Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Air-lasing high-resolution spectroscopy for atmospheric remote sensing

Zhang Hai-Su Qiao Ling-Ling Cheng Ya

Citation:

Air-lasing high-resolution spectroscopy for atmospheric remote sensing

Zhang Hai-Su, Qiao Ling-Ling, Cheng Ya
PDF
HTML
Get Citation
  • Air-lasing is a cavityless coherent radiation generated in free space from air constituents as gain medium, featuring high collimation, high coherence, and high intensity. Benefited from the long-range filamentation of high-power ultrashort laser pulses propagating in air, the air-lasing can be induced remotely, providing an ideal light source for atmospheric remote sensing and chemical species-resolved detection. Owing to the coherent atomic/molecular excitation process accompanied with the generation of air laser, remote sensing based on air-lasing has high spectral resolution and high detection sensitivity, which recently proved to be a powerful tool for important applications such as in trace molecule detection, greenhouse gas monitoring and industrial pollutant detection. In this short review, the physical mechanism of air lasing is briefly introduced, and various applications of air laser remote sensing are reviewed emphatically, and the future research is prospected.
      Corresponding author: Cheng Ya, ya.cheng@siom.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0705000) and the National Natural Science Foundation of China (Grant Nos. 12192251, 12134001).
    [1]

    姚金平, 程亚 2020 中国激光 47 0500005Google Scholar

    Yao J, Cheng Y 2020 Chin. J. Laser 47 0500005Google Scholar

    [2]

    Chin S L, Xu H L, Cheng Y, Xu Z Z, Yamanouchi K 2013 Chin. Opt. Lett. 11 013201Google Scholar

    [3]

    Polynkin P, Cheng Y 2018 Air Lasing (Cham: Springer International Publishing) p139

    [4]

    Luo Q, Liu W W, Chin S L 2003 Appl. Phys. B 76 337Google Scholar

    [5]

    Dogariu A, Michael J B, Scully M O, Miles R B 2011 Science 331 442Google Scholar

    [6]

    Yao J P, Zeng B, Xu H L, Li G H, Chu W, Ni J L, Zhang H S, Chin S L, Cheng Y, Xu Z Z 2011 Phys. Rev. A 84 051802Google Scholar

    [7]

    Hemmer P R, Miles R B, Polynkin P, Siebert T, Sokolov A V, Sprangle P, Scully M O 2011 P. Natl. Acad. Sci. USA 108 3130Google Scholar

    [8]

    Traverso A J, Sanchez-Gonzalez R, Yuan L Q, Wang K, Voronine D V, Zheltikov A M, Rostovtsev Y, Sautenkov V A, Sokolov A V, North S W, Scully M O 2012 P. Natl. Acad. Sci. USA 109 15185Google Scholar

    [9]

    Malevich P N, Kartashov D, Pu Z, Alisauskas S, Pugzlys A, Baltuska A, Giniunas L, Danielius R, Zheltikov A, Marangoni M, Cerullo G 2012 Opt. Express 20 18784Google Scholar

    [10]

    Malevich P N, Maurer R, Kartashov D, Alisauskas S, Lanin A A, Zheltikov A M, Marangoni M, Cerullo G, Baltuska A, Pugzlys A 2015 Opt. Lett. 40 2469Google Scholar

    [11]

    Yuan L Q, Liu Y, Yao J P, Cheng Y 2019 Adv. Quantum Tech. 2 1900080Google Scholar

    [12]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73Google Scholar

    [13]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47Google Scholar

    [14]

    Fu Y, Cao J C, Yamanouchi K, Xu H L 2022 Ultrafast Sci. 4 9867028Google Scholar

    [15]

    Zhang F B, Xie H Q, Yuan L, Zhang Z H, Fu B T, Yu S P, Li G H, Zhang N, Lu X, Yao J P, Cheng Y, Xu Z Z 2022 Opt. Lett. 47 481Google Scholar

    [16]

    Ni J L, Chu W, Zhang H S, Zeng B, Yao J P, Qiao L L, Li G H, Jing C R, Xie H Q, Xu H L, Cheng Y, Xu Z Z 2014 Opt. Lett. 39 2250Google Scholar

    [17]

