Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of preionization effect of excimer laser

Wang Qian Fan Yuan-Yuan Zhao Jiang-Shan Liu Bin Qi Yan Yan Bo-Xia Wang Yan-Wei Zhou Mi Han Zhe Cui Hui-Rong

Wang Qian, Fan Yuan-Yuan, Zhao Jiang-Shan, Liu Bin, Qi Yan, Yan Bo-Xia, Wang Yan-Wei, Zhou Mi, Han Zhe, Cui Hui-Rong. Analysis of preionization effect of excimer laser. Acta Phys. Sin., 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
Citation: Wang Qian, Fan Yuan-Yuan, Zhao Jiang-Shan, Liu Bin, Qi Yan, Yan Bo-Xia, Wang Yan-Wei, Zhou Mi, Han Zhe, Cui Hui-Rong. Analysis of preionization effect of excimer laser. Acta Phys. Sin., 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731

Analysis of preionization effect of excimer laser

Wang Qian, Fan Yuan-Yuan, Zhao Jiang-Shan, Liu Bin, Qi Yan, Yan Bo-Xia, Wang Yan-Wei, Zhou Mi, Han Zhe, Cui Hui-Rong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Excimer laser plays an important role in the national economic production because of its short wavelength, high repetition frequency and large energy. In the output characteristics of excimer lasers, high beam quality and high energy stability are the characters of high-end excimer light source, and whether the excimer laser system can sufficiently develop the preionization process is the key to output laser pulses with high beam quality and stable energy. This paper is mainly to study the preionization process of ArF excimer laser, and establish one-dimensional simulation calculation model and two-dimensional simulation calculation model. Based on the fluid calculation method of Comsol Multiphysics software, the numerical simulation analysis and calculation are carried out, with the study focusing on the ionization wave propagation process in the preionization process and the relationship between preionization and main discharge. The results show that the spatial structure of corona rod and main electrode should be considered comprehensively when an excimer laser system is designed. Appropriate preionization structure and voltage can make the main discharge triggered during the maintenance of free electrons, which can effectively reduce the discharge voltage, avoid streamer and arc discharge, and improve the output beam quality and system energy stability.
      PACS:
      42.55.Lt(Gas lasers including excimer and metal-vapor lasers)
      51.50.+v(Electrical properties)
      52.80.-s(Electric discharges)
      Corresponding author: Fan Yuan-Yuan, fanyuanyuan@ime.ac.cn ; Qi Yan, qiyan@ime.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074405) and the Foundation for Study Encouragement to Young Scientists, Chinese Academy of Sciences, China (Grant No. 2020121).

    由于ArF准分子激光器具有短波长(193 nm)、高重频、大能量输出的特点, 因此被广泛应用于集成电路制造、角膜屈光手术、脉冲激光消融和激光退火等领域. 为了输出能量均匀的高质量激光, 准分子激光器需要在稳定的辉光放电模式下工作[1]. 充分的预电离可以保证电极之间稳定、均匀的辉光放电, 并防止流光放电的形成及其随后向拉弧放电的过渡. 如果缺乏充足的预电离, 工作气体的局部增益过强, 主电极之间放电将提前终止, 进而导致激光脉冲持续时间过短, 激光能量分布不均匀, 光束质量不佳[2]. 因此, 预电离过程是准分子激光器实现稳定辉光放电、高质量激光输出的关键. 典型的预电离方式主要有X射线预电离和紫外预电离. X射线预电离可以获得较大的能量, 但结构复杂. 在电介质表面持续产生电晕放电的紫外线预电离是目前准分子激光器预电离的主流方案. 产生电晕放电的结构为预电离电极, 也称为电晕棒. 电晕棒通常由一根陶瓷管和金属棒组成, 在垂直于主电极放电方向前后延伸.

