fan Y T, Tang X F, Tan G J 2022 Acta Phys. Sin. 71 047101Google Scholar

    [18]

    Chen R K, Lee J, Lee W, Li D Y 2019 Chem. Rev. 119 9260Google Scholar

    [19]

    Zhu G P, Zhao C W, Wang X W, Wang J 2021 Chin. Phys. Lett. 38 024401Google Scholar

    [20]

    Guo J, Zhao X G, Sun N K, Xiao X F, Liu W, Zhang Z D 2021 J. Mater. Sci. Technol. 76 247Google Scholar

    [21]

    Celinski Z, Burian A, Rzepa B, Zdanowicz W 1987 Mat. Res. Bull. 22 419Google Scholar

    [22]

    Ril A I, Marenkin S F, Volkov V V, Oveshnikov L N, Kozlov V V 2021 J. Alloys Compd. 892 162082

    [23]

    Oveshnikov L N, Davydov A B, Suslov A V, Ril A I, Marenkin S F, Vasiliev A L, Aronzon B A 2020 Sci. Rep. 10 4601Google Scholar

    [24]

    Wei S, Lu J, Yu W C, Zhang H B, Qian Y T 2006 Cryst. Growth Des. 6 849Google Scholar

    [25]

    Weszka J 1999 Phys. Stat. Sol. (b) 211 605Google Scholar

    [26]

    Davydov A B, Oveshnikov L N, SuSlov A V, Ril A I, Marenkin S F, Aronzon B A 2020 Phys. Solid State 62 419Google Scholar

    [27]

    Marenkin S F, Trukhan V M, Fedorchenko I V, TruKhanov S V, Shoukavaya T V 2014 Russ. J. Inorg. Chem. 59 355Google Scholar

    [28]

    Li C Z, Zhu R, Ke X X, Zhang J M, Wang L X, Zhang L, Liao Z M, Yu D P 2015 Cryst. Growth Des. 15 3264Google Scholar

    [29]

    Rice A D, Park K, Hughes E T, Mukherjee K, Alberi K 2019 Phys. Rev. Mater. 3 121201Google Scholar

    [30]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [31]

    Schonherr P, Hesjedal T 2015 Appl. Phys. Lett. 106 013115Google Scholar

    [32]

    Hwang Y, Choi J, Dung D D, Shin Y, Cho S 2011 J. Appl. Phys. 109 063914Google Scholar

    [33]

    Dai Z J, Manjappa M, Yang Y K, Tan T C W, Qiang B, Han S, Wong L J, Xiu F X, Liu W W, Singh R 2021 Adv. Funct. Mater. 31 2011011Google Scholar

    [34]

    Nishihaya S, Uchida M, Nakazawa Y, Akiba K, Kriener M, Kozuka Y, Miyake A, Taguchi Y, Tokunaga M, Kawasaki M 2018 Phys. Rev. B 97 245103Google Scholar

    [35]

    Jia Z Z, Li C Z, Li X Q, Shi J R, Liao Z M, Yu D P, Wu X S 2016 Nat. Commun. 7 13013Google Scholar

  • [1] Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds. Acta Physica Sinica, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [2] Zou Ping, Lü Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [3] Wang Jiao, Liu Shao-Hui, Zhou Meng, Hao Hao-Shan. Effects of ascorbic acid post-treatment on thermoelectric properties of poly (3, 4-ethylenedioxythiophene) thin films by a vapor phase polymerization. Acta Physica Sinica, 2020, 69(14): 147201. doi: 10.7498/aps.69.20200431
    [4] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [5] Ma Li-An, Zheng Yong-An, Wei Zhao-Hui, Hu Li-Qin, Guo Tai-Liang. Effect of synthesis temperature and N2/O2 flow on morphology and field emission property of SnO2 nanowires. Acta Physica Sinica, 2015, 64(23): 237901. doi: 10.7498/aps.64.237901
    [6] Wu Fang, Wang Wei. Thermoelectric properties of the Bi2Te3 nanocrystalline bulk alloy pressed by the high-pressure sintering. Acta Physica Sinica, 2015, 64(4): 047201. doi: 10.7498/aps.64.047201
    [7] Feng Qiu-Ju, Xu Rui-Zhuo, Guo Hui-Ying, Xu Kun, Li Rong, Tao Peng-Cheng, Liang Hong-Wei, Liu Jia-Yuan, Mei Yi-Ying. Influences of the substrate position on the morphology and characterization of phosphorus doped ZnO nanomaterial. Acta Physica Sinica, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [8] Sun Zheng, Chen Shao-Ping, Yang Jiang-Feng, Meng Qing-Sen, Cui Jiao-Lin. Thermoelectric properties of chalcopyrite Cu3Ga5Te9 with Sb non-isoelectronic substitution for Cu and Te. Acta Physica Sinica, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [9] Wu Zi-Hua, Xie Hua-Qing. Study on the preparation and properties of polyparaphenylene/LiNi0.5Fe2O4 anocomposite thermoelectric materials. Acta Physica Sinica, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [10] Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2. Acta Physica Sinica, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [11] Liu Jian, Wang Chun-Lei, Su Wen-Bin, Wang Hong-Chao, Zhang Jia-Liang, Mei Liang-Mo. Influence of niobium doping on crystal structure and thermoelectric property of reduced titanium dioxide ceramics. Acta Physica Sinica, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [12] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [13] Wang Shan-Yu, Xie Wen-Jie, Li Han, Tang Xin-Feng. Microstructures and thermoelectric properties of n-type melting spun(Bi0.85Sb0.15)2(Te1-xSex)3 compounds. Acta Physica Sinica, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [14] Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui, Zhang Fan, Luo Jun. Synthesis and characterization of Sb2Te3 nanostructures. Acta Physica Sinica, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [15] Cao Wei-Qiang, Deng Shu-Kang, Tang Xin-Feng, Li Peng. The effects of melt spinning process on microstructure and thermoelectric properties of Zn-doped type-I clathrates. Acta Physica Sinica, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [16] Han Dao-Li, Zhao Yuan-Li, Zhao Hai-Bo, Song Tian-Fu, Liang Er-Jun. Growth of well-aligned carbon nanotubes arrays by chemical vapor deposition. Acta Physica Sinica, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [17] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [18] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [19] Yan Xiao-Qin, Liu Zu-Qin, Tang Dong-Sheng, Ci Li-Jie, Liu Dong-Fang, Zhou Zhen-Ping, Liang Ying-Xin, Yuan Hua-Jun, Zhou Wei-Ya, Wang Gang. Effects of substrates on silicon oxide nanowires growth by thermal chemical vapor deposition. Acta Physica Sinica, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [20] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
Metrics
  • Abstract views:  3946
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2022
  • Accepted Date:  23 May 2022
  • Available Online:  07 September 2022
  • Published Online:  20 September 2022

/

返回文章
返回