Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering

Xu Si-Wei Wang Xun-Si Shen Xiang

Citation:

Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering

Xu Si-Wei, Wang Xun-Si, Shen Xiang
PDF
HTML
Get Citation
  • In this paper, the structures of chalcogenide glasses GexGa8S92–x (x = 24%, 26.67%, 29.6%, 32% and 36%) at a fixed Ga atomic content of 8% are studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering spectra. In order to quantify the evolutions of the different structural units in GexGa8S92–x glasses, the number of double peaks in the Ge 3d, Ga 3d and S 2p spectra are determined by iterative fitting method, the binding energy and the full width at half maximum of each peak, and the relative ratio of the integral area of each decomposed peak to that of the whole area of the X-ray photoelectron spectroscopy are thus achieved. On the other hand, the Raman scattering spectra of GexGa8S92–x glass are decomposed into multiple Gaussians based on the structural units. We use the iterative method to simulate the position of peak center, full width at half maximum, and height of each Raman peak. By analyzing the evolution of each unit structure in the glasses, it is found that the network structure of glass network is mainly formed by S atom bridging the tetrahedral structure of GeS4 and GaS4. The S chains or rings structural units are formed in Ge24Ga8S68 glass, indicating that S atoms are in excess in the chemical composition of the glass, so there are enough S atoms around Ge and Ga atoms, forming heteropolar Ge—S and Ga—S bonds. With the gradual increase of Ge content, S chains or rings structure units rapidly disappear in Ge26.67Ga8S65.33 glass. The Ge—Ge homopolar bonds in the ethane-like structure S3Ge—GeS3 and the MM (Ge—Ge, Ga—Ga or Ge—Ga) homopolar bonds in the S3Ge/Ga—Ga/GeS3 structure simultaneous appear in the Ge29.6Ga8S62.4 glass, and the number of structures increases gradually with the increase of Ge content. This is mainly due to the insufficient number of S atoms in the Ge-Ga-S glass. Once S atoms are lacking, the excess Ge and Ga atoms can only combine with themselves to form the homopolar bond MM. It can be concluded below. Firstly, Ge and Ga atoms appear mainly in the form of 4-coordination, while S atoms occur mainly in the form of 2-coordination in the chalcogenide glasses of GexGa8S92–x. Secondly, the existence of MM bond leads the nanophase to separate, and the ordering degree of glass network structure to decrease .
      Corresponding author: Xu Si-Wei, xusiwei1227@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62004067), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 21B0620).
    [1]

    Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp178–193

    [2]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp115–135

    [3]

    许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥 2021 物理学报 70 167101Google Scholar

    Xu S W, Yang X N, Yang D X, Wang X S, Shen X 2021 Acta Phys. Sin. 70 167101Google Scholar

    [4]

    Choi D Y, Madden S, Rode A, Wang R P, Luther-Davies B 2007 Appl. Phys. Lett. 91 011115Google Scholar

    [5]

    Kim Y, Saienga J, Martin S W 2006 J. Phys. Chem. B 110 16318Google Scholar

    [6]

    张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远 2016 物理学报 65 144205Google Scholar

    Zhang X D, Wu Y H, Yang Z S, Dai S X, Zhang P Q, Zhang W, Xu T F, Zhang Q Y 2016 Acta Phys. Sin. 65 144205Google Scholar

    [7]

    汪俊, 冯赞, 吴国林, 汪金晶, 焦凯, 王弦歌, 刘佳, 梁晓林, 徐铁松, 钟明辉, 肖晶, 赵浙明, 刘自军, 刘永兴, 王训四 2020 发光学报 41 1343Google Scholar

    Wang J, Feng Z, Wu G L, Wang J J, Jiao K, Wang X G, Liu J, Liang X L, Xu T S, Zhong M H, Xiao J, Zhao Z M, Liu Z J, Liu Y X, Wang X S 2020 Chin. J. Lumin. 41 1343Google Scholar

    [8]

    戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华 2010 物理学报 59 3547Google Scholar

    Dai S X, Peng B, Le F D, Wang X S, Shen X, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 3547Google Scholar

