Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization theory and application of epitaxial layer thickness uniformity in vertical MOCVD reaction chamber with multiple MO nozzles

Li Jian-Jun Cui Yu-Zheng Fu Cong-Le Qin Xiao-Wei Li Yu-Chang Deng Jun

Citation:

Optimization theory and application of epitaxial layer thickness uniformity in vertical MOCVD reaction chamber with multiple MO nozzles

Li Jian-Jun, Cui Yu-Zheng, Fu Cong-Le, Qin Xiao-Wei, Li Yu-Chang, Deng Jun
PDF
HTML
Get Citation
  • Metal organic chemical vapor deposition (MOCVD) is a key means of epitaxy of heterojunction semiconductor material, the uniformity of its epitaxial layer thickness will directly affect the yield of the product, especially the vertical cavity surface emitting device, which has a higher requirement for thickness uniformity. For the multi-MO nozzle vertical reaction cavity MOCVD, this paper combines theory and experiment to give an effective method of improving the epitaxial layer thickness uniformity through adjusting the flow rate of each MO nozzle. Firstly, each MO source nozzle is equivalent to an evaporation surface source, and an equivalent height is introduced to cover the relevant epitaxial parameters of MOCVD and the quantitative relationship between the epitaxial layer thickness and the flow rate of each MO source nozzle is established by taking three MO source nozzles as an example. After that, the model parameters are extracted by fitting through the least squares method based on the experimentally measured epitaxial layer thickness distribution results. Finally, based on the extracted model parameters, a method to optimize the epitaxial layer thickness uniformity is given. Accordingly, the AlGaAs resonant cavity structure, which is easy to accurately test the epitaxial layer thickness, is designed and epitaxially grown by using the EMCORE D125 MOCVD system. The statistical results of the mapping reflection spectra of the 4-inch epitaxial wafers are that the average wavelength of the cavity mode is 651.89 nm, with a standard deviation of 1.03 nm, and thickness uniformity of 0.16% is achieved. At the same time, epitaxial growth of GaInP quantum well structure, 4-inch epitaxial wafers mapping photoluminescence spectrum statistics for the average peak wavelength of 653.3 nm, the standard deviation of only 0.46 nm, and peak wavelength uniformity of 0.07% are achieved. Both the wavelength uniformity of cavity mode and the peak wavelength uniformity of quantum well fully meet the requirements of vertical cavity surface emitting device. The method of adjusting epitaxial layer thickness uniformity proposed in this paper is simple, effective, and fast, and it can be further extended to vertical reaction cavity MOCVD systems with more than four MO nozzles.
      Corresponding author: Li Jian-Jun, lijianjun@bjut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0209003) and the Natural Science Foundation of Beijing, China (Grant No. 4222060).
    [1]

    Manasevit H M 1968 Appl. Phys. Lett. 12 156Google Scholar

    [2]

    陆大成, 段树坤 2009 金属有机化合物气相外延基础及应用 (北京: 科学出版社) 第6页

    Lu D C, Duan S K 2009 Fundamentals and Applications of Metal Organic Compound Gas Phase Epitaxy (Beijing: Science Press) p6

    [3]

    Loke W K, Lee K H, Wang Y, Tan C S, Fitzgerald E A, Yoon S F 2018 Semicond. Sci. Technol. 33 115011Google Scholar

    [4]

    Beckers A, Fahle D, Mauder C, Kruecken T, Boyd A R, Heuken M 2018 SID Symposium Digest of Tecnnical Papers 49 601Google Scholar

    [5]

    Monge-Bartolome L, Shi B, Lai B, Boissier G, Cerutti L, Rodriguez J B, Lau K M, TourniéE 2021 Opt. Express 29 11268Google Scholar

    [6]

    Gawron W, Damiecki A, Kozniewski A, Martyniuk P, Stasiewicz K A, Madejczyk P, RutkowskiJ 2021 IEEE Sens. J. 21 4509Google Scholar

    [7]

    Achilli E, Calicchio M, Armani N, Malvisi E, Annoni F, Cornelli M, Trespidi F, Minuto A, Celi E, Abagnale G, Rizzi S, Timò G 2023 J. Cryst. Growth 607 127131Google Scholar

    [8]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 物理学报 70 026802Google Scholar

    Wang S, Wang W H, Lü J P, Ni Z H 2021 Acta Phys. Sin. 70 026802Google Scholar

    [9]

