-
In this paper, We prepare two groups of glasses: one is GexAs20Se80–x with x ranging from 5% to 32.5%, the other is GexSb20Se80–x with x spanning from 5% to 25%, by using the conventional melt-quench method, and investigate the effect of the elemental substitution of Sb for As on the threshold behaviors in GexAs(Sb)20Se80–x glasses. We are to understand to what extent the topological model and chemical order model can explain the correlation between physical properties and glass compositions, and how the chemical composition can affect the glass transition threshold. Glass transition temperature is measured by the differential scanning calorimeter (Mettler-Toledo, DSC1) with different scanning rates ranging from 5 K/min to 30 K/min under a uniform nitrogen gas flow of 50 mL/min, the glass density is measured by a Mettler H20 balance with a MgO crystal used as a reference. Samples of each glass composition are weighed five times and the average density is recorded. The refractive index of the glass at 1.5 um is measured by a Metricon Model 2010 prism coupler. Raman spectra are measured by a T64000 Jobin-Yvon-Horiba micro-Raman spectrometer equipped with a liquid-nitrogen-cooled CCD detector. The 830 nm laser line is used as an excitation source, and the laser power is kept as small as possible to avoid any photo-induced effects. The resolution of the spectrometer is about 0.5 cm–1. The systematic measurements of these physical parameters show that while the transition thresholds at MCN = 2.4 and 2.67 are verified in the Ge-As-Se glasses with ideal covalent network, these two transitions represent the covalent network structure inside the glass from an under-constrained “floppy” network to an over-constrained “rigid” phase and from the two-dimensional to the three-dimensional “stressed rigid” phase respectively. However, when As is substituted by Sb, the the resulting GexSb20Se80–x glass with non-ideal covalent network will change its transition threshold, changing into the chemically stoichiometric composition. We further deconvolve Raman scattering spectra into different structural units and the change of their respective intensity shows the same behavior, which is ascribed to the chemical effect induced by a large difference in atomic radius between As and Sb, and a relatively strong ionic feature of element Sb.
-
Keywords:
- chalcogenide glasses /
- glass transition /
- Raman scattering
[1] Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp101–128
[2] Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp110–121
[3] Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar
[4] 许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥 2021 物理学报 70 167101Google Scholar
Xu S W, Yang X N, Yang D X, Wang X S, Shen X 2021 Acta Phys. Sin. 70 167101Google Scholar
[5] 许思维, 王训四, 沈祥 2023 物理学报 72 017101Google Scholar
Xu S W, Wang X S, Shen X 2023 Acta Phys. Sin. 72 017101Google Scholar
[6] Yang A P, Sun M Y, Ren H, Lin H X, Feng X, Yang Z Y 2021 J. Lumin. 237 118169Google Scholar
[7] Tronc P, Bensoussan M, Brenac A, Sebenne C 1973 Phys. Rev. B 8 5947Google Scholar
[8] Lucovsky G, Galeener F L, Keezer R C, Geils R H, Six H A 1974 Phys. Rev. B 10 5134Google Scholar
[9] Philipps J C 1979 J. Non-Cryst. Solids 34 153Google Scholar
[10] Philips J C 1981 J. Non-Cryst. Solids 43 37Google Scholar
[11] Tanaka K 1989 Phys. Rev. B 39 1270Google Scholar
[12] Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J, Luther-Davies B 2009 Appl. Phys. A 96 615Google Scholar
[13] Su X Q, Wang R P, Luther-Davies B, Wang L 2013 Appl. Phys. A 113 575Google Scholar
[14] Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109Google Scholar
[15] Wang T, Wei W H, Shen X, Wang R P, Luther-Davies B, Jackson I 2013 J. Phys. D: Appl. Phys. 46 165302Google Scholar
[16] Wang R P, Smith A, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520Google Scholar
[17] Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571Google Scholar
[18] Georgiev D G, Boolchand P, Micoulaut M 2000 Phys. Rev. B 62 R9228Google Scholar
[19] Cernosek Z, Cernoskova E, Todorov R, Holubova J 2020 J. Solid State Chem. 291 121599Google Scholar
[20] Xu S W, Liang T W, Zhu X Y 2023 Chalcogenide Lett. 20 55Google Scholar
[21] Stevens M, Boolchand P, Hernandez J G 1985 Phys. Rev. B 31 981Google Scholar
[22] Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2015 Appl. Phys. Express 8 015504Google Scholar
[23] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华 2016 物理学报 65 154207Google Scholar