    [9]

    任晶, 卢小送, 王鹏飞 2019 光子学报 48 1148007Google Scholar

    Ren J, Lu X S, Wang P F 2019 Acta Photonica Sin. 48 1148007Google Scholar

    [10]

    Yang Z, Wang R P, Chen Y M, Li Q L, Shen X, Xu T F 2020 Opt. Mater. 100 109677Google Scholar

    [11]

    Ren J, Wagner T, Bartos M, Frumar M, Oswald J, Kincl M, Frumarova B, Chen G R 2011 J. Appl. Phys. 109 033105Google Scholar

    [12]

    Golovchak R, Shpotyuk O, Kozyukhin S, Shpotyuk M, Kovalskiy A, Jain H 2011 J. Non-Cryst. Solids 357 1797Google Scholar

    [13]

    Zhu E W, Liu Y X, Sun X, Yin G L, Jiao Q, Dai S X, Lin C G 2019 J. Non-Cryst. Solids 1 100015Google Scholar

    [14]

    Bureau B, Troles J, Floch M L, Guenot P, Smektala F, Lucas J 2003 J. Non-Cryst. Solids 319 145Google Scholar

    [15]

    Nazabal V, Charpentier F, Adam J L, Nemec P, Lhermite H, Anne M L B, Charrier J, Guin J P, Moréac A 2011 Int. J. Appl. Ceram. Technol. 8 990Google Scholar

    [16]

    Pethes I, Chahal R, Nazabal V, Prestipino C, Trapananti A, Michalik S, Jóvári P 2016 J. Phys. Chem. B 120 9204Google Scholar

    [17]

    Golovchak R, Kovalskiy A, Miller A C, Jain H, Shpotyuk O 2007 Phys. Rev. B 76 125208Google Scholar

    [18]

    Golovchak R, Shpotyuk O, Kozyukhin S, Kovalskiy A, Miller A C, Jain H 2009 J. Appl. Phys. 105 103704Google Scholar

    [19]

    Kondrat O, Holomb R, Csik A, Takats V, Veres M, Mitsa V 2017 Nanoscale Res. Lett. 12 149Google Scholar

    [20]

    Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518Google Scholar

    [21]

    许思维, 王丽, 沈祥 2015 物理学报 64 223302Google Scholar

    Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302Google Scholar

    [22]

    Golovchak R, Calvez L, Petracovschi E, Bureau B, Savitskii D, Jain H 2013 Mater. Chem. Phys. 138 909Google Scholar

    [23]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85Google Scholar

    [24]

    Wang K K, Wang W F, Lin C G, Shen X, Dai S X, Chen F F 2022 Ceram. Int. 48 11209Google Scholar

    [25]

    Li Z B, Lin C G, Nie Q H, Dai S X 2013 J. Am. Ceram. Soc. 96 125Google Scholar

    [26]

    Velmuzhov A P, Sukhanov M V, Tyurina E A, Plekhovich A D, Fadeeva D A, Ketkova L A, Churbanov M F, Shiryaev V S 2021 J. Non-Cryst. Solids 554 120615Google Scholar

    [27]

    Li Z B, Lin C G, Nie Q H, Dai S X 2013 Appl. Phys. A 112 939Google Scholar

    [28]

    Zhang W, Fu J, Shen X, Chen Y, Dai S X, Chen F, Li J, Xu T F 2013 J. Non-Cryst. Solids 377 191Google Scholar

    [29]

    Rana A, Singh B P, Sharma R 2019 J. Non-Cryst. Solids 523 119597Google Scholar

    [30]

    Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar

    [31]

    Wang X F, Gu S X, Yu J G, Zhao X J, Tao H Z 2004 J. Solid State Commun. 130 459Google Scholar

    [32]

    Hannon A C, Aitken B G 1999 J. Non-Cryst. Solids 256–257 73Google Scholar

    [33]

    Masselin P, Coq D L, Cuisset A, Bychkov E 2012 Opt. Mater. Express 2 1768Google Scholar

    [34]

    Pauling L 1960 The Nature of the Chemical Bond (Ithaca: Cornell University Press) pp113–121