    刘天瑶, 刘灿, 刘开辉 2018 物理学报 71 108103Google Scholar

    Liu T Y, Liu C, Liu K H 2018 Acta Phys. Sin. 71 108103Google Scholar

    [10]

    李建军 2018 物理学报 67 067801Google Scholar

    Li J J 2018 Acta Phys. Sin. 67 067801Google Scholar

    [11]

    周寅利, 贾雨棽, 张星, 张建伟, 刘占超, 宁永强, 王立军 2022 物理学报 71 134204Google Scholar

    Zhou Y L, Jia Y C, Zhang X, Zhang J W, Liu Z C, Ning Y Q, Wang L J 2022 Acta Phys. Sin. 71 134204Google Scholar

    [12]

    Manasreh O 2005 Semiconductor Heterojunctions and Nanostructures (New York: The McGraw-Hill Companies, Inc

    [13]

    Heuken M, Krotkus S, Pasko S, Whear O, Wang X, Connan B, McAleese C 2021 ECS Meeting Abstracts MA2021-02 606Google Scholar

    [14]

    Su J, Armour E, Lee S M, Arif R, Papasouliotis G D 2016 Phys. Status Solidi A 213 856Google Scholar

    [15]

    Paranjpe A, Montgomery J, Lee S, Morath C 2018 SID Symposium Digest of Technical Papers 49 597Google Scholar

    [16]

    Chen R, Li J, Ya X, Deng J, Han J, Luo S, Gao L 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, China, November 1–4, 2010 pp1853–1855

    [17]

    Zheng W, Li J, Chen R, Yang W, Cui B, Han J, Deng J 2011 International Conference on Remote Sensing, Environment and Transportation Engineering Nanjing, China, June 24–29, 2011 pp5821–5823

    [18]

    Holland L, Steckelmacher W 1952 Vacuum 2 346Google Scholar

    [19]

    Angus Macleod H 2010 Thin-Film Optical Filters (Fourth Edition) (Balkema: CRC Press) pp598–600

    [20]

    McKee M A, Norris P E, Stall R A, Tompa G S, Chern C S, Noh D, Kang S S, Jasinski T J 1991 J. Cryst. Growth 107 445Google Scholar

    [21]

    Hartley H O 2012 Technometrics 3 269Google Scholar

  • 图 1  一种多个Ⅲ族MO喷嘴垂直MOCVD反应腔的简化模型

    Figure 1.  Simplified chamber model of the vertical MOCVD reactor with multiple group III MO injectors.

    图 2  对应于每个MO喷嘴的相对外延层厚度

    Figure 2.  Relative epitaxial layer thickness corresponding to each MO injector.

    图 3  Bragg cavity#20-2样品的反射谱结果 (a) 外延片中心点的反射光谱; (b) 腔模波长的mapping结果; (c) 整个外延片腔模波长的统计结果

    Figure 3.  Reflective spectrum results of Bragg cavity#20-2: (a) Reflective spectrum at wafer center point; (b) mapping results of the cavity wavelength; (c) statistic results of the cavity wavelength for the whole wafer.

    图 4  Bragg cavty#20-2样品的厚度拟合结果

    Figure 4.  Thickness fitting results of Bragg cavty#20-2.

    图 5  Bragg cavity#22样品的反射谱结果 (a) 腔模波长的mapping结果; (b) 整个外延片腔模波长的统计结果

    Figure 5.  Reflective spectrum results of Bragg cavity#22: (a) Mapping results of the cavity wavelength; (b) statistic results of the cavity wavelength for the whole wafer.

    图 6  Bragg cavity#23样品的反射谱结果 (a) 腔模波长的mapping结果; (b) 整个外延片腔模波长的统计结果

    Figure 6.  Reflective spectrum results of Bragg cavity#23: (a) Mapping results of the cavity wavelength; (b) statistic results of the cavity wavelength for the whole wafer.

    图 7  650 nm量子阱外延片中心点的PL谱

    Figure 7.  PL spectrum of 650 nm QW at wafer center point.

    图 8  RCLED QW#69样品的PL谱 (a)峰值波长的mapping结果; (b) 整个外延片峰值波长的统计结果

    Figure 8.  PL spectrum results of RCLED QW#69: (a) Mapping results of the peak wavelength; (b) statistic results of the peak wavelength for the whole wafer.