Xu H, Peng X F, Dai S X, Xu D, Zhang P Q, Xu Y S, Li X, Nie Q H 2016 Acta Phys. Sin. 65 154207Google Scholar
[24] Jackson K, Briley A, Grossman S, Porezag D V, Pederson M R 1999 Phys. Rev. B 60 14985Google Scholar
[25] Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827Google Scholar
[26] Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302 [许思维, 王丽, 沈祥 2015 物理学报 64 223302]Google Scholar
Google ScholarXu S W, Wang L, Shen X 2015 Acta Phys. Sin.64 223302 [27] Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O, Roiland C, Soignard E, Yarger J L, Troles J, Sangleboeuf J C, Lucas P 2010 Phys. Rev. B 82 195206Google Scholar
[28] Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2016 Chin. Phys. B 25 057105Google Scholar
[29] Wang Y, Matsuda O, Inoue K, Yamamuro O, Matsuo T, Murase K 1998 J. Non-Cryst. Solids 232 702Google Scholar
[30] Bhosle S, Gunasekera K, Boolchand P, Micoulaut M 2012 Int. J. Appl. Glass. Sci. 3 205Google Scholar
[31] Saffarini G 1994 Solid State Commun. 91 577Google Scholar
[32] Giridhar A, Narasimham P S L, Mahadevan S 1981 J. Non-Cryst. Solids 43 29Google Scholar
[33] Opletal G, Drumm D W, Petersen T C, Wang R P, Russo S P 2015 J. Phys. Chem. A 119 6421Google Scholar
-
-
[1] Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp101–128
[2] Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp110–121
[3] Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar
[4] 许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥 2021 物理学报 70 167101Google Scholar
Xu S W, Yang X N, Yang D X, Wang X S, Shen X 2021 Acta Phys. Sin. 70 167101Google Scholar
[5] 许思维, 王训四, 沈祥 2023 物理学报 72 017101Google Scholar
Xu S W, Wang X S, Shen X 2023 Acta Phys. Sin. 72 017101Google Scholar
[6] Yang A P, Sun M Y, Ren H, Lin H X, Feng X, Yang Z Y 2021 J. Lumin. 237 118169Google Scholar
[7] Tronc P, Bensoussan M, Brenac A, Sebenne C 1973 Phys. Rev. B 8 5947Google Scholar
[8] Lucovsky G, Galeener F L, Keezer R C, Geils R H, Six H A 1974 Phys. Rev. B 10 5134Google Scholar
[9] Philipps J C 1979 J. Non-Cryst. Solids 34 153Google Scholar
[10] Philips J C 1981 J. Non-Cryst. Solids 43 37Google Scholar
[11] Tanaka K 1989 Phys. Rev. B 39 1270Google Scholar
[12] Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J, Luther-Davies B 2009 Appl. Phys. A 96 615Google Scholar
[13] Su X Q, Wang R P, Luther-Davies B, Wang L 2013 Appl. Phys. A 113 575Google Scholar
[14] Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109Google Scholar
[15] Wang T, Wei W H, Shen X, Wang R P, Luther-Davies B, Jackson I 2013 J. Phys. D: Appl. Phys. 46 165302Google Scholar
[16] Wang R P, Smith A, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520Google Scholar
[17] Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571Google Scholar
[18] Georgiev D G, Boolchand P, Micoulaut M 2000 Phys. Rev. B 62 R9228Google Scholar
[19] Cernosek Z, Cernoskova E, Todorov R, Holubova J 2020 J. Solid State Chem. 291 121599Google Scholar
[20] Xu S W, Liang T W, Zhu X Y 2023 Chalcogenide Lett. 20 55Google Scholar
[21] Stevens M, Boolchand P, Hernandez J G 1985 Phys. Rev. B 31 981Google Scholar
[22] Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2015 Appl. Phys. Express 8 015504Google Scholar
[23] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华 2016 物理学报 65 154207Google Scholar
Xu H, Peng X F, Dai S X, Xu D, Zhang P Q, Xu Y S, Li X, Nie Q H 2016 Acta Phys. Sin. 65 154207Google Scholar
[24] Jackson K, Briley A, Grossman S, Porezag D V, Pederson M R 1999 Phys. Rev. B 60 14985Google Scholar
[25] Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827Google Scholar
[26] Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302 [许思维, 王丽, 沈祥 2015 物理学报 64 223302]Google Scholar
Google ScholarXu S W, Wang L, Shen X 2015 Acta Phys. Sin.64 223302 [27] Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O, Roiland C, Soignard E, Yarger J L, Troles J, Sangleboeuf J C, Lucas P 2010 Phys. Rev. B 82 195206Google Scholar
[28] Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2016 Chin. Phys. B 25 057105Google Scholar
[29] Wang Y, Matsuda O, Inoue K, Yamamuro O, Matsuo T, Murase K 1998 J. Non-Cryst. Solids 232 702Google Scholar
[30] Bhosle S, Gunasekera K, Boolchand P, Micoulaut M 2012 Int. J. Appl. Glass. Sci. 3 205Google Scholar
[31] Saffarini G 1994 Solid State Commun. 91 577Google Scholar
[32] Giridhar A, Narasimham P S L, Mahadevan S 1981 J. Non-Cryst. Solids 43 29Google Scholar
[33] Opletal G, Drumm D W, Petersen T C, Wang R P, Russo S P 2015 J. Phys. Chem. A 119 6421Google Scholar
Catalog
Metrics
- Abstract views: 2121
- PDF Downloads: 68
- Cited By: 0