    [35]

    Xu Q, Yang X Y, Zhang M J, Wang R P 2019 Mater. Res. Express 6 085212Google Scholar

    [36]

    Golovchak R, Nazabal V, Bureau B, Oelgoetz J, Kovalskiy A, Jain H 2018 J. Non-Cryst. Solids 499 237Google Scholar

    [37]

    Srivastava C P, Van De Vondel D F, Van Der Kelen G P 1977 Inorg. Chim. Acta 23 L29Google Scholar

    [38]

    Pethes I, Nazabal V, Chahal R, Bureau B, Kaban I, Belin S, Jovari P 2016 J. Alloys Compd. 673 149Google Scholar

    [39]

    Sun Y H, Zhang Z, Yang Z, Niu L, Wu J, Wei T X, Yan K L, Sheng Y, Wang X S, Wang R P 2021 Opt. Mater. Express 11 2413Google Scholar

  • 图 1  GexGa8S92–x玻璃的拉曼散射光谱分峰拟合图

    Figure 1.  Raman scattering spectra of GexGa8S92–x glasses and their decompositions.

    图 2  GexGa8S92-x 玻璃的 S 2 p 的XPS分解

    Figure 2.  S 2 p spectra of GexGa8S92-x glasses and their decompositions.

    图 3  GexGa8S92–x 玻璃的Ge 3d 的XPS分解

    Figure 3.  Ge 3d spectra of GexGa8S92–x glasses and their decompositions.

    图 4  GexGa8S92–x 玻璃的Ga 3d 的XPS分解

    Figure 4.  Ga 3d spectra of GexGa8S92–x glasses and their decompositions.

    表 1  拉曼散射光谱分峰拟合中各个结构单元的相对比例

    Table 1.  Relative ratio of the different structural units derived from the decomposed Raman scattering spectra.

    S3Ge/Ga-Ga/GeS3
    /%
    S3Ge-GeS3
    /%
    Ge/GaS4
    (v2)/%
    GeS4 (CS)
    /%
    GeS4 (ES)
    /%
    GaS4 (F2)
    /%
    S3Ge-S-
    GeS3
    /%
    Sn chains
    /%
    Ge24Ga8S68009.4350.7612.7915.318.892.82
    Ge26.67Ga8S65.33008.2754.6912.8414.739.470
    Ge29.6Ga8S62.44.988.527.4847.3612.2211.218.230
    Ge32Ga8S609.0911.816.0445.2710.1310.617.050
    Ge36Ga8S5615.8913.314.6243.718.319.015.150
    DownLoad: CSV

    表 2  GexGa8S92–x 玻璃的Ge 3d, Ga 3d 和S 2p 的XPS的拟合参数

    Table 2.  The fitting parameters for the decomposed Ge 3d, Ga 3d and S 2p spectra of GexGa8S92–x glasses.

    Structural unit
    S-S-SS-S-Ge/GaGe/Ga -S-
    Ge/Ga
    GeS4Ge-Ge/Ga-related
    structure
    GaS4Ga-Ge/Ga-
    related
    structure
    Ge24Ga8S68BE/eV163.13162.26161.6630.5119.8719.56
    FWHM/eV1.111.031.131.170.980.98
    Content/%4.9819.1775.8510072.2527.75
    Ge26.67Ga8S65.33BE/eV162.13161.5830.4419.8619.58
    FWHM/eV1.121.081.131.021.18
    Content/%11.9788.0310061.9438.06
    Ge29.6Ga8S62.4BE/eV162.25161.6930.5629.6119.8819.56
    FWHM/eV1.171.091.111.111.051.06
    Content/%5.5494.4685.4114.5953.4146.59
    Ge32Ga8S60BE/eV161.5830.5829.8119.8919.51
    FWHM/eV1.091.080.990.890.86
    Content/%10080.9819.0244.0555.95
    Ge36Ga8S56BE/eV161.6630.4929.7219.8319.49
    FWHM/eV1.161.071.110.870.89
    Content/%10073.2626.7439.5360.47
    DownLoad: CSV
  • [1]

    Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp178–193

    [2]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp115–135

    [3]

    许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥 2021 物理学报 70 167101Google Scholar

    Xu S W, Yang X N, Yang D X, Wang X S, Shen X 2021 Acta Phys. Sin. 70 167101Google Scholar

    [4]

    Choi D Y, Madden S, Rode A, Wang R P, Luther-Davies B 2007 Appl. Phys. Lett. 91 011115Google Scholar

    [5]

    Kim Y, Saienga J, Martin S W 2006 J. Phys. Chem. B 110 16318Google Scholar

    [6]

    张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远 2016 物理学报 65 144205Google Scholar

    Zhang X D, Wu Y H, Yang Z S, Dai S X, Zhang P Q, Zhang W, Xu T F, Zhang Q Y 2016 Acta Phys. Sin. 65 144205Google Scholar

    [7]

    汪俊, 冯赞, 吴国林, 汪金晶, 焦凯, 王弦歌, 刘佳, 梁晓林, 徐铁松, 钟明辉, 肖晶, 赵浙明, 刘自军, 刘永兴, 王训四 2020 发光学报 41 1343Google Scholar

    Wang J, Feng Z, Wu G L, Wang J J, Jiao K, Wang X G, Liu J, Liang X L, Xu T S, Zhong M H, Xiao J, Zhao Z M, Liu Z J, Liu Y X, Wang X S 2020 Chin. J. Lumin. 41 1343Google Scholar

    [8]

    戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华 2010 物理学报 59 3547Google Scholar

    Dai S X, Peng B, Le F D, Wang X S, Shen X, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 3547Google Scholar

    [9]

    任晶, 卢小送, 王鹏飞 2019 光子学报 48 1148007Google Scholar

    Ren J, Lu X S, Wang P F 2019 Acta Photonica Sin. 48 1148007Google Scholar

    [10]

    Yang Z, Wang R P, Chen Y M, Li Q L, Shen X, Xu T F 2020 Opt. Mater. 100 109677Google Scholar

    [11]

    Ren J, Wagner T, Bartos M, Frumar M, Oswald J, Kincl M, Frumarova B, Chen G R 2011 J. Appl. Phys. 109 033105Google Scholar

    [12]

    Golovchak R, Shpotyuk O, Kozyukhin S, Shpotyuk M, Kovalskiy A, Jain H 2011 J. Non-Cryst. Solids 357 1797Google Scholar

    [13]

    Zhu E W, Liu Y X, Sun X, Yin G L, Jiao Q, Dai S X, Lin C G 2019 J. Non-Cryst. Solids 1 100015Google Scholar

    [14]

    Bureau B, Troles J, Floch M L, Guenot P, Smektala F, Lucas J 2003 J. Non-Cryst. Solids 319 145Google Scholar

    [15]

    Nazabal V, Charpentier F, Adam J L, Nemec P, Lhermite H, Anne M L B, Charrier J, Guin J P, Moréac A 2011 Int. J. Appl. Ceram. Technol. 8 990Google Scholar

    [16]

    Pethes I, Chahal R, Nazabal V, Prestipino C, Trapananti A, Michalik S, Jóvári P 2016 J. Phys. Chem. B 120 9204Google Scholar

    [17]

    Golovchak R, Kovalskiy A, Miller A C, Jain H, Shpotyuk O 2007 Phys. Rev. B 76 125208Google Scholar

    [18]

    Golovchak R, Shpotyuk O, Kozyukhin S, Kovalskiy A, Miller A C, Jain H 2009 J. Appl. Phys. 105 103704Google Scholar

    [19]

    Kondrat O, Holomb R, Csik A, Takats V, Veres M, Mitsa V 2017 Nanoscale Res. Lett. 12 149Google Scholar

    [20]

    Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518Google Scholar

    [21]

    许思维, 王丽, 沈祥 2015 物理学报 64 223302Google Scholar

    Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302Google Scholar

    [22]

    Golovchak R, Calvez L, Petracovschi E, Bureau B, Savitskii D, Jain H 2013 Mater. Chem. Phys. 138 909Google Scholar