    Liu Z X, Yao J P, Zhang H S, Xu B, Chen J M, Zhang F B, Zhang Z H, Wan Y X, Chu W, Wang Z H, Cheng Y 2020 Phys. Rev. A 101 043404Google Scholar

    [18]

    Zhao X D, Nolte S, Ackermann R 2020 Opt. Lett. 45 3661Google Scholar

    [19]

    Zhang Z H, Zhang F B, Xu B, Xie H Q, Fu B T, Lu X, Zhang N, Yu S P, Yao J P, Cheng Y, Xu Z Z 2022 Ultrafast Sci. 2 9761458Google Scholar

    [20]

    Laurain A, Scheller M, Polynkin P 2014 Phys. Rev. Lett. 113 253901Google Scholar

    [21]

    Dogariu A, Miles R B 2016 Opt. Express 24 A544Google Scholar

    [22]

    Kartashov D, Ališauskas S, Andriukaitis G, Pugzlys A, Shneider M, Zheltikov A, Chin S L, Baltuska A 2012 Phys. Rev. A 86 033831Google Scholar

    [23]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Mysyrowicz A 2014 Opt. Express 22 12750Google Scholar

    [24]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Couairon A, Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003Google Scholar

    [25]

    Yao J P, Li G H, Jing C R, Zeng B, Chu W, Ni J L, Zhang H S, Xie H Q, Zhang C J, Li H L, Xu H L, Chin S L, Cheng Y, Xu Z Z 2013 New J. Phys. 15 023046Google Scholar

    [26]

    Liu Y, Ding P J, Lambert G, Houard A, Tikhonchuk V, Mysyrowicz A 2015 Phys. Rev. Lett. 115 133203Google Scholar

    [27]

    Xu H L, Lötstedt E, Iwasaki A, Yamanouchi K 2015 Nat. Commun. 6 8347Google Scholar

    [28]

    Yao J P, Jiang S C, Chu W, Zeng B, Wu C Y, Lu R F, Li Z T, Xie H Q, Li G H, Yu C, Wang Z S, Jiang H B, Gong Q H, Cheng Y 2016 Phys. Rev. Lett. 116 143007Google Scholar

    [29]

    Liu Y, Ding P J, Ibrakovic N, Bengtsson S, Chen S H, Danylo R, Simpson E R, Larsen E W, Zhang X, Fan Z Q 2017 Phys. Rev. Lett. 119 203205Google Scholar

    [30]

    Liu Z X, Yao J P, Chen J M, Xu B, Chu W, Cheng Y 2018 Phys. Rev. Lett. 120 083205Google Scholar

    [31]

    Britton M, Laferrière P, Ko D H, Li Z Y, Kong F Q, Brown G, Naumov A, Zhang C M, Arissian L, Corkum P B 2018 Phys. Rev. Lett. 120 133208Google Scholar

    [32]

    Yao J P, Chu W, Liu Z X, Chen J M, Xu B, Cheng Y 2018 Appl. Phys. B 124 73

    [33]

    Ando T, Lötstedt E, Iwasaki A, Li H L, Fu Y, Wang S Q, Xu H L, Yamanouchi K 2019 Phys. Rev. Lett. 123 203201Google Scholar

    [34]

    Li H L, Hou M Y, Zang H W, Fu Y, Lotstedt E, Ando T, Iwasaki A, Yamanouchi K, Xu H L 2019 Phys. Rev. Lett. 122 013202Google Scholar

    [35]

    Li H X, Lötstedt E, Li H L, Zhou Y, Dong N N, Deng L H, Lu P F, Ando T, Iwasaki A, Fu Y 2020 Phys. Rev. Lett. 125 053201Google Scholar

    [36]

    Zhang H S, Jing C R, Yao J P, Li G H, Zeng B, Chu W, Ni J L, Xie H Q, Xu H L, Chin S L, Yamanouchi K, Cheng Y, Xu Z Z 2013 Phys. Rev. X 3 041009Google Scholar

    [37]

    Jing C R, Zhang H S, Chu W, Xie H Q, Ni J L, Zeng B, Li G H, Yao J P, Xu H L, Cheng Y, Xu Z Z 2014 Opt. Express 22 3151Google Scholar

    [38]

    Jing C R, Yao J P, Li Z T, Ni J L, Zeng B, Chu W, Li G H, Xie H Q, Cheng Y 2015 J. Phys. B 48 094001Google Scholar

