Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gaussian mixture model based reconstruction of undirected networks

He Rui-Hui Zhang Hai-Feng Wang Huan Ma Chuang

Citation:

Gaussian mixture model based reconstruction of undirected networks

He Rui-Hui, Zhang Hai-Feng, Wang Huan, Ma Chuang
PDF
HTML
Get Citation
  • The reconstruction of network structure from data represents a significant scientific challenge in the field of complex networks, which has attracted considerable attention from the research community. The most of existing network reconstruction methods transform the problem into a series of linear equation systems, to solve the equations. Subsequently, truncation methods are used to determine the local structure of each node by truncating the solution of each equation system. However, truncation methods frequently exhibit inadequate accuracy, and lack methods of evaluating the truncatability of solutions to each system of equations, that is to say, the reconstructability of nodes. In order to address these issues, in this work an undirected network reconstruction method is proposed based on a Gaussian mixture model. In this method, a Gaussian mixture model is first used to cluster the solution results obtainedby solving a series of linear equations, and then the probabilities of the clustering results are utilized to depict the likelihood of connections between nodes. Subsequently, an index of reconstructibility is defined based on information entropy, thus the probability of connections between each node and other nodes can be used to measure the reconstructibility of each node. The proposed method is ultimately applied to undirected networks. Nodes identified with high reconstructibility are used as a training set to guide the structural inference of nodes with lower reconstrucibility, thus enhancing the reconstruction of the undirected network. The symmetrical properties of the undirected network are then employed to infer the connection probabilities of the remaining nodes with other nodes. The experiments on both synthetic and real data are conducted and a variety of methods are used for constructing linear equations and diverse dynamical models. Compared with the results from a previous truncated reconstruction method, the reconstruction outcomes are evaluated. The experimental results show that the method proposed in this work outperforms existing truncation reconstruction methods in terms of reconstruction performance, thus confirming the universality and effectiveness of the proposed method.
      Corresponding author: Ma Chuang, chuang_m@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12005001, 61973001).
    [1]

    Li X, Sun L, Ling M J, Peng Y 2023 Neurocomputing 549 126441Google Scholar

    [2]

    张彦超, 刘云, 张海峰, 程辉, 熊菲 2011 物理学报 60 050501Google Scholar

    Zhang Y C, Liu Y, Zhang H F, Cheng H, Xiong F 2011 Acta Phys. Sin. 60 050501Google Scholar

    [3]

    Gardner T S, Di Bernardo D, Lorenz D, Collins J J 2003 Science 301 102Google Scholar

    [4]

    Geier F, Timmer J, Fleck C 2007 BMC Syst. Biol. 1 1Google Scholar

    [5]

    Gao C, Fan Y, Jiang S H, Deng Y, Liu J M, Li X H 2021 IEEE Trans. Intell. Transp. Syst. 23 6509Google Scholar

    [6]

    Zhou Y M, Li S P, Kundu T, Bai X W, Qin W 2021 IEEE Trans. Network Sci. Eng. 8 2249Google Scholar

    [7]

    张海峰, 王文旭 2020 物理学报 69 088906Google Scholar

    Zhang H F, Wang W X 2020 Acta Phys. Sin. 69 088906Google Scholar

    [8]

    Wang J Y, Zhang Y J, Xu C, Li J Z, Sun J C, Xie J R, Feng L, Zhou T S, Hu Y Q 2024 Nat. Commun. 15 2849Google Scholar

    [9]

    康玲, 项冰冰, 翟素兰, 鲍中奎, 张海峰 2018 物理学报 67 198901Google Scholar

    Kang L, Xiang B B, Zhai S L, Bao Z K, Zhang H F 2018 Acta Phys. Sin. 67 198901Google Scholar

    [10]

    Xiang B B, Bao Z K, Ma C, Zhang X Y, Chen H S, Zhang H F 2018 Chaos: An Interdisciplinary Journal of Nonlinear Science 28 013122Google Scholar

    [11]

    Zhao J, Cheong K H 2024 IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 54 6Google Scholar