    [23]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85Google Scholar

    [24]

    Wang K K, Wang W F, Lin C G, Shen X, Dai S X, Chen F F 2022 Ceram. Int. 48 11209Google Scholar

    [25]

    Li Z B, Lin C G, Nie Q H, Dai S X 2013 J. Am. Ceram. Soc. 96 125Google Scholar

    [26]

    Velmuzhov A P, Sukhanov M V, Tyurina E A, Plekhovich A D, Fadeeva D A, Ketkova L A, Churbanov M F, Shiryaev V S 2021 J. Non-Cryst. Solids 554 120615Google Scholar

    [27]

    Li Z B, Lin C G, Nie Q H, Dai S X 2013 Appl. Phys. A 112 939Google Scholar

    [28]

    Zhang W, Fu J, Shen X, Chen Y, Dai S X, Chen F, Li J, Xu T F 2013 J. Non-Cryst. Solids 377 191Google Scholar

    [29]

    Rana A, Singh B P, Sharma R 2019 J. Non-Cryst. Solids 523 119597Google Scholar

    [30]

    Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar

    [31]

    Wang X F, Gu S X, Yu J G, Zhao X J, Tao H Z 2004 J. Solid State Commun. 130 459Google Scholar

    [32]

    Hannon A C, Aitken B G 1999 J. Non-Cryst. Solids 256–257 73Google Scholar

    [33]

    Masselin P, Coq D L, Cuisset A, Bychkov E 2012 Opt. Mater. Express 2 1768Google Scholar

    [34]

    Pauling L 1960 The Nature of the Chemical Bond (Ithaca: Cornell University Press) pp113–121

    [35]

    Xu Q, Yang X Y, Zhang M J, Wang R P 2019 Mater. Res. Express 6 085212Google Scholar

    [36]

    Golovchak R, Nazabal V, Bureau B, Oelgoetz J, Kovalskiy A, Jain H 2018 J. Non-Cryst. Solids 499 237Google Scholar

    [37]

    Srivastava C P, Van De Vondel D F, Van Der Kelen G P 1977 Inorg. Chim. Acta 23 L29Google Scholar

    [38]

    Pethes I, Nazabal V, Chahal R, Bureau B, Kaban I, Belin S, Jovari P 2016 J. Alloys Compd. 673 149Google Scholar

    [39]

    Sun Y H, Zhang Z, Yang Z, Niu L, Wu J, Wei T X, Yan K L, Sheng Y, Wang X S, Wang R P 2021 Opt. Mater. Express 11 2413Google Scholar