    通常, 不充分或不均匀的预电离会引发不稳定的主放电, 进而影响准分子激光系统能量输出及光束质量. Lin 和Levatter[3,4]研究了高气压下空间均匀的雪崩脉冲放电形成的必要条件. 假设电极形状合适, 没有强烈的边缘效应, 均匀放电起始所需的最小预电离水平取决于电压上升时间、工作气体气压及工作气体的配比. Taylor[5]研究了XeCl准分子激光器的预电离情况. 他指出, 由于预电离梯度, 从阴极的热点处产生的细丝可能会引发辉光放电崩溃. Kushner[6]分析了KrF准分子激光器工作过程中宏观和微观的不均匀放电情况. 大尺度的宏观不均匀放电容易导致弧光放电, 而小尺度的微观不均匀放电容易导致丝状和流注放电. Treshchalov等[7]利用纳秒门控ICCD相机从放电的光谱中研究了主要受激原子和离子的种类、气体温度及电子密度的时间及空间分布. 在放电过程中探测到了阴极热点, 但放电在阴极表面没有出现缩窄和崩溃. Mathew等[8]研究了F2准分子激光器的放电不稳定性, 证明了丝状放电的出现与F2而不是Kr的存在有关. Xiong和Kushner[9]给出了高气压Ne/Xe混合气体中电晕棒表面放电的数值研究结果, 研究表明, 电离波的传播速度随外加电压和电介质介电常数的变化而变化, 范围为2×107—3.5×108 cm/s. Yampolskaya等[10]将仿真分析的计算结果与KrF准分子激光器的实验结果进行比较, 并分析了电极半径对激光能量的影响. Akashi等[11]使用一维模型研究了预电离电子数密度对放电过程的影响, 随着预电离电子数密度的减小(预电离电压减小), 放电电压及电流峰值时间延后, 电压值及电流值也随之变大, 但该模型没有考虑预电离不充分引起的丝状及流注放电. Feenstra等[2]通过调整预电离与主放电之间的时间间隔, 获得了不同时间间隔下输出能量、脉冲长度的变化情况, 实验数据表明, 预电离与主放电之间的时间间隔影响光脉冲能量值及脉冲长度, 存在最佳预电离与主放电时间间隔.

    以往研究表明, 预电离过程对单脉冲主放电的稳定性及持续时间都有影响. 但在长期的实验过程中, 发现不同脉冲的能量及主放电情况也会受到预电离过程的影响, 从而影响准分子激光系统的能量稳定性. 本文主要介绍Ne/Xe/F2/Ar混合气体中, 准分子激光器紫外预电离过程的数值研究结果, 重点探究预电离的时空演化情况, 讨论预电离过程中自由电子的空间分布和峰值自由电子数密度的传播过程对主放电的影响.

    本节主要描述了理论分析使用的计算模型. 模型为基于Comsol Multiphysics软件的流体模型. 在该模型中, 包括电子在内的所有等离子体都被视为连续体. 模型涉及自洽电场的连续性方程、动量方程、能量方程和泊松方程. 每个方程都包含传递系数和速率系数, 用来表示粒子碰撞、电离的影响[12]. 模型中涉及的连续性方程、动量方程、能量方程和泊松方程如下所示.

    连续性方程:

    t(nj)+Γj=Rj,
    (1)

    其中, Г为粒子通量, 在漂移-扩散近似条件下可以表示为

    Γj=sgn(qj)njμjEDjnj,
    (2)

    其中, nj表示粒子数密度, μj代表粒子迁移速率, Dj表示粒子扩散速率, E代表电场强度.

    动量方程:

    t(nemeue)+nemeueuTe=(pe)+qneEnemeuevm,
    (3)

    其中, ne代表电子数密度, me代表电子质量, ue代表电子漂移速率, pe代表电子压力张量, vm代表动量转移频率.

    能量方程:

    t(nε)+Γε+EΓe=Sen,
    (4)

    其中, nε代表粒子能量密度, Sen代表碰撞带来的能量变化量, Гε代表能量通量, Гe代表电子通量. 平均电子能量ˉε可以用以下公式计算:

    ˉε=nεne.
    (5)

    泊松方程:

    2φ+ρε=0,
    (6)

    其中, ε为介电常数, ρ为净电荷, φ为电势.

    本文重点讨论预电离和电离传播的过程. 预电离时, Ne被激发为Ne2, Ne2发射波长为85 nm的光子, 这是光电离的来源. 光电离在电离传播过程中起着重要的作用, 计算过程中考虑的化学反应在表1列出[11,13].