    [39]

    Li G H, Jing C R, Zeng B, Xie H Q, Yao J P, Chu W, Ni J L, Zhang H S, Xu H L, Cheng Y 2014 Phys. Rev. A 89 033833Google Scholar

    [40]

    Chen J M, Yao J P, Zhang H S, Liu Z X, Xu B, Chu W, Qiao L L, Wang Z H, Fatome J, Faucher O, Wu CY, Cheng Y 2019 Phys. Rev. A 100 031402Google Scholar

    [41]

    Xie H Q, Zeng B, Li G H, Chu W, Zhang H S, Jing C R, Yao J P, Ni J L, Wang Z H, Li Z T 2014 Phys. Rev. A 90 042504Google Scholar

    [42]

    Zeng B, Chu W, Li G H, Yao J P, Zhang H S, Ni J L, Jing C R, Xie H Q, Cheng Y 2014 Phys. Rev. A 89 042508Google Scholar

  • 图 1  $ {\rm{N}}_{2}^{+} $激光的时空特性[17] (a)中心波长为428 nm的$ {\rm{N}}_{2}^{+} $激光光谱, 插图为$ {\rm{N}}_{2}^{+} $激光的远场光斑形状; (b)$ {\rm{N}}_{2}^{+} $激光的时域波形, 红色箭头标明800 nm驱动激光脉冲入射时刻

    Figure 1.  Spectral-temporal profiles of $ {\rm{N}}_{2}^{+} $ lasing[17]: (a) $ {\rm{N}}_{2}^{+} $ laser spectrum with the central wavelength of 428 nm, the inset is the far-field profile of $ {\rm{N}}_{2}^{+} $ laser; (b) $ {\rm{N}}_{2}^{+} $ laser temporal profile with the red arrow denoting the timing of the 800 nm driving pulse.

    图 2  $ {\rm{N}}_{2}^{+} $激光和$ {\rm{N}}_{2} $拉曼散射光谱[16] (a) $ {\rm{N}}_{2}^{+} $激光光谱; (b) $ {\rm{N}}_{2} $拉曼散射光谱

    Figure 2.  Spectra of $ {\rm{N}}_{2}^{+} $ laser and $ {\rm{N}}_{2} $ Raman scattering[16]: (a) $ {\rm{N}}_{2}^{+} $ laser spectrum; (b) $ {\rm{N}}_{2} $ Raman scattering spectrum.

    图 3  利用$ {\rm{N}}_{2}^{+} $激光产生高阶拉曼散射[17] (a)实验装置示意图; (b) $ {\rm{N}}_{2}^{+} $激光在不同气压的CO2气体中产生的高阶转动拉曼散射光谱, 插图为1 atm (1 atm = 1.013×105 Pa)下的拉曼散射信号空间光斑形状

    Figure 3.  High-order cascaded Raman scattering induced by $ {\rm{N}}_{2}^{+} $ laser[17]: (a) Experimental schematic; (b) measured high-order rotational Raman scattering spectra at various gas pressures of CO2, inset shows the spatial profile of Raman signals at 1 atm (1 atm = 1.013×105 Pa).

    图 4  $ {\rm{N}}_{2}^{+} $激光在CO2中产生拉曼散射[18] (a) CO2中对应的拉曼跃迁能级图; (b) N2, $ {\rm{N}}_{2}^{+} $, O2和 CO2的拉曼散射光谱

    Figure 4.  Raman scattering induced by $ {\rm{N}}_{2}^{+} $ laser: (a) Relevant Raman transition levels in CO2; (b) Raman scattering spectra of N2, $ {\rm{N}}_{2}^{+} $, O2 and CO2.

    图 5  空气激光辅助相干拉曼散射[19] (a) 空气激光和相干拉曼散射产生机制示意图; (b), (c) 相干拉曼信号强度与气体浓度的定量关系, 插图为最小浓度下测得CO2和SF6的拉曼信号

    Figure 5.  Air-lasing based coherent Raman scattering[19]: (a) Generation scheme of air-lasing and coherent Raman scattering; (b), (c) intensity of Raman signal as a function of gas pressure, inset shows the measured Raman signals of CO2 and SF6 at the minimum pressures.