    [12]

    Guo Q T, Jiang X, Lei Y J, Li M, Ma Y F, Zheng Z M 2015 Phys. Rev. E 91 012822Google Scholar

    [13]

    Li D D, Qian W Q, Sun X X, Han D, Sun M 2023 Appl. Math. Comput. 458 128233

    [14]

    Lv X J, Fan D M, Li Q, Wang J L, Zhou L 2023 Physica A 627 129131Google Scholar

    [15]

    徐翔, 朱承, 朱先强 2021 物理学报 70 088901Google Scholar

    Xu X, Zhu C, Zhu X Q 2021 Acta Phys. Sin. 70 088901Google Scholar

    [16]

    Wang H, Ma C, Chen H S, Lai Y C, Zhang H F 2022 Nat. Commun. 13 3043Google Scholar

    [17]

    Ma C, Wang H, Zhang H F 2023 Europhys. Lett. 144 21002Google Scholar

    [18]

    杨浦, 郑志刚 2012 物理学报 61 120508Google Scholar

    Yang P, Zheng Z G 2012 Acta Phys. Sin. 61 120508Google Scholar

    [19]

    Ma C, Chen H S, Li X, Lai Y C, Zhang H F 2020 SIAM J. Appl. Dyn. Syst. 19 124Google Scholar

    [20]

    Shen Z S, Wang W X, Fan Y, Di Z R, Lai Y C 2014 Nat. Commun. 5 4323Google Scholar

    [21]

    Liu Q M, Ma C, Xiang B B, Chen H S, Zhang H F 2019 IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 51 4639Google Scholar

    [22]

    Zhang A B, Fan Y, Di Z R, Zeng A 2023 Chaos, Solitons Fractals 173 113712Google Scholar

    [23]

    Wang W X, Lai Y C, Grebogi C, Ye J P 2011 Phys. Rev. X 1 021021

    [24]

    Li G J, Li N, Liu S H, Wu X Q 2019 Chaos: An Interdisciplinary Journal of Nonlinear Science 29 053117Google Scholar

    [25]

    Mei G F, Wu X Q, Wang Y F, Hu M, Lu J A, Chen G R 2017 IEEE Trans. Cybern. 48 754Google Scholar

    [26]

    Pandey P K, Adhikari B 2017 IEEE Trans. Knowl. Data Eng. 29 2072Google Scholar

    [27]

    Pandey P K, Adhikari B, Mazumdar M, Ganguly N 2020 IEEE Trans. Knowl. Data Eng. 34 3377Google Scholar

    [28]

    Ma C, Chen H S, Lai Y C, Zhang H F 2018 Phys. Rev. E 97 022301

    [29]

    Zhang Z, Zhao Y, Liu J, Wang S, Tao R, Xin R, Zhang J 2019 Appl. Network Sci. 4 1Google Scholar

    [30]

    Xu X, Zhu X Q, Zhu C 2023 Complex Intell. Syst. 9 3131Google Scholar

    [31]

    Mignone P, Pio G, D’ Elia D, Ceci M 2020 Bioinformatics 36 1553Google Scholar

    [32]

    Reynolds D A 2009 Encyclopedia of Biometrics 741 659

    [33]

    Wang Y, Chakrabarti D, Wang C X, Faloutsos C 2003 In 22nd International Symposium on Reliable Distributed Systems Florence, Italy, October 6–8, 2003 pp25–34

    [34]

    Perotti J I, Tessone C J, Clauset A, Caldarelli G 2018 arXiv: 1806.07005 (Physics and Society

    [35]

    Erds P, Rényi A 1960 Publ. Math. Inst. Hungar. Acad. Sci. 5 17

    [36]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [37]

    Barabási A L, Albert R 1999 Science 286 509Google Scholar

    [38]

