-
In this paper, cavity-excited Huygens’ metasurface is proposed for high-efficiency wavefront manipulation. By adjusting the length of electric dipole and magnetic dipole , the proposed Huygens’ metasurface meta unit can provide nearly 360° phase coverage with sufficiently high transmission efficiency. Based on the analysis of the resonance mode of the cavity, the Huygens’ metasurface has successfully performed its function by adopting integrated feeding method. According to the generalized Snell’s law, metasurfaces with different phase gradients are designed. Combined with the cavity structure, one-dimensional Huygens’ metasurfaces excited by cavity is realized, which can directionally emit the electromagnetic waves from the cavity. Both the simulation and experimental results show that the proposed cavity excited metasurfaces can effectively manipulate the direction of the emitted beam. Such a kind of cavity-excited metasurface can flexibly control the emission angle of the electromagnetic wave, reduce the energy loss and improve the efficiency of the electromagnetic wave. These designs have the advantages of compact, light and easy integration.
-
Keywords:
- cavity-excited /
- integrated feeding /
- Huygens’ metasurface /
- wavefront manipulation.
[1] Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932Google Scholar
[2] Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S 2020 Photoni X 1 2Google Scholar
[3] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar
[4] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar
[5] Chen P Y, Argyropoulos C, Alù A 2013 Phys. Rev. Lett. 111 233001Google Scholar
[6] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar
[7] Guan C, Liu J, Ding X, Wang Z, Zhang K, Li H, Jin M, Burokur S N, Wu Q 2020 Nanophotonics 9 3605Google Scholar
[8] Ding X, Wang Z, Hu G, Liu J, Zhang K, Li H, Ratni B, Burokur S N, Wu Q, Tan J, Qiu C W 2020 PhotoniX 1 16Google Scholar
[9] Zhang L, Chen M Z, Tang W, Dai J Y, Miao L, Zhou X Y, Jin S, Cheng Q, Cui T J 2021 Nat Electron 4 218Google Scholar
[10] Dai J, Tang W, Chen M Z, Chan C H, Cheng Q, Jin S, Cui T J 2021 IEEE Trans. Microw. Theory Tech. 69 1493Google Scholar
[11] Dai J Y, Tang W K, Zhao J, Li X, Cheng Q, Ke J C, Chen M Z, Jin S, Cui T J 2019 Adv. Mater. Technol. 4 1900044Google Scholar
[12] Dorrah A H, Chen M, Eleftheriades G V. 2018 IEEE Trans. Anten. Propag. 66 4729Google Scholar
[13] Wong A M H, Eleftheriades G V 2018 Phys. Rev. X 8 011036
[14] Zhu B O and Feng Y 2015 IEEE Trans. Anten. Propag. 63 5500Google Scholar
[15] Zhao R, Zhu Z, Dong G 2019 Opt. Lett. 44 3482Google Scholar
[16] Xu Y, Xu N, Liu H, Shan D, Song N, Gao J 2018 J. Opt. Soc. Am. B-Opt. Phys. 35 1248Google Scholar
[17] Jia S L, Wan X, Su P, Zhao Y J, Cui T J 2016 Aip. Adv. 6 045024Google Scholar
[18] Guan C, Wang Z, Ding X, Zhang K, Ratni B, Burokur S N, Jin M, Wu Q 2019 Opt. Express 27 7108Google Scholar
[19] Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, Zhang L, Kim Y, Ding X, Zhang S, Alù A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar
[20] Wang Z, Ding X, Zhang K, Ratni B, Burokur S N, Gu X, Wu Q 2018 Adv. Opt. Mater. 6 1800121Google Scholar
[21] Wang Z, Ding X, Zhang K, Wu Q 2017 Sci. Rep. 7 9081Google Scholar
[22] Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613Google Scholar
[23] Wan X, Zhang L, Jia S, Yin J, Cui T J 2017 IEEE Trans. Anten. Propag. 65 4427Google Scholar
[24] Zhao Z, Wang Y, Guan C, Zhang K, Wu Q, Li H, Liu J, Burokur S N, Ding X 2022 PhotoniX 3 15Google Scholar
[25] Wang Z, Hu G, Wang X, Ding X, Zhang K, Li H, Burokur S N, Wu Q, Liu J, Tan J, Qiu C W 2022 Nat. Commun. 13 2188Google Scholar
[26] Li H, Li Y B, Shen J L, Cui T J 2020 Adv. Opt. Mater. 8 1902057Google Scholar
[27] Guo X, Ding Y, Chen X, Duan Y, Ni X 2020 Sci. Adv. 6 eabb4142Google Scholar
[28] Xu P, Tian H W, Cai X, Jiang W X, Cui T J 2021 Adv. Funct. Mater 31 2100569Google Scholar
[29] Shi H, Wang L, Zhao M, Chen J, Zhang A, Xu Z 2018 Mater 11 2448
-
图 2 惠更斯超表面单元的透射响应与单元结构参数关系图 (a)单元的传输幅度频谱图; (b)单元的传输相位频谱图; (c)不同结构尺寸的单元幅度响应分布图; (d)不同尺寸结构的单元相位响应分布图; (e)电偶极子电流分布; (f)磁偶极子电流分布
Figure 2. Transmission responses of the Hugens’meta-atom: (a) Transmission amplitude spectral of the unit cell; (b) transmission phase spectral of the unit cell; (c) transmission amplitude response of the meta-atom as functions of Le and Lm; (d) transmission phase response of the meta-atom as functions of Le and Lm; (e) current distributions on the electric dipole; (f) currents distributions on the magnetic dipole.