    表 1  计算过程中考虑的化学反应通道, Boltz代表该反应的反应速率由玻尔兹曼方程计算得到[11,13]
    Table 1.  Reactions considered in the study, label Boltz indicates that the constant was calculated from the Boltzman equation[11,13].
    Ionization reaction Constant rate
    Ar + e → Ar* + e Boltz
    Ar + e → Ar+ + 2e Boltz
    F2 + e → F + F Boltz
    Ne + e → Ne+ + 2e Boltz
    Ne + e → Ne* + e Boltz
    Ne* + 2Ne → Ne2 + Ne 4 × 10–34 cm6/s[13]
    Ne* + e → Ne+ + 2e Boltz
    ArF* → Ar + F 1/4.2 ns[11]
    Ne2 → 2Ne + hγ'' 1/11 ns[13]
    Xe + hγ'' → Xe + e 10–16 cm2 [11]
    Ar+ → Ar
    F → F
    Ar* → Ar
    Ne+ → Ne
    Ne* → Ne
    Ne2 → 2Ne
    下载: 导出CSV 
    | 显示表格

    为了研究预电离过程, 首先建立一维仿真计算模型(根据二维几何结构简化得到)研究预电离发展过程中电子数密度的分布情况, 如图1所示. 图1(a)为电晕棒的二维几何模型, 图1(b)为根据二维几何模型简化的一维计算模型. 其中, 图1(b)中左侧端点为电晕棒中陶瓷管和金属棒的交界面, 中间点为工作气体和电晕棒的交界面, 右侧端点为工作气体和阴极的交界面. 电晕棒中的陶瓷管厚度为3.3 mm, 电晕棒与阴极之间的最短直线距离为1.13 mm. 预电离过程中电晕棒与阴极之间的电子数密度分布如图2所示, 根据准分子激光器实际工作条件, 计算中设定预电离电压为13 kV, 工作气体气压为4 atm (1 atm = 1.01×105). 25, 28以及30 ns时刻的电子数密度如图2(a)所示. 从自由电子的运动趋势可以看出, 电晕棒与阴极之间的预电离放电类似流注放电. 起初, 由于阴极电势低于电晕棒, 电子朝着电晕棒的方向移动, 电晕棒附近的电子数密度增大, 如图2(a)所示. 大约32 ns时刻, 电晕棒充电饱和, 电晕棒与主电极之间的电场反转, 电子开始反向朝着阴极方向移动. 电子数密度在62 ns时刻, 距离电晕棒表面4.265 mm处达到峰值, 峰值为8.68 × 1018 m–3. 在预电离过程中, 工作气体被电离, 产生了初始的自由种子电子, 并在阴极附近出现了高密度电子团, 主放电电压被降低. 如果在准分子激光器工作过程中, 每个脉冲主放电发生前预电离发展情况一致, 那么在阴极附近会出现相同的电子数密度分布, 从而使主放电的一致性得到保证, 使每个脉冲输出能量一致, 提升准分子激光系统的能量稳定性. 高密度的种子电子可以维持约4 ns (58—62 ns), 因此预电离与主放电之间的最大时间间隔需要小于4 ns.

    图 1 预电离的一维计算模型\r\nFig. 1. 1D model for preionization.
    图 1  预电离的一维计算模型
    Fig. 1.  1D model for preionization.
    图 2 电晕棒与阴极间电子数密度分布情况 (a) 25, 28以及30 ns时的电子数密度分布情况; (b)预电离过程中电子数密度分布情况\r\nFig. 2. Electrons number density distribution between corona tube and cathode: (a) Electron number density at 25, 28 and 30 ns; (b) electron number density during preionization process.
    图 2  电晕棒与阴极间电子数密度分布情况 (a) 25, 28以及30 ns时的电子数密度分布情况; (b)预电离过程中电子数密度分布情况
    Fig. 2.  Electrons number density distribution between corona tube and cathode: (a) Electron number density at 25, 28 and 30 ns; (b) electron number density during preionization process.

    在电晕棒上施加不同的预电离电压, 高密度自由电子维持时间会有所不同, 如图3所示. 预电离电压为13 kV时, 高密度自由电子维持时间最短, 约为4 ns; 预电离电压为19 kV时高密度自由电子维持时间最长, 约为13 ns. 在高密度电子维持时间范围内触发主放电, 可以降低放电电压, 避免流注放电及弧光放电的发生.

    图 3 高密度电子维持时间随预电离电压变化\r\nFig. 3. Maintenance time of high-density electrons varies with the preionization voltage.
    图 3  高密度电子维持时间随预电离电压变化
    Fig. 3.  Maintenance time of high-density electrons varies with the preionization voltage.