  • [1]

    姚金平, 程亚 2020 中国激光 47 0500005Google Scholar

    Yao J, Cheng Y 2020 Chin. J. Laser 47 0500005Google Scholar

    [2]

    Chin S L, Xu H L, Cheng Y, Xu Z Z, Yamanouchi K 2013 Chin. Opt. Lett. 11 013201Google Scholar

    [3]

    Polynkin P, Cheng Y 2018 Air Lasing (Cham: Springer International Publishing) p139

    [4]

    Luo Q, Liu W W, Chin S L 2003 Appl. Phys. B 76 337Google Scholar

    [5]

    Dogariu A, Michael J B, Scully M O, Miles R B 2011 Science 331 442Google Scholar

    [6]

    Yao J P, Zeng B, Xu H L, Li G H, Chu W, Ni J L, Zhang H S, Chin S L, Cheng Y, Xu Z Z 2011 Phys. Rev. A 84 051802Google Scholar

    [7]

    Hemmer P R, Miles R B, Polynkin P, Siebert T, Sokolov A V, Sprangle P, Scully M O 2011 P. Natl. Acad. Sci. USA 108 3130Google Scholar

    [8]

    Traverso A J, Sanchez-Gonzalez R, Yuan L Q, Wang K, Voronine D V, Zheltikov A M, Rostovtsev Y, Sautenkov V A, Sokolov A V, North S W, Scully M O 2012 P. Natl. Acad. Sci. USA 109 15185Google Scholar

    [9]

    Malevich P N, Kartashov D, Pu Z, Alisauskas S, Pugzlys A, Baltuska A, Giniunas L, Danielius R, Zheltikov A, Marangoni M, Cerullo G 2012 Opt. Express 20 18784Google Scholar

    [10]

    Malevich P N, Maurer R, Kartashov D, Alisauskas S, Lanin A A, Zheltikov A M, Marangoni M, Cerullo G, Baltuska A, Pugzlys A 2015 Opt. Lett. 40 2469Google Scholar

    [11]

    Yuan L Q, Liu Y, Yao J P, Cheng Y 2019 Adv. Quantum Tech. 2 1900080Google Scholar

    [12]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73Google Scholar

    [13]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47Google Scholar

    [14]

    Fu Y, Cao J C, Yamanouchi K, Xu H L 2022 Ultrafast Sci. 4 9867028Google Scholar

    [15]

    Zhang F B, Xie H Q, Yuan L, Zhang Z H, Fu B T, Yu S P, Li G H, Zhang N, Lu X, Yao J P, Cheng Y, Xu Z Z 2022 Opt. Lett. 47 481Google Scholar

    [16]

    Ni J L, Chu W, Zhang H S, Zeng B, Yao J P, Qiao L L, Li G H, Jing C R, Xie H Q, Xu H L, Cheng Y, Xu Z Z 2014 Opt. Lett. 39 2250Google Scholar

    [17]

    Liu Z X, Yao J P, Zhang H S, Xu B, Chen J M, Zhang F B, Zhang Z H, Wan Y X, Chu W, Wang Z H, Cheng Y 2020 Phys. Rev. A 101 043404Google Scholar

    [18]

    Zhao X D, Nolte S, Ackermann R 2020 Opt. Lett. 45 3661Google Scholar

    [19]

    Zhang Z H, Zhang F B, Xu B, Xie H Q, Fu B T, Lu X, Zhang N, Yu S P, Yao J P, Cheng Y, Xu Z Z 2022 Ultrafast Sci. 2 9761458Google Scholar

    [20]

    Laurain A, Scheller M, Polynkin P 2014 Phys. Rev. Lett. 113 253901Google Scholar

    [21]

    Dogariu A, Miles R B 2016 Opt. Express 24 A544Google Scholar

    [22]

    Kartashov D, Ališauskas S, Andriukaitis G, Pugzlys A, Shneider M, Zheltikov A, Chin S L, Baltuska A 2012 Phys. Rev. A 86 033831Google Scholar

    [23]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Mysyrowicz A 2014 Opt. Express 22 12750Google Scholar

    [24]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Couairon A, Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003Google Scholar

    [25]

    Yao J P, Li G H, Jing C R, Zeng B, Chu W, Ni J L, Zhang H S, Xie H Q, Zhang C J, Li H L, Xu H L, Chin S L, Cheng Y, Xu Z Z 2013 New J. Phys. 15 023046Google Scholar