  • [1] Zhu Meng-Long, Yang Jun, Dong Yu-Lan, Zhou Yuan, Shao Yan, Hou Hai-Liang, Chen Zhi-Hui, He Jun. Atomic and electronic structure of monolayer ferroelectric GeS on Cu(111). Acta Physica Sinica, 2024, 73(1): 010701. doi: 10.7498/aps.73.20231246
    [2] Xia Ke-Lun, Guan Yong-Nian, Gu Jie-Rong, Jia Guang, Wu Miao-Miao, Shen Xiang, Liu Zi-Jun. Structural evolution of Ge20Se80–xTex glass networks and assessment of glass properties by theoretical bandgap. Acta Physica Sinica, 2024, 73(14): 146303. doi: 10.7498/aps.73.20240637
    [3] Xu Si-Wei, Wang Xun-Si, Shen Xiang. Effect of elemental substitution on transition threshold behaviours of Ge-As(Sb)-Se glasses. Acta Physica Sinica, 2024, 73(5): 057102. doi: 10.7498/aps.73.20231797
    [4] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [5] Xu Si-Wei, Yang Xiao-Ning, Yang Da-Xin, Wang Xun-Si, Shen Xiang. Effect of substitution of S for Se on structure and physical properties in Ge11.5As24Se64.5–xSx glass. Acta Physica Sinica, 2021, 70(16): 167101. doi: 10.7498/aps.70.20210536
    [6] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [7] Yang Meng-Sheng, Yi Tai-Min, Zheng Feng-Cheng, Tang Yong-Jian, Zhang Lin, Du Kai, Li Ning, Zhao Li-Ping, Ke Bo, Xing Pi-Feng. Surface oxidation of as-deposit uranium film characterized by X-ray photoelectron spectroscopy. Acta Physica Sinica, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [8] Xu Hang, Peng Xue-Feng, Dai Shi-Xun, Xu Dong, Zhang Pei-Qing, Xu Ying-Sheng, Li Xing, Nie Qiu-Hua. Raman gain of Ge-Sb-Se chalcogenide glass. Acta Physica Sinica, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [9] Yang Yan, Chen Yun-Xiang, Liu Yong-Hua, Rui Yang, Cao Feng-Yan, Yang An-Ping, Zu Cheng-Kui, Yang Zhi-Yong. Tailoring structure and property of Ge-As-S chalcogenide glass. Acta Physica Sinica, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [10] Xu Si-Wei, Wang Li, Shen Xiang. Raman scattering and X-ray photoelectron spectra of GexSb20Se80-x Glasses. Acta Physica Sinica, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [11] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [12] Zhou Ya-Xun, Yu Xing-Yan, Xu Xing-Chen, Dai Shi-Xun. Fabrication of erbium-doped chalcogenide glass and study on mid-IR amplifying characteristics of its microstructured fiber. Acta Physica Sinica, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [13] Xiao Xia-Jie, Han Xiao-Qin, Liu Yu-Fang. Structure and potential energy functionof XF2(X=B,N) molecular ground state. Acta Physica Sinica, 2011, 60(6): 063102. doi: 10.7498/aps.60.063102
    [14] Hu Ni, Xiong Rui, Wei Wei, Wang Zi-Yu, Wang Li-Li, Yu Zu-Xing, Tang Wu-Feng, Shi Jing. Raman scattering study of the spin ladder compound Sr14(Cu1-yFey)24O41. Acta Physica Sinica, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [15] Yu Quan-Zhi, Li Yu-Tong, Jiang Xiao-Hua, Liu Yong-Gang, Wang Zhe-Bin, Dong Quan-Li, Liu Feng, Zhang Zhe, Huang Li-Zhen, C. Danson, D. Pepler, Ding Yong-Kun, Fu Shi-Nian, Zhang Jie. Infulence of electron temperature on the two peaks of Thomson scattering ion-acoustic waves in laser plasmas. Acta Physica Sinica, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [16] Li Han, Tang Xin-Feng, Zhao Wen-Yu, Zhang Qing-Jie. The structure and X-ray photoelectron spectroscopy analysis of double-atom filled skutterudite compounds. Acta Physica Sinica, 2006, 55(12): 6506-6510. doi: 10.7498/aps.55.6506
    [17] Feng Yu-Qing, Zhao Kun, Zhu Tao, Zhan Wen-Shan. Thermal stability of magnetic tunnel junctions investigated by x-ray photoelectron spectroscopy. Acta Physica Sinica, 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [18] Xu Jin-Bao, Zheng Yu-Feng, Li Jin, Sun Yan-Fei, Wu Rong. The structural optical and electrical properties of films prepared by screen print. Acta Physica Sinica, 2004, 53(9): 3229-3233. doi: 10.7498/aps.53.3229
    [19] YUAN JIN-SHE, CHEN GUANG-DE, QI MING, LI AI-ZHEN, XU ZHUO. XPS AND AES INVESTIGATION OF GaN FILMS GROWN BY MBE. Acta Physica Sinica, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [20] LI LIU-HE, ZHANG HAI-QUAN, CUI XU-MING, ZHANG YAN-HUA, XIA LI-FANG, MA XIN-XIN, SUN YUE. COMPARATIVE ANALYSIS OF DLC FLIM FINE STRUCTURE BY RAMAN SPECTRA AND X-RAY PHOTOELECTRON SPECTROSCOPY. Acta Physica Sinica, 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
Metrics
  • Abstract views:  3884
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  19 August 2022
  • Accepted Date:  04 October 2022
  • Available Online:  18 October 2022
  • Published Online:  05 January 2023

/

返回文章
返回