    预电离电压和高密度电子的维持时间对主放电的发展具有重要意义. 当预电离电压较低时, 电子数密度到达峰值时间晚, 高密度自由电子维持时间短, 因此, 需要高电压在短时间内触发主放电. 否则, 容易引起流注及弧光放电. 当预电离电压过高时, 电子数密度过早达到峰值, 然而这时主电极间电压较低, 主放电不能被触发. 随后主电极间电压升高, 但高密度自由电子会因为复合等化学反应消散, 同样使得主放电发生困难. 通过优化预电离电压, 预电离过程可与主放电发展过程相匹配, 使主放电在高密度自由电子维持器件被触发, 从而降低放电电压, 避免流注放电及弧光放电, 提升系统能量稳定性.

    在不同的预电离电压条件下, 系统的功率沉积情况不同. 如图4所示, 横轴为预电离发展时间, 纵轴为系统沉积功率值. 当预电离电压为5.2, 13以及26 kV时, 最大沉积功率分别为1200, 7300和18000 W. 沉积功率越大, 系统输出能量越大, 即从能量沉积的角度考虑, 26 kV为最佳的预电离电压, 高密度自由电子维持时间约为12 ns.

    图 4 不同预电离电压下功率沉积情况 (a) V = 5.2 kV; (b) V = 13 kV; (c) V = 26 kV\r\nFig. 4. Energy deposition with different preionization voltage: (a) V = 5.2 kV; (b) V = 13 kV; (c) V = 26 kV.
    图 4  不同预电离电压下功率沉积情况 (a) V = 5.2 kV; (b) V = 13 kV; (c) V = 26 kV
    Fig. 4.  Energy deposition with different preionization voltage: (a) V = 5.2 kV; (b) V = 13 kV; (c) V = 26 kV.

    为了更好地研究预电离过程对主放电的影响, 建立了二维仿真模型, 如图5所示. 其中, 1代表阴极, 2代表阳极, 3代表电晕棒, 4和5代表陶瓷板, 6和7代表工作气体区域, 为了节省计算资源, 等离子体相关控制方程只在区域7中求解.

    图 5 二维几何模型. 1代表阴极, 2代表阳极, 3代表电晕棒, 4和5代表陶瓷板, 6和7代表工作气体区域\r\nFig. 5. Two-dimensional geometric model. 1 represents the cathode, 2 represents the anode, 3 represents the corona rod, 4 and 5 represent the ceramic plate, 6 and 7 represent the working gas area.
    图 5  二维几何模型. 1代表阴极, 2代表阳极, 3代表电晕棒, 4和5代表陶瓷板, 6和7代表工作气体区域
    Fig. 5.  Two-dimensional geometric model. 1 represents the cathode, 2 represents the anode, 3 represents the corona rod, 4 and 5 represent the ceramic plate, 6 and 7 represent the working gas area.

    图6为预电离电压13 kV时电子数密度在不同预电离时刻的分布情况(图中显示为电子数密度的对数值). 通过对二维模型数值计算结果的分析, 发现电子数密度峰值具有相同的运动规律. 起初, 自由电子向电晕棒方向移动(25—30 ns), 之后, 由于电场反转, 自由电子开始反向朝阴极方向移动(35—45 ns). 当自由电子到达电晕棒表面时形成表面等离子体波沿电晕棒表面传输.

    图 6 预电离过程中电子数密度分布情况 (a) t = 25 ns时, max = 1.76×1015, min = 1.37×105; (b) t = 29 ns时, max = 4.40×1018, min = 9.28×104; (c) t = 30 ns时, max = 2.44×1019, min = 8.28×104; (d) t = 35 ns时, max = 4.40×1018, min = 9.28×104; (e) t = 45 ns时, max = 1.50×1024, min = 1.74×10–7; (f) t = 47 ns时, max = 1.62×1024, min = 1.88×10–7\r\nFig. 6. Distribution of electron number density during preionization: (a) t = 25 ns, max = 1.76×1015, min = 1.37×105; (b) t = 29 ns, max = 4.40×1018, min = 9.28×104; (c) t = 30 ns, max = 2.44×1019, min = 8.28×104; (d) t = 35 ns, max = 4.40×1018, min = 9.28×104; (e) t = 45 ns, max = 1.50×1024, min = 1.74×10–7; (f) t = 47 ns, max = 1.62×1024, min = 1.88×10–7.
    图 6  预电离过程中电子数密度分布情况 (a) t = 25 ns时, max = 1.76×1015, min = 1.37×105; (b) t = 29 ns时, max = 4.40×1018, min = 9.28×104; (c) t = 30 ns时, max = 2.44×1019, min = 8.28×104; (d) t = 35 ns时, max = 4.40×1018, min = 9.28×104; (e) t = 45 ns时, max = 1.50×1024, min = 1.74×10–7; (f) t = 47 ns时, max = 1.62×1024, min = 1.88×10–7
    Fig. 6.  Distribution of electron number density during preionization: (a) t = 25 ns, max = 1.76×1015, min = 1.37×105; (b) t = 29 ns, max = 4.40×1018, min = 9.28×104; (c) t = 30 ns, max = 2.44×1019, min = 8.28×104; (d) t = 35 ns, max = 4.40×1018, min = 9.28×104; (e) t = 45 ns, max = 1.50×1024, min = 1.74×10–7; (f) t = 47 ns, max = 1.62×1024, min = 1.88×10–7.