    Li J W, Shen Z S, Wang W X, Grebogi C, Lai Y C 2017 Phys. Rev. E 95 032303

  • 图 1  网络重构结果 (a)和(b)分别为求解两组一系列线性方程组的求解结果, 红色点表示存在连接关系的求解结果, 蓝色点表示不存在连接关系的求解结果; (c)为(a)中红色方框内节点求解结果的直方图分布; (d)为(b)中红色方框内节点求解结果的直方图分布. (a)和(b)中的横坐标表示网络中节点编号, 纵坐标表示线性方程组的求解结果, (c)和(d)中的横坐标表示线性方程组的求解结果, 纵坐标表示分布的数量

    Figure 1.  Network reconstruction results: (a) and (b) represent two different solution results for solving a series of linear equation systems, respectively, with red dots indicating solutions with connectivity and blue dots indicating solutions without connectivity; (c) represents histogram distribution of the solution result for the node within the red box in panel (a); (d) represents histogram distribution of the solution result for the node within the red box in panel (b). The horizontal axes in panels (a) and (b) represent the node number in the network, the vertical axes represent the solution results of the linear equation system, the horizontal axes in panels (c) and (d) represent the solution results of the linear equation system, and the vertical axes represent the number of distributions.

    图 2  $ {H(i)} $与节点重构效果的关系 横坐标表示节点编号, 左纵坐标表示节点的可重构性指标负值$ {-H(i)} $, 右纵坐标表示重构效果F1

    Figure 2.  The relationship between $ {H(i)} $ and node reconstruction effect: The horizontal axis represents the node number, the left vertical axis represents the negative value of node’s reconfigurability index $ {-H(i)} $, and the right vertical axis represents the reconstruction effect F1

    图 3  UNRGMM与TTM在合成网络中的重构效果比较 (a)和(d)为ER网络上的重构效果; (b)和(e)为WS网络上的重构效果; (c)和(f)为BA网络上的重构效果. 误差棒表示10次独立实验的标准差

    Figure 3.  Comparison of reconstruction effects between UNRGMM and TTM in synthetic networks: (a) and (d) represent the reconstruction effect on the ER network; (b) and (e) represent the reconstruction effect on the WS network; (c) and (f) represent the reconstruction effect on the BA network. The error bar represents standard deviation over ten independent trials.

    图 4  UNRGMM与TTM在噪声干扰下的重构效果 (a)和(d)为ER网络上的重构效果; (b)和(e)为WS网络上的重构效果; (c)和(f)为BA网络上的重构效果. 误差棒表示10次独立实验的标准差

    Figure 4.  The reconstruction effect of UNRGMM and TTM under noise interference: (a) and (d) represent the reconstruction effect on the ER network; (b) and (e) represent the reconstruction effect on the WS network; (c) and (f) represent the reconstruction effect on the BA network. The error bar represents standard deviation over ten independent trials.

    图 5  UNRGMM与TTM在不同平均度的合成网络中的重构效果 (a)和(d)为ER网络上的重构效果; (b)和(e)为WS网络上的重构效果; (c)和(f)为BA网络上的重构效果. 误差棒表示10次独立实验的标准差

    Figure 5.  The reconstruction effect of UNRGMM and TTM in synthetic networks with different average degrees: (a) and (d) represent the reconstruction effect on the ER network; (b) and (e) represent the reconstruction effect on the WS network; (c) and (f) represent the reconstruction effect on the BA network. The error bar represents standard deviation over ten independent trials.

    图 6  UNRGMM与TTM在不同动力学下的重构效果 (a)和(d)为Ising动力学的重构效果; (b)和(e)为Game动力学的重构效果; (c)和(f)为Majority动力学的重构效果. 误差棒表示10次独立实验的标准差

    Figure 6.  The reconstruction effect of UNRGMM and TTM under different dynamics: (a) and (d) represent the reconstruction effect for Ising dynamics; (b) and (e) represent the reconstruction effect for Game dynamics; (c) and (f) represent the reconstruction effect for Majority dynamics. The error bar represents standard deviation over ten independent trials.

