Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of adding B element on amorphous forming ability, magnetic properties, and mechanical properties of FePBCCu alloy

Sun Ji Shen Peng-Fei Shang Qi-Zhong Zhang Peng-Yan Liu Li Li Ming-Rui Hou Long Li Wei-Huo

Citation:

Effects of adding B element on amorphous forming ability, magnetic properties, and mechanical properties of FePBCCu alloy

Sun Ji, Shen Peng-Fei, Shang Qi-Zhong, Zhang Peng-Yan, Liu Li, Li Ming-Rui, Hou Long, Li Wei-Huo
PDF
HTML
Get Citation
  • Fe-based amorphous alloys are widely used in power electronics fields such as transformers and reactors due to their low coercivity, high permeability and low loss. However, the relatively low saturation magnetization (Bs) limits their further applications. Generally speaking, the adjustable magnetic Fe content as an effective strategy can ameliorate the magnetic properties, and the higher the Fe content, the higher the obtained Bs is, but the decrease of the corresponding non-magnetic element content will result in the drop of the ability of alloys to form amorphous phase, leading to the deterioration of the magnetic softness and bending ductility of nanocrystalline alloys. To address this critical issue, in this work, based on the metal-metalloid hybridization, the FePBCCu amorphous ribbons, each with a thickness of ~25 μm, are prepared by the single-roller melt spinning method via 7% (atomic percent) B substitution for P, and the effects of B element addition on the ability to form amorphous phase, magnetic properties and mechanical properties of ribbons are investigated. Thermodynamic behavior shows that the addition of small quantities of B element can reduce the structural heterogeneity of alloy and the crystallization driving force as well, thus effectively improving the thermal stability of the amorphous matrix. The melting and solidification curves show that the addition of B can promote alloy to approach to the eutectic composition, and there is a large degree of undercooling. As a result, the critical thickness of ribbons increases from ~21 μm for B-free alloy to ~30 μm for B-added alloy due to the micro-alloying effect. The addition of B increases the effective magnetic moment of magnetic atoms in alloy, resulting in the increase of the saturation magnetization. Furthermore, the results of nanoindentation tests show that the modulus value of the B-added alloy decreases greatlyr and fluctuates in a smaller range than that of the B-free alloy, which is closely associated with the structural uniformity of the alloy.
      Corresponding author: Liu Li, 18855579760@163.com ; Hou Long, longhou@ahut.edu.cn
    • Funds: Project supported by the Anhui Provincial Natural Science Foundation, China (Grant No. 2208085QE121), the University Natural Science Research Project of Anhui Province, China (Grant Nos. KJ2020A0225, KJ2020A0272), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20201282), and the Open Project of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, China (Grant No. GFST2020KF05).
    [1]

    Inoue A, Shen B L, Chang C T 2004 Acta Mater. 52 4093Google Scholar

    [2]

    Xu D D, Zhou B L, Wang Q Q, Zhou J, Yang W M, Yuan C C, Xue L, Fan X D, Ma L Q, Shen B L 2018 Corros. Sci. 138 20Google Scholar

    [3]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027Google Scholar

    [4]

    McHenry M E, Willard M A, Laughlin D E 1999 Prog. Mater. Sci. 44 291Google Scholar

    [5]

    Wang A D, Zhao C L, He A N, Men H, Chang C T, Wang X M 2016 J. Alloy. Compd. 656 729Google Scholar

    [6]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 物理学报 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [7]

    McHenry M E, Laughlin D E 2014 hysical Metallurgy (5th Ed.) (Elsevier) p1881

    [8]

    Hou L, Fan X D, Wang Q Q, Yang W M, Shen B L 2019 J. Mater. Sci. Technol. 35 1655Google Scholar

    [9]

    Meng S Y, Ling H B, Li Q, Zhang J 2014 Scr. Mater. 81 24Google Scholar

    [10]

    Wang C J, He A N, Wang A D, Pang J, Ling X, Li Q, Chang C, Qiu K, Wang X 2017 Intermetallics 84 142Google Scholar

    [11]