    定义电子数密度反向朝阴极移动的时刻为预电离完成时刻. 当预电离电压为主电极电压的0.2倍、0.5倍以及1倍时, 预电离电压分别为5.2, 13以及26 kV, 预电离结束的时间分别为44, 30以及23 ns. 观察阴极附近的自由电子数密度, 当预电离电压为5.2 kV时, 阴极附近的自由电子增长缓慢, 同时自由电子空间扩散明显. 当预电离电压为13 kV时, 自由电子沿着电晕棒表面传播, 同时也向阴极方向移动. 当预电离电压为26 kV时, 强电场将自由电子束缚在电晕棒周围, 几乎没有朝阴极方向移动的自由电子, 如图7所示.

    图 7 不同预电离电压下自由电子数密度分布情况 (a) V = 5.2 kV时, t = 44 ns, max = 9.67×1018, min = 1.54×106; t = 47 ns, max = 7.31×1022, min = 0.009; (b) V = 13 kV时, t = 30 ns, max = 2.44×1019, min = 8.28×104; t = 44 ns, max = 1.26×1024, min =1.88×10–7; (c) V = 26 kV时, t = 23 ns, max = 3.63×1021, min = 1.45×104; t = 44 ns, max = 1.23×1025, min = 0.012\r\nFig. 7. Electron number density distribution with different preionization voltage: (a) V = 5.2 kV, t = 44 ns, max = 9.67×1018, min = 1.54×106; t = 47 ns, max = 7.31×1022, min = 0.009; (b) V = 13 kV, t = 30 ns, max = 2.44×1019, min = 8.28×104; t = 44 ns, max = 1.26×1024, min = 1.88×10–7; (c) V = 26 kV, t = 23 ns, max = 3.63×1021, min = 1.45×104; t = 44 ns, max = 1.23×1025, min = 0.012.
    图 7  不同预电离电压下自由电子数密度分布情况 (a) V = 5.2 kV时, t = 44 ns, max = 9.67×1018, min = 1.54×106; t = 47 ns, max = 7.31×1022, min = 0.009; (b) V = 13 kV时, t = 30 ns, max = 2.44×1019, min = 8.28×104; t = 44 ns, max = 1.26×1024, min =1.88×10–7; (c) V = 26 kV时, t = 23 ns, max = 3.63×1021, min = 1.45×104; t = 44 ns, max = 1.23×1025, min = 0.012
    Fig. 7.  Electron number density distribution with different preionization voltage: (a) V = 5.2 kV, t = 44 ns, max = 9.67×1018, min = 1.54×106; t = 47 ns, max = 7.31×1022, min = 0.009; (b) V = 13 kV, t = 30 ns, max = 2.44×1019, min = 8.28×104; t = 44 ns, max = 1.26×1024, min = 1.88×10–7; (c) V = 26 kV, t = 23 ns, max = 3.63×1021, min = 1.45×104; t = 44 ns, max = 1.23×1025, min = 0.012.

    当自由电子到达阴极表面时, 会沿着阴极表面移动到达阴极尖端, 如图8所示, 随后主放电被触发. 自由电子沿阴极表面移动时间约为10 ns[9], 因此, 在预电离电压为5.2, 13以及26 kV时, 自由电子到达阴极尖端的时间分别为54, 40以及33 ns. 考虑不同预电离电压下高密度自由电子维持的时间, 当预电离电压为5.2, 13以及26 kV时, 主放电开始的最佳时间为54—57 ns, 40—44 ns以及33—45 ns.

    图 8 电子沿阴极表面的传播路径\r\nFig. 8. Propagation path of electrons along the cathode surface.
    图 8  电子沿阴极表面的传播路径
    Fig. 8.  Propagation path of electrons along the cathode surface.