    表 1  EMCORE D125 MOCVD腔室的结构参数

    Table 1.  Structure parameters of the EMCORE D125 MOCVD chamber.

    yin/mmymid/mmyout/mm
    1032.553
    DownLoad: CSV

    表 2  用于确定外延层厚度的谐振腔结构

    Table 2.  Resonant cavity structure to determine the epitaxial layer thickness.

    Name材料厚度
    上DBR10.5×Al0.95G0.05As1/4λ
    Al0.5G0.5As1/4λ
    CavityAl0.95G0.05As1λ
    下DBR10×Al0.5G0.5As1/4λ
    Al0.95G0.05As1/4λ
    GaAs substrate
    DownLoad: CSV

    表 3  典型的外延参数

    Table 3.  Typical epitaxial parameters.

    H2
    /sccm
    AsH3
    /sccm
    V/III
    ratio
    温度
    /℃
    室压
    /Pa
    晶圆载体
    转速/(r⋅m–1)
    20000 100 60—100 600 8000 1000
    DownLoad: CSV

    表 4  典型的外延参数

    Table 4.  Typical epitaxial parameters

    Bragg
    cavity
    #20-2
    Bragg
    cavity
    #22
    Bragg
    cavity
    #23
    MO源
    喷嘴
    Min/sccm 275.5 281.3 281.3
    Mmid/sccm 123.2 125.8 125.8
    Mout/sccm 1101.3 1092.9 1092.9
    腔模
    波长的
    mapping
    结果
    $ {\overline{\lambda }}_{{\mathrm{c}}} $/nm 657.9 681.9 651.9
    σ/nm 3.7 1.52 1.03
    Uniformity/% 0.6 0.2 0.2
    λc(10%)/nm 653 681 651
    λc(90%)/nm 663 683 653
    拟合
    结果
    αin/(nm·sccm–1) 0.891 0.917 0.870
    αmid/(nm·sccm–1) 1.868 1.908 1.839
    αout/(nm·sccm–1) 0.165 0.174 0.165
    heff/mm 30.448 30.748 30.630
    DownLoad: CSV

    表 5  650 nm量子阱外延结构

    Table 5.  Epitaxial structure of 650 nm QW.

    材料 厚度/nm
    GaAs 5
    (Al0.7G0.3)0.5In0.5P 150
    (Al0.5G0.5)0.5In0.5P 35
    G0.5In0.5P 5
    (Al0.5G0.5)0.5In0.5P ×2 5
    G0.5In0.5P ×2 5
    (Al0.5G0.5)0.5In0.5P 35
    (Al0.7G0.3)0.5In0.5P 150
    GaAs substrate
    DownLoad: CSV
  • [1]

    Manasevit H M 1968 Appl. Phys. Lett. 12 156Google Scholar

    [2]

    陆大成, 段树坤 2009 金属有机化合物气相外延基础及应用 (北京: 科学出版社) 第6页

    Lu D C, Duan S K 2009 Fundamentals and Applications of Metal Organic Compound Gas Phase Epitaxy (Beijing: Science Press) p6

    [3]

    Loke W K, Lee K H, Wang Y, Tan C S, Fitzgerald E A, Yoon S F 2018 Semicond. Sci. Technol. 33 115011Google Scholar

    [4]

    Beckers A, Fahle D, Mauder C, Kruecken T, Boyd A R, Heuken M 2018 SID Symposium Digest of Tecnnical Papers 49 601Google Scholar

    [5]

    Monge-Bartolome L, Shi B, Lai B, Boissier G, Cerutti L, Rodriguez J B, Lau K M, TourniéE 2021 Opt. Express 29 11268Google Scholar

    [6]

    Gawron W, Damiecki A, Kozniewski A, Martyniuk P, Stasiewicz K A, Madejczyk P, RutkowskiJ 2021 IEEE Sens. J. 21 4509Google Scholar

    [7]

    Achilli E, Calicchio M, Armani N, Malvisi E, Annoni F, Cornelli M, Trespidi F, Minuto A, Celi E, Abagnale G, Rizzi S, Timò G 2023 J. Cryst. Growth 607 127131Google Scholar

    [8]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 物理学报 70 026802Google Scholar

    Wang S, Wang W H, Lü J P, Ni Z H 2021 Acta Phys. Sin. 70 026802Google Scholar

    [9]