    表 1  真实网络结构特征NE分别是节点和连边数量; ${\langle k\rangle}$表示平均度; Cr分别是聚类系数和分类系数; H是异质性程度, 定义为${H= {\langle k^2\rangle}/{{\langle k\rangle}^{2}}}$

    Table 1.  Real networks structure characteristics. N and E are the number of nodes and edges, respectively; ${\langle k\rangle}$ indicates the average degree; C and r are clustering coefficients and classification coefficients, respectively; H is the degree heterogeneity, defined as ${H= {\langle k^2\rangle}/{{\langle k\rangle}^{2}}}$.

    真实网络NE$ {\langle k\rangle} $CrH
    Karate34784.5880.59–0.4761.693
    Dolphins621595.1290.29–0.0711.326
    Football11561310.6610.40.1621.007
    Polbooks1054418.400.49–0.1281.421
    DownLoad: CSV

    表 2  UNRGMM与TTM在真实网络中的重构结果比较

    Table 2.  Comparison of reconstruction results between UNRGMM and TTM on real networks.

    真实网络 TTM UNRGMM
    F1 Accuracy F1 Accuracy
    Karate 0.723 0.889 0.989 0.997
    Dolphins 0.776 0.951 0.970 0.995
    Football 0.484 0.874 0.774 0.963
    Polbooks 0.571 0.896 0.838 0.978
    DownLoad: CSV
  • [1]

    Li X, Sun L, Ling M J, Peng Y 2023 Neurocomputing 549 126441Google Scholar

    [2]

    张彦超, 刘云, 张海峰, 程辉, 熊菲 2011 物理学报 60 050501Google Scholar

    Zhang Y C, Liu Y, Zhang H F, Cheng H, Xiong F 2011 Acta Phys. Sin. 60 050501Google Scholar

    [3]

    Gardner T S, Di Bernardo D, Lorenz D, Collins J J 2003 Science 301 102Google Scholar

    [4]

    Geier F, Timmer J, Fleck C 2007 BMC Syst. Biol. 1 1Google Scholar

    [5]

    Gao C, Fan Y, Jiang S H, Deng Y, Liu J M, Li X H 2021 IEEE Trans. Intell. Transp. Syst. 23 6509Google Scholar

    [6]

    Zhou Y M, Li S P, Kundu T, Bai X W, Qin W 2021 IEEE Trans. Network Sci. Eng. 8 2249Google Scholar

    [7]

    张海峰, 王文旭 2020 物理学报 69 088906Google Scholar

    Zhang H F, Wang W X 2020 Acta Phys. Sin. 69 088906Google Scholar

    [8]

    Wang J Y, Zhang Y J, Xu C, Li J Z, Sun J C, Xie J R, Feng L, Zhou T S, Hu Y Q 2024 Nat. Commun. 15 2849Google Scholar

    [9]

    康玲, 项冰冰, 翟素兰, 鲍中奎, 张海峰 2018 物理学报 67 198901Google Scholar

    Kang L, Xiang B B, Zhai S L, Bao Z K, Zhang H F 2018 Acta Phys. Sin. 67 198901Google Scholar

    [10]

    Xiang B B, Bao Z K, Ma C, Zhang X Y, Chen H S, Zhang H F 2018 Chaos: An Interdisciplinary Journal of Nonlinear Science 28 013122Google Scholar

    [11]

    Zhao J, Cheong K H 2024 IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 54 6Google Scholar

    [12]

    Guo Q T, Jiang X, Lei Y J, Li M, Ma Y F, Zheng Z M 2015 Phys. Rev. E 91 012822Google Scholar

    [13]

    Li D D, Qian W Q, Sun X X, Han D, Sun M 2023 Appl. Math. Comput. 458 128233

    [14]

    Lv X J, Fan D M, Li Q, Wang J L, Zhou L 2023 Physica A 627 129131Google Scholar

    [15]

    徐翔, 朱承, 朱先强 2021 物理学报 70 088901Google Scholar

    Xu X, Zhu C, Zhu X Q 2021 Acta Phys. Sin. 70 088901Google Scholar

    [16]

    Wang H, Ma C, Chen H S, Lai Y C, Zhang H F 2022 Nat. Commun. 13 3043Google Scholar