    定义主放电开始的时间为阴极尖端附近电子数密度超过1018时. 当预电离电压分别为5.2, 13以及26 kV时, 主放电开始的时间为45, 45.5以及42 ns. 当预电离电压为26 kV时, 主放电开始的时间位于最佳时间范围内. 因此, 对于此放电结构, 最佳预电离电压为26 kV.

    本文从一维和二维的数值计算中分析了准分子激光器预电离过程的反战情况. 预电离过程类似于流注放电, 预电离电压影响自由电子数密度的增长速度以及维持时间. 从功率沉积的角度考虑, 最佳预电离电压为26 kV; 从预电离与主放电的时间间隔角度考虑, 最佳预电离电压也为26 kV. 综上, 在对准分子激光器进行系统设计时, 要综合考虑电晕棒、主电极的空间结构及预电离电压值. 预电离过程使工作气体被电离, 产生大量的自由电子, 自由电子最终会移动到阴极附近维持一段时间. 主放电在自由电子维持期间被触发可以有效降低放电电压, 避免流注及弧光放电, 提升系统能量稳定性.

    感谢朱益飞博士及其等离子体工坊团队在计算模型上提供的指导和帮助!

    [1]

    Shuntaro W, Alcock A J, Leopold K E, Taylor R S 1981 Appl. Phys. Lett. 38 3Google Scholar

    [2]

    Feenstra L, Bastiaens H M J, Peters P J M, Witteman W J 1999 IEEE J. Sel. Top. Quant. 5 1515Google Scholar

    [3]

    Lin S C, Levatter J I 1979 Appl. Phys. Lett. 34 505Google Scholar

    [4]

    Levatter J I, Lin S C 1980 J. Appl. Phys. 51 210Google Scholar

    [5]

    Taylor R S 1986 Appl. Phys. B 41 1Google Scholar

    [6]

    Kushner M J 1991 IEEE Trans. Plas. Sci. 19 387Google Scholar

    [7]

    Treshchalov A, Lissovski A, Chikeev E 2002 Proc. SPIE. International Conference on Atomic and Molecular Pulsed Lasers IV 4747 253Google Scholar

    [8]

    Mathew D, Bastiaens H M J, Boller K J 2006 Appl. Phys. Lett. 88 101502Google Scholar

    [9]

    Xiong Z M, Kushner M J 2010 J. Phys. D: Apply. Phys. 43 505204Google Scholar

    [10]

    Yampolskaya S A, Yastremskii A G, Panchenko Y N 2020 IEEE J. Quan. Elec. 56 1500209Google Scholar

    [11]

    Akashi H, Sakai Y, Tagashira H 1995 J. Phys. D: Appl. Phys. 28 445Google Scholar

    [12]

    Hagelaar G J M, Pitchford L C 2005 Plas. Sour. Sci. 14 722Google Scholar

    [13]

    Razhev A M, Shchedrin A I, Kalyuzhnaya A G, Zhupikov A A 2005 Quantum Electron. 35 799Google Scholar

  • 图 1  预电离的一维计算模型

    Figure 1.  1D model for preionization.

    图 2  电晕棒与阴极间电子数密度分布情况 (a) 25, 28以及30 ns时的电子数密度分布情况; (b)预电离过程中电子数密度分布情况

    Figure 2.  Electrons number density distribution between corona tube and cathode: (a) Electron number density at 25, 28 and 30 ns; (b) electron number density during preionization process.

    图 3  高密度电子维持时间随预电离电压变化

    Figure 3.  Maintenance time of high-density electrons varies with the preionization voltage.

    图 4  不同预电离电压下功率沉积情况 (a) V = 5.2 kV; (b) V = 13 kV; (c) V = 26 kV

    Figure 4.  Energy deposition with different preionization voltage: (a) V = 5.2 kV; (b) V = 13 kV; (c) V = 26 kV.

    图 5  二维几何模型. 1代表阴极, 2代表阳极, 3代表电晕棒, 4和5代表陶瓷板, 6和7代表工作气体区域

    Figure 5.  Two-dimensional geometric model. 1 represents the cathode, 2 represents the anode, 3 represents the corona rod, 4 and 5 represent the ceramic plate, 6 and 7 represent the working gas area.