    刘天瑶, 刘灿, 刘开辉 2018 物理学报 71 108103Google Scholar

    Liu T Y, Liu C, Liu K H 2018 Acta Phys. Sin. 71 108103Google Scholar

    [10]

    李建军 2018 物理学报 67 067801Google Scholar

    Li J J 2018 Acta Phys. Sin. 67 067801Google Scholar

    [11]

    周寅利, 贾雨棽, 张星, 张建伟, 刘占超, 宁永强, 王立军 2022 物理学报 71 134204Google Scholar

    Zhou Y L, Jia Y C, Zhang X, Zhang J W, Liu Z C, Ning Y Q, Wang L J 2022 Acta Phys. Sin. 71 134204Google Scholar

    [12]

    Manasreh O 2005 Semiconductor Heterojunctions and Nanostructures (New York: The McGraw-Hill Companies, Inc

    [13]

    Heuken M, Krotkus S, Pasko S, Whear O, Wang X, Connan B, McAleese C 2021 ECS Meeting Abstracts MA2021-02 606Google Scholar

    [14]

    Su J, Armour E, Lee S M, Arif R, Papasouliotis G D 2016 Phys. Status Solidi A 213 856Google Scholar

    [15]

    Paranjpe A, Montgomery J, Lee S, Morath C 2018 SID Symposium Digest of Technical Papers 49 597Google Scholar

    [16]

    Chen R, Li J, Ya X, Deng J, Han J, Luo S, Gao L 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, China, November 1–4, 2010 pp1853–1855

    [17]

    Zheng W, Li J, Chen R, Yang W, Cui B, Han J, Deng J 2011 International Conference on Remote Sensing, Environment and Transportation Engineering Nanjing, China, June 24–29, 2011 pp5821–5823

    [18]

    Holland L, Steckelmacher W 1952 Vacuum 2 346Google Scholar

    [19]

    Angus Macleod H 2010 Thin-Film Optical Filters (Fourth Edition) (Balkema: CRC Press) pp598–600

    [20]

    McKee M A, Norris P E, Stall R A, Tompa G S, Chern C S, Noh D, Kang S S, Jasinski T J 1991 J. Cryst. Growth 107 445Google Scholar

    [21]