    Mizoguchi T 1976 AIP Conf. Proc. 34 286

    [12]

    Xu J, Yang Y Z, Li W, Xie Z, Chen X 2017 Mater. Res. Bull. 97 452

    [13]

    Shi L X, Qin X L, Yao K F 2020 Prog. Nat. Sci-Mater. 30 208Google Scholar

    [14]

    Zuo M Q, Meng S Y, Li Q, Li H X, Chang C T, Sun Y F 2017 Intermetallics 83 83Google Scholar

    [15]

    Jin Y L, Fan X D, He M, Liu X C, Shen B L 2012 Sci. China Technol. Sci. 55 3419Google Scholar

    [16]

    Wang Q Q, Chen M X, Lin P H, Cui Z Q, Chu C L, Shen B L 2018 J. Mater. Chem. A 6 10686Google Scholar

    [17]

    Wang Q Q, Yun L, Chen M X, Xu D D, Cui Z Q, Zeng Q S, Lin P H, Chu C L, Shen B L 2019 ACS Appl. Nano Mater. 2 214Google Scholar

    [18]

    Jafari S, Beitollahi A, Eftekhari Yekta B, Ohkubo T, Budinsky V, Marsilius M, Herzer G, Hono K 2016 J. Alloy. Compd. 674 136Google Scholar

    [19]

    Fan X D, Zhang T, Jiang M F, Yang W M, Shen B L 2019 J. Non-Cryst. Solid. 503 36

    [20]

    Hou L, Yang W M, Luo Q, Fan X D, Liu H S, Shen B L 2020 J. Non-Cryst. Solid. 530 119800Google Scholar

    [21]

    Li Y L, Dou Z X, Chen X M, Lv K, Li F S, Hui X D 2020 Mater. Sci. Eng. B 262 114740Google Scholar

    [22]

    Hono K, Ping D H, Ohnuma M, Onodera H 1999 Acta Mater. 47 997Google Scholar

    [23]

    Hu F, Yuan C C, Luo Q, Yang W M, Shen B L 2019 J. Alloy. Compd. 807 151675Google Scholar

    [24]

    Ohnuma M, Ping D H, Abe T, Onodera H, Hono K, Yoshizawa Y 2003 J. Appl. Phys. 93 9186Google Scholar

    [25]

    Yang W M, Li J W, Liu H S, Dun C C, Zhang H L, Huo J T, Xue L, Zhao Y C, Shen B L, Dou L M, Inoue A 2014 Intermetallics 49 52Google Scholar

    [26]

    Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Nat. Commun. 8 14679Google Scholar

    [27]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [28]

    耿遥祥, 王英敏 2020 金属学报 56 1558Google Scholar

    Geng Y X, Wang Y M 2020 Acta Metall. Sin. 56 1558Google Scholar

    [29]

    Fan X D, Jiang M F, Zhang T, Hou L, Wang C X, Shen B L 2020 J. Non-Cryst. Solid. 533 119941Google Scholar

    [30]

    Hou L, Li M R, Jiang C, Fan X D, Luo Q, Chen S S, Song P D, Li W H 2021 J. Alloy. Compd. 853 157071Google Scholar

    [31]

    严密, 彭晓领 2011 磁学基础与磁性材料 (杭州: 浙江大学出版社)

    Yan M, Peng X L 2011 Fundamentals of Magnetism and Magnetic Materials (Hangzhou: Zhejiang University Press) (in Chinese)

    [32]

    Zhang J H, Chang C T, Wang A D Shen B L 2012 J. Non-Crystal. Solids 358 1443Google Scholar

    [33]

    Wang F, Inoue A, Han Y, Kong F L, Zhu S L, Shalaan E, Al-Marzouki F, Obaid A 2017 J. Alloy. Compd. 723 376Google Scholar

    [34]

    Sun B R, Xin S W, Shen T D 2018 J. Mag. Magn. Mater. 466 130Google Scholar

    [35]

    Sarac B, Ivanov Y P, Chuvilin A, Schoberl T, Stoica M, Zhang Z L, Eckert J 2018 Nat. Commun. 9 1333Google Scholar

    [36]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan, M X, Wang W H 2007 Science 315 1385Google Scholar

  • 图 1  纳米压痕实验中的压痕分布示意图

    Figure 1.  Schematic diagram of indentation distribution in nanoindentation tests.