    [26]

    Liu Y, Ding P J, Lambert G, Houard A, Tikhonchuk V, Mysyrowicz A 2015 Phys. Rev. Lett. 115 133203Google Scholar

    [27]

    Xu H L, Lötstedt E, Iwasaki A, Yamanouchi K 2015 Nat. Commun. 6 8347Google Scholar

    [28]

    Yao J P, Jiang S C, Chu W, Zeng B, Wu C Y, Lu R F, Li Z T, Xie H Q, Li G H, Yu C, Wang Z S, Jiang H B, Gong Q H, Cheng Y 2016 Phys. Rev. Lett. 116 143007Google Scholar

    [29]

    Liu Y, Ding P J, Ibrakovic N, Bengtsson S, Chen S H, Danylo R, Simpson E R, Larsen E W, Zhang X, Fan Z Q 2017 Phys. Rev. Lett. 119 203205Google Scholar

    [30]

    Liu Z X, Yao J P, Chen J M, Xu B, Chu W, Cheng Y 2018 Phys. Rev. Lett. 120 083205Google Scholar

    [31]

    Britton M, Laferrière P, Ko D H, Li Z Y, Kong F Q, Brown G, Naumov A, Zhang C M, Arissian L, Corkum P B 2018 Phys. Rev. Lett. 120 133208Google Scholar

    [32]

    Yao J P, Chu W, Liu Z X, Chen J M, Xu B, Cheng Y 2018 Appl. Phys. B 124 73

    [33]

    Ando T, Lötstedt E, Iwasaki A, Li H L, Fu Y, Wang S Q, Xu H L, Yamanouchi K 2019 Phys. Rev. Lett. 123 203201Google Scholar

    [34]

    Li H L, Hou M Y, Zang H W, Fu Y, Lotstedt E, Ando T, Iwasaki A, Yamanouchi K, Xu H L 2019 Phys. Rev. Lett. 122 013202Google Scholar

    [35]

    Li H X, Lötstedt E, Li H L, Zhou Y, Dong N N, Deng L H, Lu P F, Ando T, Iwasaki A, Fu Y 2020 Phys. Rev. Lett. 125 053201Google Scholar

    [36]

    Zhang H S, Jing C R, Yao J P, Li G H, Zeng B, Chu W, Ni J L, Xie H Q, Xu H L, Chin S L, Yamanouchi K, Cheng Y, Xu Z Z 2013 Phys. Rev. X 3 041009Google Scholar

    [37]

    Jing C R, Zhang H S, Chu W, Xie H Q, Ni J L, Zeng B, Li G H, Yao J P, Xu H L, Cheng Y, Xu Z Z 2014 Opt. Express 22 3151Google Scholar

    [38]

    Jing C R, Yao J P, Li Z T, Ni J L, Zeng B, Chu W, Li G H, Xie H Q, Cheng Y 2015 J. Phys. B 48 094001Google Scholar

    [39]

    Li G H, Jing C R, Zeng B, Xie H Q, Yao J P, Chu W, Ni J L, Zhang H S, Xu H L, Cheng Y 2014 Phys. Rev. A 89 033833Google Scholar

    [40]

    Chen J M, Yao J P, Zhang H S, Liu Z X, Xu B, Chu W, Qiao L L, Wang Z H, Fatome J, Faucher O, Wu CY, Cheng Y 2019 Phys. Rev. A 100 031402Google Scholar

    [41]

    Xie H Q, Zeng B, Li G H, Chu W, Zhang H S, Jing C R, Yao J P, Ni J L, Wang Z H, Li Z T 2014 Phys. Rev. A 90 042504Google Scholar

    [42]

    Zeng B, Chu W, Li G H, Yao J P, Zhang H S, Ni J L, Jing C R, Xie H Q, Cheng Y 2014 Phys. Rev. A 89 042508Google Scholar