    Hartley H O 2012 Technometrics 3 269Google Scholar

  • [1] Chang Chao, Kou Jin-Zong, Xu Xiao-Zhi. Growth of two-dimensional single crystal materials controlled by atomic steps. Acta Physica Sinica, 2023, 72(20): 208101. doi: 10.7498/aps.72.20230887
    [2] Liu Tian-Yao, Liu Can, Liu Kai-Hui. Atomic-scale manufacture of metre-sized two-dimensional single crystals by interfacial modulation. Acta Physica Sinica, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [3] Jiang Feng-Yi, Liu Jun-Lin, Zhang Jian-Li, Xu Long-Quan, Ding Jie, Wang Guang-Xu, Quan Zhi-Jue, Wu Xiao-Ming, Zhao Peng,  Liu Bi-Yu,  Li Dan, Wang Xiao-Lan, Zheng Chang-Da, Pan Shuan, Fang Fang, Mo Chun-Lan. Semiconductor yellow light-emitting diodes. Acta Physica Sinica, 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [4] Li Zhong-Hui, Luo Wei-Ke, Yang Qian-Kun, Li Liang, Zhou Jian-Jun, Dong Xun, Peng Da-Qing, Zhang Dong-Guo, Pan Lei, Li Chuan-Hao. Surface morphology improvement of homoepitaxial GaN grown on free-standing GaN substrate by metalorganic chemical vapor deposition. Acta Physica Sinica, 2017, 66(10): 106101. doi: 10.7498/aps.66.106101
    [5] Wang Bao-Zhu, Zhang Xiu-Qing, Zhang Ao-Di, Zhou Xiao-Ran, Bahadir Kucukgok, Na Lu, Xiao Hong-Ling, Wang Xiao-Liang, Ian T. Ferguson. Room-temperature thermoelectric properties of GaN thin films grown by metal organic chemical vapor deposition. Acta Physica Sinica, 2015, 64(4): 047202. doi: 10.7498/aps.64.047202
    [6] Su Shao-Jian, Wang Wei, Zhang Guang-Ze, Hu Wei-Xuan, Bai An-Qi, Xue Chun-Lai, Zuo Yu-Hua, Cheng Bu-Wen, Wang Qi-Ming. Epitaxial growth of Ge0.975Sn0.025alloy films on Si(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [7] Zhu Li-Hong, Cai Jia-Fa, Li Xiao-Ying, Deng Biao, Liu Bao-Lin. Luminous performance improvement of InGaN/GaN light-emitting diodes by modulating In content in well layers. Acta Physica Sinica, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [8] Xing Yan-Hui, Han Jun, Deng Jun, Li Jian-Jun, Xu Chen, Shen Guang-Di. Improved properties of light emitting diode by rough p-GaN grown at lower temperature. Acta Physica Sinica, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [9] Chen Yue-Ning, Xu Zheng, Zhao Su-Ling, Sun Qin-Jun, Yin Fei-Fei, Dong Yu-Hang. Research on least-squares fitting calculation of the field-effect mobility. Acta Physica Sinica, 2010, 59(11): 8113-8117. doi: 10.7498/aps.59.8113
    [10] Zhang Ying-Tang, He Meng, Chen Zi-Yu, Lü Hui-Bin. Epitaxial growth of La0.67Sr0.33MnO3 on glass by laser molecular beam epitaxy. Acta Physica Sinica, 2009, 58(3): 2002-2004. doi: 10.7498/aps.58.2002
    [11] Liu Qi-Jia, Shao Yong, Wu Zhen-Long, Xu Zhou, Xu Feng, Liu Bin, Xie Zi-Li, Chen Peng. Influence of growth temperature on properties of AlGaInN quaternary epilayers. Acta Physica Sinica, 2009, 58(10): 7194-7198. doi: 10.7498/aps.58.7194
    [12] Yang Fan, Ma Jin, Kong Ling-Yi, Luan Cai-Na, Zhu Zhen. Structural, optical and electrical properties of Ga2(1-x)In2xO3 films prepared by metalorganic chemical vapor deposition. Acta Physica Sinica, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [13] Song Yu-Xin, Yu Zhong-Yuan, Liu Yu-Min. Influences of flux and interruption on InAs/GaAs quantum dot superlattice growth. Acta Physica Sinica, 2008, 57(4): 2399-2403. doi: 10.7498/aps.57.2399
    [14] He Meng, Liu Guo-Zhen, Qiu Jie, Xing Jie, Lü Hui-Bin. Epitaxial growth of high quality TiN thin film on Si by laser molecular beam epitaxy. Acta Physica Sinica, 2008, 57(2): 1236-1240. doi: 10.7498/aps.57.1236
    [15] Li Mei-Ya, Wang Jing, Liu Jun, Yu Ben-Fang, Guo Dong-Yun, Zhao Xing-Zhong. Dependence of growth and property of YBa2Cu3O7-x coated conductors on the thickness of CeO2 buffer layer. Acta Physica Sinica, 2008, 57(5): 3132-3137. doi: 10.7498/aps.57.3132
    [16] Zhou Nai-Gen, Zhou Lang, Du Dan-Xu. Structure and formation of misfit dislocations in an epitaxial fcc film. Acta Physica Sinica, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [17] Chen Dun-Jun, Shen Bo, Zhang Kai-Xiao, Deng Yong-Zhen, Fan Jie, Zhang Rong, Shi Yi, Zheng You-Dou. Structural properties of GaN1-xPx films. Acta Physica Sinica, 2003, 52(7): 1788-1791. doi: 10.7498/aps.52.1788
    [18] Lao Ji-Jun, Hu Xiao-Ping, Yu Xiao-Jiang, Li Ge-Yang, Gu Ming-Yuan. Phase transformation of AlN in AlN/VN nanomultilayers and its effect on the mech anical properties of films. Acta Physica Sinica, 2003, 52(9): 2259-2263. doi: 10.7498/aps.52.2259
    [19] Wang Jian-Ping, Hao Yue, Peng Jun, Zhu Zuo-Yun, Zhang Yong-Hua. . Acta Physica Sinica, 2002, 51(8): 1793-1797. doi: 10.7498/aps.51.1793
    [20] Ye Jian-Song, Hu Xiao-Jun. . Acta Physica Sinica, 2002, 51(5): 1108-1112. doi: 10.7498/aps.51.1108
Metrics
  • Abstract views:  2179
  • PDF Downloads:  40
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2023
  • Accepted Date:  31 October 2023
  • Available Online:  24 November 2023
  • Published Online:  20 February 2024

/

返回文章
返回