    图 2  淬态Fe78.8P14–xBxC6Cu1.2非晶薄带的自由面形貌及局部区域对应的元素分布

    Figure 2.  Surface morphologies of free-side of as-quenched Fe78.8P14–xBxC6Cu1.2 amorphous ribbons and the elemental distribution of local region.

    图 3  淬态Fe78.8P14–xBxC6Cu1.2非晶薄带的自由面XRD图谱

    Figure 3.  XRD patterns of free-side of as-quenched Fe78.8P14–xBxC6Cu1.2 amorphous ribbons

    图 4  淬态Fe78.8P14–xBxC6Cu1.2非晶薄带的明场TEM图像 (a) x = 0; (b) (a)的局部放大图; (c) x = 7; (d) (c)的局部放大图. 插图分别为对应合金的SAED花样

    Figure 4.  Bright-field TEM images of as-quenched Fe78.8P14–xBxC6Cu1.2 amorphous ribbons: (a) x = 0, (b) locally enlarged image in (a); (c) x = 7; (d) locally enlarged image in (c). The insets correspond to the SAED patterns, respectively.

    图 5  淬态/退火态Fe78.8P14–xBxC6Cu1.2非晶薄带的DSC曲线, 插图为未添加B合金结构弛豫前后的局部放大图

    Figure 5.  DSC curves of as-quenched/annealed Fe78.8P14–xBxC6Cu1.2 amorphous ribbons. The inset is the locally enlarged curves of B-free alloy before and after relaxation.

    图 6  淬态Fe78.8P14C6Cu1.2非晶薄带的高角环形暗场(HAADF-STEM)图及对应Fe, Cu和P的元素分布图

    Figure 6.  HAADF image of as-quenched Fe78.8P14C6Cu1.2 amorphous ribbons, and the elemental mappings of Fe, Cu and P elements, respectively.

    图 7  淬态Fe78.8P7B7C6Cu1.2非晶薄带的高角环形暗场(HAADF-STEM)图及对应Fe, Cu和P的元素分布图

    Figure 7.  HAADF image of as-quenched Fe78.8P7B7C6Cu1.2 amorphous ribbons, and the elemental mappings of Fe, Cu and P elements, respectively.

    图 8  淬态Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%)非晶薄带的熔化与凝固DSC曲线

    Figure 8.  The melting and cooling DSC curves of as-quenched Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%) amorphous ribbons.

    图 9  不同升温速率下的淬态Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%)非晶薄带的DSC曲线 (a) x = 0; (b) x = 7. 插图分别为ln(T 2/β)与1000/T的线性关系

    Figure 9.  The DSC curves of as-quenched Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%) amorphous ribbons under the different heating rates: (a) x = 0; (b) x = 7. The insets correspond to the relationship of ln(T 2/β) and 1000/T, respectively.

    图 10  淬态Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%)非晶薄带的磁滞回线, 插图(左上)为局部放大的磁滞回线, 插图(右下)为磁性Fe与类金属B, P原子间的电子杂化机制图示

    Figure 10.  Hysteresis loops of as-quenched Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%) amorphous ribbons. The inset (top-left) is the locally enlarged hysteresis loops, and the inset (bottom-right) is the mechanism of electron hybridization between magnetic Fe and metalloid B, P atoms.