图 6 加工的开口矩形波导谐振腔及超表面实物图 (a)矩形开口波导; (b)不同相位梯度的超表面; (c)波导加载超表面的正面结构示意图; (d)波导加载超表面的侧面结构示意图
Figure 6. The fabricated open cavity and metasurfaces: (a) Open cavity; (b) metasurfaces with different phase gradient; (c) front view of the cavity-excited metasurface; (d) side view of the cavity-excited metasurface.
-
[1] Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932Google Scholar
[2] Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S 2020 Photoni X 1 2Google Scholar
[3] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar
[4] Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar
[5] Chen P Y, Argyropoulos C, Alù A 2013 Phys. Rev. Lett. 111 233001Google Scholar
[6] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar
[7] Guan C, Liu J, Ding X, Wang Z, Zhang K, Li H, Jin M, Burokur S N, Wu Q 2020 Nanophotonics 9 3605Google Scholar
[8] Ding X, Wang Z, Hu G, Liu J, Zhang K, Li H, Ratni B, Burokur S N, Wu Q, Tan J, Qiu C W 2020 PhotoniX 1 16Google Scholar
[9] Zhang L, Chen M Z, Tang W, Dai J Y, Miao L, Zhou X Y, Jin S, Cheng Q, Cui T J 2021 Nat Electron 4 218Google Scholar
[10] Dai J, Tang W, Chen M Z, Chan C H, Cheng Q, Jin S, Cui T J 2021 IEEE Trans. Microw. Theory Tech. 69 1493Google Scholar
[11] Dai J Y, Tang W K, Zhao J, Li X, Cheng Q, Ke J C, Chen M Z, Jin S, Cui T J 2019 Adv. Mater. Technol. 4 1900044Google Scholar
[12] Dorrah A H, Chen M, Eleftheriades G V. 2018 IEEE Trans. Anten. Propag. 66 4729Google Scholar
[13] Wong A M H, Eleftheriades G V 2018 Phys. Rev. X 8 011036
[14] Zhu B O and Feng Y 2015 IEEE Trans. Anten. Propag. 63 5500Google Scholar
[15] Zhao R, Zhu Z, Dong G 2019 Opt. Lett. 44 3482Google Scholar
[16] Xu Y, Xu N, Liu H, Shan D, Song N, Gao J 2018 J. Opt. Soc. Am. B-Opt. Phys. 35 1248Google Scholar
[17] Jia S L, Wan X, Su P, Zhao Y J, Cui T J 2016 Aip. Adv. 6 045024Google Scholar
[18] Guan C, Wang Z, Ding X, Zhang K, Ratni B, Burokur S N, Jin M, Wu Q 2019 Opt. Express 27 7108Google Scholar
[19] Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, Zhang L, Kim Y, Ding X, Zhang S, Alù A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar
[20] Wang Z, Ding X, Zhang K, Ratni B, Burokur S N, Gu X, Wu Q 2018 Adv. Opt. Mater. 6 1800121Google Scholar
[21] Wang Z, Ding X, Zhang K, Wu Q 2017 Sci. Rep. 7 9081Google Scholar
[22] Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, Li J 2016 Sci. Rep. 6 30613Google Scholar
[23] Wan X, Zhang L, Jia S, Yin J, Cui T J 2017 IEEE Trans. Anten. Propag. 65 4427Google Scholar
[24] Zhao Z, Wang Y, Guan C, Zhang K, Wu Q, Li H, Liu J, Burokur S N, Ding X 2022 PhotoniX 3 15Google Scholar
[25] Wang Z, Hu G, Wang X, Ding X, Zhang K, Li H, Burokur S N, Wu Q, Liu J, Tan J, Qiu C W 2022 Nat. Commun. 13 2188Google Scholar
[26] Li H, Li Y B, Shen J L, Cui T J 2020 Adv. Opt. Mater. 8 1902057Google Scholar
[27] Guo X, Ding Y, Chen X, Duan Y, Ni X 2020 Sci. Adv. 6 eabb4142Google Scholar
[28] Xu P, Tian H W, Cai X, Jiang W X, Cui T J 2021 Adv. Funct. Mater 31 2100569Google Scholar
[29] Shi H, Wang L, Zhao M, Chen J, Zhang A, Xu Z 2018 Mater 11 2448
Catalog
Metrics
- Abstract views: 4357
- PDF Downloads: 88
- Cited By: 0