  • [1] Li Chuan-Ke, Lin Nan-Sheng, Zhou Xian-Xian, Jiang Miao, Li Ying-Jun. Theoretical study of double oscillating fields induced electron-positron pairs creation process. Acta Physica Sinica, 2024, 73(4): 044201. doi: 10.7498/aps.73.20230432
    [2] Zhang Mao-Di, Jiao Chen-Yin, Wen Ting, Li Jing, Pei Sheng-Hai, Wang Zeng-Hui, Xia Juan. In-situ high pressure polarized Raman spectroscopy of rhenium disulfide. Acta Physica Sinica, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [3] Haisu Zhang, Lingling Qiao, Ya Cheng. Air-Lasing: High-Resolution Spectroscopy for Atmospheric Remote Sensing. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221923
    [4] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [5] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [6] Wang Xin, Kang Zhe-Ming, Liu Long, Fan Xian-Guang. Baseline correction algorithm for Raman spectra based on median filtering and un-uniform B-spline. Acta Physica Sinica, 2020, 69(20): 200701. doi: 10.7498/aps.69.20200552
    [7] Li Yan, Zhang Lin-Bin, Li Jiao, Lian Xiao-Xue, Zhu Jun-Wu. Crystallization characteristics of zinc oxide under electric field and Raman spectrum analysis of polarized products. Acta Physica Sinica, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [8] Zhang Li, Zheng Hai-Yang, Wang Ying-Ping, Ding Lei, Fang Li. Characteristics of Raman spectrum from stand-off detection. Acta Physica Sinica, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [9] Liu Sheng-Li, Li Jian-Zheng, Cheng Jie, Wang Hai-Yun, Li Yong-Tao, Zhang Hong-Guang, Li Xing-Ao. Doping and Raman scattering of strong spin-orbit-coupling compound Sr2-xLaxIrO4. Acta Physica Sinica, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [10] Liang Yuan, Xing Huai-Zhong, Chao Ming-Ju, Liang Er-Jun. Syntheses of negative thermal expansion materials Sc2(MO4)3 (M=W, Mo) with a CO2 laser and their Raman spectra. Acta Physica Sinica, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [11] Chen Yuan-Zheng, Li Shuo, Li Liang, Men Zhi-Wei, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi. Study of phase transition of HoVO4 under high pressure by Raman scattering and ab initio calculations. Acta Physica Sinica, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [12] Zhang Qiu-Hui, Han Jing-Hua, Feng Guo-Ying, Xu Qi-Xing, Ding Li-Zhong, Lu Xiao-Xiang. Raman spectrum research on graphene modification under high intensity laser. Acta Physica Sinica, 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [13] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [14] Zang Hang, Wang Zhi-Guang, Pang Li-Long, Wei Kong-Fang, Yao Cun-Feng, Shen Tie-Long, Sun Jian-Rong, Ma Yi-Zhun, Gou Jie, Sheng Yan-Bin, Zhu Ya-Bin. Raman investigation of ion-implanted ZnO films. Acta Physica Sinica, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [15] Zhou Wen-Ping, Wan Song-Ming, Zhang Xia, Zhang Qing-Li, Sun Dun-Lu, Qiu Huai-Li, You Jing-Lin, Yin Shao-Tang. Study of growth units and the growth habit of PbMoO4 crystal using high temperature Raman spectra. Acta Physica Sinica, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [16] Ding Shuo, Liu Yu-Long, G. G. Siu. Raman study of SnO2 nanograins under different annealing temperature. Acta Physica Sinica, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [17] Xu Cun-Ying, Zhang Peng-Xiang, Yan Lei. Blue shift of Raman peaks of coated BaTiO3 nanoparticles. Acta Physica Sinica, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [18] Bai Ying, Lan Yan-Na, Mo Yu-Jun. Temperature measurement from the Raman spectra of porous silicon. Acta Physica Sinica, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [19] Sun Dun-Lu, Qiu Huai-Li, Hang Yin, Zhang Lian-Han, Zhu Shi-Ning, Wang Ai-Hua, Yin Shao-Tang. Study on laser-micro-Raman spectra in near-stoichiometric LiNbO3 crystals. Acta Physica Sinica, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] Ding Pei, Liang Er-Jun, Zhang Hong-Rui, Liu Yi-Zhen, Liu Hui, Guo Xin-Yong, Du Zu-Liang. Growth mechanism and Raman spectroscopic study of “interlinked-cone" shaped CNx nanotubes. Acta Physica Sinica, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
Metrics
  • Abstract views:  4650
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  05 October 2022
  • Accepted Date:  14 November 2022
  • Available Online:  28 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回