    图 6  预电离过程中电子数密度分布情况 (a) t = 25 ns时, max = 1.76×1015, min = 1.37×105; (b) t = 29 ns时, max = 4.40×1018, min = 9.28×104; (c) t = 30 ns时, max = 2.44×1019, min = 8.28×104; (d) t = 35 ns时, max = 4.40×1018, min = 9.28×104; (e) t = 45 ns时, max = 1.50×1024, min = 1.74×10–7; (f) t = 47 ns时, max = 1.62×1024, min = 1.88×10–7

    Figure 6.  Distribution of electron number density during preionization: (a) t = 25 ns, max = 1.76×1015, min = 1.37×105; (b) t = 29 ns, max = 4.40×1018, min = 9.28×104; (c) t = 30 ns, max = 2.44×1019, min = 8.28×104; (d) t = 35 ns, max = 4.40×1018, min = 9.28×104; (e) t = 45 ns, max = 1.50×1024, min = 1.74×10–7; (f) t = 47 ns, max = 1.62×1024, min = 1.88×10–7.

    图 7  不同预电离电压下自由电子数密度分布情况 (a) V = 5.2 kV时, t = 44 ns, max = 9.67×1018, min = 1.54×106; t = 47 ns, max = 7.31×1022, min = 0.009; (b) V = 13 kV时, t = 30 ns, max = 2.44×1019, min = 8.28×104; t = 44 ns, max = 1.26×1024, min =1.88×10–7; (c) V = 26 kV时, t = 23 ns, max = 3.63×1021, min = 1.45×104; t = 44 ns, max = 1.23×1025, min = 0.012

    Figure 7.  Electron number density distribution with different preionization voltage: (a) V = 5.2 kV, t = 44 ns, max = 9.67×1018, min = 1.54×106; t = 47 ns, max = 7.31×1022, min = 0.009; (b) V = 13 kV, t = 30 ns, max = 2.44×1019, min = 8.28×104; t = 44 ns, max = 1.26×1024, min = 1.88×10–7; (c) V = 26 kV, t = 23 ns, max = 3.63×1021, min = 1.45×104; t = 44 ns, max = 1.23×1025, min = 0.012.

    图 8  电子沿阴极表面的传播路径

    Figure 8.  Propagation path of electrons along the cathode surface.

    表 1  计算过程中考虑的化学反应通道, Boltz代表该反应的反应速率由玻尔兹曼方程计算得到[11,13]

    Table 1.  Reactions considered in the study, label Boltz indicates that the constant was calculated from the Boltzman equation[11,13].

    Ionization reaction Constant rate
    Ar + e → Ar* + e Boltz
    Ar + e → Ar+ + 2e Boltz
    F2 + e → F + F Boltz
    Ne + e → Ne+ + 2e Boltz
    Ne + e → Ne* + e Boltz
    Ne* + 2Ne → Ne2 + Ne 4 × 10–34 cm6/s[13]
    Ne* + e → Ne+ + 2e Boltz
    ArF* → Ar + F 1/4.2 ns[11]
    Ne2 → 2Ne + hγ'' 1/11 ns[13]
    Xe + hγ'' → Xe + e 10–16 cm2 [11]
    Ar+ → Ar
    F → F
    Ar* → Ar
    Ne+ → Ne
    Ne* → Ne
    Ne2 → 2Ne
    DownLoad: CSV
  • [1]

    Shuntaro W, Alcock A J, Leopold K E, Taylor R S 1981 Appl. Phys. Lett. 38 3Google Scholar

    [2]

    Feenstra L, Bastiaens H M J, Peters P J M, Witteman W J 1999 IEEE J. Sel. Top. Quant. 5 1515Google Scholar

    [3]

    Lin S C, Levatter J I 1979 Appl. Phys. Lett. 34 505Google Scholar

    [4]

    Levatter J I, Lin S C 1980 J. Appl. Phys. 51 210Google Scholar

    [5]

    Taylor R S 1986 Appl. Phys. B 41 1Google Scholar

    [6]

    Kushner M J 1991 IEEE Trans. Plas. Sci. 19 387Google Scholar

    [7]

    Treshchalov A, Lissovski A, Chikeev E 2002 Proc. SPIE. International Conference on Atomic and Molecular Pulsed Lasers IV 4747 253Google Scholar

    [8]

    Mathew D, Bastiaens H M J, Boller K J 2006 Appl. Phys. Lett. 88 101502Google Scholar

    [9]

    Xiong Z M, Kushner M J 2010 J. Phys. D: Apply. Phys. 43 505204Google Scholar

    [10]

    Yampolskaya S A, Yastremskii A G, Panchenko Y N 2020 IEEE J. Quan. Elec. 56 1500209Google Scholar

    [11]