    [17]

    Ma C, Wang H, Zhang H F 2023 Europhys. Lett. 144 21002Google Scholar

    [18]

    杨浦, 郑志刚 2012 物理学报 61 120508Google Scholar

    Yang P, Zheng Z G 2012 Acta Phys. Sin. 61 120508Google Scholar

    [19]

    Ma C, Chen H S, Li X, Lai Y C, Zhang H F 2020 SIAM J. Appl. Dyn. Syst. 19 124Google Scholar

    [20]

    Shen Z S, Wang W X, Fan Y, Di Z R, Lai Y C 2014 Nat. Commun. 5 4323Google Scholar

    [21]

    Liu Q M, Ma C, Xiang B B, Chen H S, Zhang H F 2019 IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 51 4639Google Scholar

    [22]

    Zhang A B, Fan Y, Di Z R, Zeng A 2023 Chaos, Solitons Fractals 173 113712Google Scholar

    [23]

    Wang W X, Lai Y C, Grebogi C, Ye J P 2011 Phys. Rev. X 1 021021

    [24]

    Li G J, Li N, Liu S H, Wu X Q 2019 Chaos: An Interdisciplinary Journal of Nonlinear Science 29 053117Google Scholar

    [25]

    Mei G F, Wu X Q, Wang Y F, Hu M, Lu J A, Chen G R 2017 IEEE Trans. Cybern. 48 754Google Scholar

    [26]

    Pandey P K, Adhikari B 2017 IEEE Trans. Knowl. Data Eng. 29 2072Google Scholar

    [27]

    Pandey P K, Adhikari B, Mazumdar M, Ganguly N 2020 IEEE Trans. Knowl. Data Eng. 34 3377Google Scholar

    [28]

    Ma C, Chen H S, Lai Y C, Zhang H F 2018 Phys. Rev. E 97 022301

    [29]

    Zhang Z, Zhao Y, Liu J, Wang S, Tao R, Xin R, Zhang J 2019 Appl. Network Sci. 4 1Google Scholar

    [30]

    Xu X, Zhu X Q, Zhu C 2023 Complex Intell. Syst. 9 3131Google Scholar

    [31]

    Mignone P, Pio G, D’ Elia D, Ceci M 2020 Bioinformatics 36 1553Google Scholar

    [32]

    Reynolds D A 2009 Encyclopedia of Biometrics 741 659

    [33]

    Wang Y, Chakrabarti D, Wang C X, Faloutsos C 2003 In 22nd International Symposium on Reliable Distributed Systems Florence, Italy, October 6–8, 2003 pp25–34

    [34]

    Perotti J I, Tessone C J, Clauset A, Caldarelli G 2018 arXiv: 1806.07005 (Physics and Society

    [35]

    Erds P, Rényi A 1960 Publ. Math. Inst. Hungar. Acad. Sci. 5 17

    [36]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [37]

    Barabási A L, Albert R 1999 Science 286 509Google Scholar

    [38]