    图 11  淬态Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%)非晶薄带的纳米压痕实验 (a), (b) B0和B7合金的载荷-位移曲线; (c), (d) 合金的约化模量与压入深度值; (e), (f)合金的硬度变化值

    Figure 11.  The nanoindentation tests of as-quenched Fe78.8P14–xBxC6Cu1.2 (x = 0, 7%) amorphous ribbons: (a) , (b) The load-displacement curves of B0 and B7 alloys, respectively; (c), (d) the reduced modulus and indentation depth of alloys, respectively; (e), (f) the variations in hardness of alloys, respectively

  • [1]

    Inoue A, Shen B L, Chang C T 2004 Acta Mater. 52 4093Google Scholar

    [2]

    Xu D D, Zhou B L, Wang Q Q, Zhou J, Yang W M, Yuan C C, Xue L, Fan X D, Ma L Q, Shen B L 2018 Corros. Sci. 138 20Google Scholar

    [3]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027Google Scholar

    [4]

    McHenry M E, Willard M A, Laughlin D E 1999 Prog. Mater. Sci. 44 291Google Scholar

    [5]

    Wang A D, Zhao C L, He A N, Men H, Chang C T, Wang X M 2016 J. Alloy. Compd. 656 729Google Scholar

    [6]

    姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽 2018 物理学报 67 016101Google Scholar

    Yao K F, Shi L X, Chen S Q, Shao Y, Chen N, Jia J L 2018 Acta Phys. Sin. 67 016101Google Scholar

    [7]

    McHenry M E, Laughlin D E 2014 hysical Metallurgy (5th Ed.) (Elsevier) p1881

    [8]

    Hou L, Fan X D, Wang Q Q, Yang W M, Shen B L 2019 J. Mater. Sci. Technol. 35 1655Google Scholar

    [9]

    Meng S Y, Ling H B, Li Q, Zhang J 2014 Scr. Mater. 81 24Google Scholar

    [10]

    Wang C J, He A N, Wang A D, Pang J, Ling X, Li Q, Chang C, Qiu K, Wang X 2017 Intermetallics 84 142Google Scholar

    [11]

    Mizoguchi T 1976 AIP Conf. Proc. 34 286

    [12]

    Xu J, Yang Y Z, Li W, Xie Z, Chen X 2017 Mater. Res. Bull. 97 452

    [13]

    Shi L X, Qin X L, Yao K F 2020 Prog. Nat. Sci-Mater. 30 208Google Scholar

    [14]

    Zuo M Q, Meng S Y, Li Q, Li H X, Chang C T, Sun Y F 2017 Intermetallics 83 83Google Scholar

    [15]

    Jin Y L, Fan X D, He M, Liu X C, Shen B L 2012 Sci. China Technol. Sci. 55 3419Google Scholar

    [16]

    Wang Q Q, Chen M X, Lin P H, Cui Z Q, Chu C L, Shen B L 2018 J. Mater. Chem. A 6 10686Google Scholar

    [17]

    Wang Q Q, Yun L, Chen M X, Xu D D, Cui Z Q, Zeng Q S, Lin P H, Chu C L, Shen B L 2019 ACS Appl. Nano Mater. 2 214Google Scholar

    [18]

    Jafari S, Beitollahi A, Eftekhari Yekta B, Ohkubo T, Budinsky V, Marsilius M, Herzer G, Hono K 2016 J. Alloy. Compd. 674 136Google Scholar

    [19]

    Fan X D, Zhang T, Jiang M F, Yang W M, Shen B L 2019 J. Non-Cryst. Solid. 503 36

    [20]

    Hou L, Yang W M, Luo Q, Fan X D, Liu H S, Shen B L 2020 J. Non-Cryst. Solid. 530 119800Google Scholar

    [21]

    Li Y L, Dou Z X, Chen X M, Lv K, Li F S, Hui X D 2020 Mater. Sci. Eng. B 262 114740Google Scholar

    [22]

    Hono K, Ping D H, Ohnuma M, Onodera H 1999 Acta Mater. 47 997Google Scholar

    [23]

    Hu F, Yuan C C, Luo Q, Yang W M, Shen B L 2019 J. Alloy. Compd. 807 151675Google Scholar

    [24]

    Ohnuma M, Ping D H, Abe T, Onodera H, Hono K, Yoshizawa Y 2003 J. Appl. Phys. 93 9186Google Scholar

    [25]

    Yang W M, Li J W, Liu H S, Dun C C, Zhang H L, Huo J T, Xue L, Zhao Y C, Shen B L, Dou L M, Inoue A 2014 Intermetallics 49 52Google Scholar