    Akashi H, Sakai Y, Tagashira H 1995 J. Phys. D: Appl. Phys. 28 445Google Scholar

    [12]

    Hagelaar G J M, Pitchford L C 2005 Plas. Sour. Sci. 14 722Google Scholar

    [13]

    Razhev A M, Shchedrin A I, Kalyuzhnaya A G, Zhupikov A A 2005 Quantum Electron. 35 799Google Scholar

  • [1] Zhang Dong-He-Yu, Liu Jin-Bao, Fu Yang-Yang. Multiphysics modeling and simulations of laser-sustained plasmas. Acta Physica Sinica, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [2] Liu Zai-Hao, Liu Ying-Hua, Xu Bo-Ping, Yin Pei-Qi, Li Jing, Wang Yi-Shan, Zhao Wei, Duan Yi-Xiang, Tang Jie. Two-dimensional numerical simulation of pre-ionized direct-current glow discharge in atmospheric helium. Acta Physica Sinica, 2024, 73(1): 015101. doi: 10.7498/aps.73.20230712
    [3] Xiao Jiang-Ping, Dai Dong, Victor F. Tarasenko, Shao Tao. Mechanism of runaway electron generation in nanosecond pulsed plate-plate discharge at atmospheric-pressure air. Acta Physica Sinica, 2023, 72(10): 105201. doi: 10.7498/aps.72.20222409
    [4] Wu Jian, Han Wen, Cheng Zhen-Zhen, Yang Bin, Sun Li-Li, Wang Di, Zhu Cheng-Peng, Zhang Yong, Geng Ming-Xin, Jing Yan. Structure optimization of carbon nanotube ionization sensor based on fluid model. Acta Physica Sinica, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [5] Wang Qian, Zhao Jiang-Shan, Fan Yuan-Yuan, Guo Xin, Zhou Yi. Analysis of ArF excimer laser system discharge characteristics in different buffer gases. Acta Physica Sinica, 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [6] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [7] Wang Hao-Ruo, Zhang Chong, Zhang Hong-Chao, Shen Zhong-Hua, Ni Xiao-Wu, Lu Jian. Spatiotemporal distributions of plasma and optical field during the interaction between ultra-short laser pulses and water nanodroplets. Acta Physica Sinica, 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [8] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [9] Yang Da-Peng, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing. Temperature and electron density in femtosecond filament-induced Cu plasma. Acta Physica Sinica, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [10] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [11] Wang Qian, Zhao Jiang-Shan, Luo Shi-Wen, Zuo Du-Luo, Zhou Yi. Energy efficiency analysis of ArF excimer laser system. Acta Physica Sinica, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [12] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [13] He Shou-Jie, Ha Jing, Liu Zhi-Qiang, Ouyang Ji-Ting, He Feng. Simulation of hollow cathode discharge by combining the fluid model with a transport model for metastable Ar atoms. Acta Physica Sinica, 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [14] Zhao Peng-Cheng, Liao Cheng, Yang Dang, Zhong Xuan-Ming, Lin Wen-Bin. High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function. Acta Physica Sinica, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [15] Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei. Spectral diagnostics of electron density of plasma torch at atmospheric pressure. Acta Physica Sinica, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [16] Liu Hui, Wu Bo-Ying, E Peng, Duan Ping. Preionization of buffer chamber in ATON Hall thruster. Acta Physica Sinica, 2010, 59(10): 7203-7208. doi: 10.7498/aps.59.7203
    [17] Cheng Zhao-Gu, Li Xian-Qin, Chai Xiong-Liang, Gao Hai-Jun, Liu Cui-Qing. High power pulse CO2 laser with preionization burst-mode switch technology. Acta Physica Sinica, 2004, 53(5): 1362-1366. doi: 10.7498/aps.53.1362
    [18] Fu Xi-Quan, Guo Hong. Propagation of x-ray in the laser plasma and its effect in the diagnosis of elec tric density. Acta Physica Sinica, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [19] He Feng, Yu Wei, Lu Pei-Xiang. Field structure and electron density profile in circularly polarized femtosecond laser interaction with a linear plasma. Acta Physica Sinica, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [20] Fu Xi-Quan, Liu Cheng-Yi, Guo Hong. . Acta Physica Sinica, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
Metrics
  • Abstract views:  3598
  • PDF Downloads:  136
Publishing process
  • Received Date:  05 May 2023
  • Accepted Date:  18 August 2023
  • Available Online:  19 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回