    Li J W, Shen Z S, Wang W X, Grebogi C, Lai Y C 2017 Phys. Rev. E 95 032303

  • [1] Zhang Zan, Huang Bei-Ju, Chen Hong-Da. Computational reconstruction on-chip spectrometer based on reconfigurable silicon photonic filters. Acta Physica Sinica, 2024, 73(14): 140701. doi: 10.7498/aps.73.20240224
    [2] Luo Kai-Ming, Guan Shu-Guang, Zou Yong. Reconstruction of simplex structures based on phase synchronization dynamics. Acta Physica Sinica, 2024, 73(12): 120501. doi: 10.7498/aps.73.20240334
    [3] Liu Yu-Hang, Lin Tong, Li Shao-Bo, Yu Wen-Qi, Ma Xiang, Liang Xiao-Dong, Yun Bin-Feng. Reconfigurable optical filter based on microring resonator assisted by tunable Sagnac reflector. Acta Physica Sinica, 2023, 72(8): 084208. doi: 10.7498/aps.72.20222384
    [4] Gu Tong-Kai, Wang Lan-Lan, Guo Yang, Jiang Wei-Tao, Shi Yong-Sheng, Yang Shuo, Chen Jin-Ju, Liu Hong-Zhong. Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk. Acta Physica Sinica, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [5] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [6] Wang Ming-Zhao, Wang Shao-Jie, Xu He-Xiu. Reconfigurable linear polarization conversion based on spatial-order kirigami metasurfaces. Acta Physica Sinica, 2021, 70(15): 154101. doi: 10.7498/aps.70.20210188
    [7] Zhang Na, Zhao Jian-Min, Chen Ke, Zhao Jun-Ming, Jiang Tian, Feng Yi-Jun. Independent dual-beam control based on programmable coding metasurface. Acta Physica Sinica, 2021, 70(17): 178102. doi: 10.7498/aps.70.20210344
    [8] Xu Xiang, Zhu Cheng, Zhu Xian-Qiang. Discrete data based local-to-global network reconstruction algorithm. Acta Physica Sinica, 2021, 70(8): 088901. doi: 10.7498/aps.70.20201756
    [9] Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong. A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm. Acta Physica Sinica, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [10] Tan Suo-Yi, Qi Ming-Ze, Wu Jun, Lu Xin. Link predictability of complex network from spectrum perspective. Acta Physica Sinica, 2020, 69(8): 088901. doi: 10.7498/aps.69.20191817
    [11] Zhang Hai-Feng, Wang Wen-Xu. Complex system reconstruction. Acta Physica Sinica, 2020, 69(8): 088906. doi: 10.7498/aps.69.20200001
    [12] Yu Hui-Cun, Cao Xiang-Yu, Gao Jun, Yang Huan-Huan, Han Jiang-Feng, Zhu Xue-Wen, Li Tong. Broadband reconfigurable reflective polarization convertor. Acta Physica Sinica, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [13] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [14] Xu Ming, Xu Chuan-Yun, Cao Ke-Fei. Effect of degree correlations on controllability of undirected networks. Acta Physica Sinica, 2017, 66(2): 028901. doi: 10.7498/aps.66.028901
    [15] Liang Xiao, Qian Zhi-Hong, Tian Hong-Liang, Wang Xue. Markov decision model based handoff selection algorithm for heterogeneous wireless networks. Acta Physica Sinica, 2016, 65(23): 236402. doi: 10.7498/aps.65.236402
    [16] Xie Wen-Ke, Gao Qiong, Ma Hao-Tong, Wei Wen-Jian, Jiang Wen-Jie. Zernike modal wavefront reconstruction algorithm based on model selection. Acta Physica Sinica, 2015, 64(14): 144201. doi: 10.7498/aps.64.144201
    [17] Huang Jin-Wang, Li Guang-Ming, Feng Jiu-Chao, Jin Jian-Xiu. A chaotic signal reconstruction algorithm in wireless sensor networks. Acta Physica Sinica, 2014, 63(14): 140502. doi: 10.7498/aps.63.140502
    [18] Li Li, Zheng Qing-Hua, Guan Xiao-Hong. A topological reconfiguration method for enhancing networks survivability with limited resources. Acta Physica Sinica, 2014, 63(17): 170201. doi: 10.7498/aps.63.170201
    [19] Chen Di-Yi, Liu Ye, Ma Xiao-Yi. Parameter joint estimation of phase space reconstruction in chaotic time series based on radial basis function neural networks. Acta Physica Sinica, 2012, 61(10): 100501. doi: 10.7498/aps.61.100501
    [20] Liang Yu, Guo Li-Xin, Wang Rui. Investigation on the reconstruction of roughsurface with hybrid method. Acta Physica Sinica, 2011, 60(3): 034102. doi: 10.7498/aps.60.034102
Metrics
  • Abstract views:  1110
  • PDF Downloads:  38
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2024
  • Accepted Date:  22 July 2024
  • Available Online:  05 August 2024
  • Published Online:  05 September 2024

/

返回文章
返回