    [26]

    Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Nat. Commun. 8 14679Google Scholar

    [27]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [28]

    耿遥祥, 王英敏 2020 金属学报 56 1558Google Scholar

    Geng Y X, Wang Y M 2020 Acta Metall. Sin. 56 1558Google Scholar

    [29]

    Fan X D, Jiang M F, Zhang T, Hou L, Wang C X, Shen B L 2020 J. Non-Cryst. Solid. 533 119941Google Scholar

    [30]

    Hou L, Li M R, Jiang C, Fan X D, Luo Q, Chen S S, Song P D, Li W H 2021 J. Alloy. Compd. 853 157071Google Scholar

    [31]

    严密, 彭晓领 2011 磁学基础与磁性材料 (杭州: 浙江大学出版社)

    Yan M, Peng X L 2011 Fundamentals of Magnetism and Magnetic Materials (Hangzhou: Zhejiang University Press) (in Chinese)

    [32]

    Zhang J H, Chang C T, Wang A D Shen B L 2012 J. Non-Crystal. Solids 358 1443Google Scholar

    [33]

    Wang F, Inoue A, Han Y, Kong F L, Zhu S L, Shalaan E, Al-Marzouki F, Obaid A 2017 J. Alloy. Compd. 723 376Google Scholar

    [34]

    Sun B R, Xin S W, Shen T D 2018 J. Mag. Magn. Mater. 466 130Google Scholar

    [35]

    Sarac B, Ivanov Y P, Chuvilin A, Schoberl T, Stoica M, Zhang Z L, Eckert J 2018 Nat. Commun. 9 1333Google Scholar

    [36]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan, M X, Wang W H 2007 Science 315 1385Google Scholar

  • [1] Yu Xiu-Dong, Liu Hai-Shun, Xue Lin, Zhang Xiang, Yang Wei-Ming. Annealing crystallization control mechanism of catalytic degradation properties of Fe-based amorphous ribbons. Acta Physica Sinica, 2024, 73(9): 098801. doi: 10.7498/aps.73.20240249
    [2] Wang Zhuang, Jin Fan, Li Wei, Ruan Jia-Yi, Wang Long-Fei, Wu Xue-Lian, Zhang Yi-Kun, Yuan Chen-Chen. Design and fabrication of GdHoErCoNiAl metallic glasses with excellent glass forming capability and magnetocaloric effects. Acta Physica Sinica, 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [3] Ma Shuang, Hao Wei-Ye, Wang Xu-Dong, Zhang Wei, Yao Man. Mechanism analysis of metalloid elements affecting amorphous forming ability and magnetic properties of Co-Y-B alloy. Acta Physica Sinica, 2022, 71(22): 228102. doi: 10.7498/aps.71.20220873
    [4] Wang Li-Min, Liu Ri-Ping, Tian Yong-Jun. On glass formation thermodynamics: Enthalpy vs. Entropy. Acta Physica Sinica, 2020, 69(19): 196401. doi: 10.7498/aps.69.20200707
    [5] Yao Ke-Fu, Shi Ling-Xiang, Chen Shuang-Qin, Shao Yang, Chen Na, Jia Ji-Li. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys. Acta Physica Sinica, 2018, 67(1): 016101. doi: 10.7498/aps.67.20171473
    [6] Li Rui-Xuan, Zhang Yong. Entropy and glass formation. Acta Physica Sinica, 2017, 66(17): 177101. doi: 10.7498/aps.66.177101
    [7] Wu Yuan, Song Wen-Li, Zhou Jie, Cao Di, Wang Hui, Liu Xiong-Jun, Lü Zhao-Ping. Ductilization of bulk metallic glassy material and its mechanism. Acta Physica Sinica, 2017, 66(17): 176111. doi: 10.7498/aps.66.176111
    [8] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [9] Zhang Ya-Nan, Wang You-Jun, Kong Ling-Ti, Li Jin-Fu. Influence of Y addition on the glass forming ability and soft magnetic properties of Fe-Si-B amorphous alloy. Acta Physica Sinica, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [10] Wei Hong-Qing, Li Xiang-An, Long Zhi-Lin, Peng Jian, Zhang Ping, Zhang Zhi-Chun. Correlations between viscosity and glass-forming ability in bulk amorphous alloys. Acta Physica Sinica, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [11] Zhang Hui, Zhang Guo-Ying, Yang Shuang, Wu Di, Qi Ke-Zhen. Effects of additional element on the glass forming ability and corrosion resistance of bulk Zr-based amorphous alloys. Acta Physica Sinica, 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [12] Shi Fang-Ye, Fang Yun-Zhang, Sun Huai-Jun, Zheng Jin-Ju, Lin Gen-Jin, Wu Feng-Min. Mesostructure investigation of the transverse magnetic anisotropy field in stress-annealed Fe-based nanocrystalline ribbons. Acta Physica Sinica, 2007, 56(7): 4009-4016. doi: 10.7498/aps.56.4009
    [13] Wang Zhen-Yu, Yang Yuan-Sheng, Tong Wen-Hui, Li Hui-Qiang, Hu Zhuang-Qi. A new model for calculating critical cooling rates of alloy systems based on viscosity calculation. Acta Physica Sinica, 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [14] Wang Zhen-Yu, Yang Yuan-Sheng, Tong Wen-Hui, Li Hui-Qiang, Hu Zhuang-Qi. A new model for calculating the critical cooling rate of bulk metallic glass under non-isothermal condition. Acta Physica Sinica, 2006, 55(4): 1953-1958. doi: 10.7498/aps.55.1953
    [15] Zhao He-Yun, Kan Jia-De, Liu Qing-Ju, Liu Zuo-Quan. Novel physical effects in amorphous alloy crystallization induced by shock wave. Acta Physica Sinica, 2005, 54(4): 1711-1718. doi: 10.7498/aps.54.1711
    [16] HE ZHENG-MING, LU GUO-RONG, ZHANG DAO-YUAN, XU YUN-HUA, JIN JIAN-HUI. FERROMAGNETIC RESONANCE STUDY IN FeCrZr AMORPHOUS ALLOYS. Acta Physica Sinica, 1993, 42(6): 1006-1011. doi: 10.7498/aps.42.1006
    [17] HE ZHENG-MING, LIANG REN-YOU, HOU BI-HUI, XU YUN-HUA, LU GUO-RONG, LUO YOU-QUAN. FERROMAGNETIC RESONANCE STUDY IN FeCrB AMORPHOUS ALLOYS. Acta Physica Sinica, 1991, 40(1): 137-141. doi: 10.7498/aps.40.137
    [18] WANG GEN-MIAO, CHEN HUI-YU, WANG WEI-HUA, DONG YUAN-DA. MECHANICAL ALLOY METHOD AND FORMATION ABILITY OF FexAl100-x AMORPHOUS POWDER. Acta Physica Sinica, 1990, 39(9): 1413-1417. doi: 10.7498/aps.39.1413
    [19] HE ZHENG-MING, ZHAO MIAO-YU, ZHANG LING-FEN, WANG XIAO-GUANG. EFFECTS OF TEMPERATURE ON SATURATION MAGNETOSTRICTION IN IRON-RICH AMORPHOUS ALLOYS. Acta Physica Sinica, 1990, 39(4): 656-660. doi: 10.7498/aps.39.656
    [20] CHE GUANG-CAN, SHEN BAO-GEN, ZHAO JIAN-GAO, ZHAN WEN-SHAN, LIANG JING-KUI. THE EFFECT OF COMPOSITION ON CRYSTALLIZATION TEMPERATURE OF Fe-BASE AMORPHOUS ALLOYS. Acta Physica Sinica, 1987, 36(4): 483-489. doi: 10.7498/aps.36.483
Metrics
  • Abstract views:  4476
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  01 August 2022
  • Accepted Date:  22 October 2022
  • Available Online:  01 November 2022
  • Published Online:  20 January 2023

/

返回文章
返回