Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modulation of half-band-gap turn-on electroluminescence in Rubrene/C60 based OLEDs by electron injection layer mobility

Peng Teng Wang Hui-Yao Zhao Xi Liu Jun-Hong Wang Bo Wang Jing-Jing Zhou Yin-Qiong Zhang Ke-Yi Yang Jun Xiong Zu-Hong

Citation:

Modulation of half-band-gap turn-on electroluminescence in Rubrene/C60 based OLEDs by electron injection layer mobility

Peng Teng, Wang Hui-Yao, Zhao Xi, Liu Jun-Hong, Wang Bo, Wang Jing-Jing, Zhou Yin-Qiong, Zhang Ke-Yi, Yang Jun, Xiong Zu-Hong
cstr: 32037.14.aps.73.20240864
PDF
HTML
Get Citation
  • Half-band-gap turn-on characteristic is a unique photoelectric property of organic light-emitting diodes (OLEDs), and has advantage in the development of low driving voltage devices. But the physical mechanism that the electron injection layer (EIL) affects the half-band-gap turn-on characteristic has not been reported. In this work, the change from half-band-gap turn-on electroluminescence (EL) to sub-band-gap turn-on EL to normal turn-on EL is observed by regulating the electron mobility of EIL in Rubrene/C60 based devices. Three sets of devices are fabricated by using BCP (~10–3 cm2/(V·s), Dev. 1), Bphen (~10–4 cm2/(V·s), Dev. 2) and TPBi (~10–5 cm2/(V·s), Dev. 3) as EIL materials. By measuring the I-B-V curves of devices at room temperature, it is found that the turn-on voltages of devices obviously increase by an order of magnitude with electron mobility of EIL decreasing. Specifically, the turn-on voltage of Dev. 1, Dev. 2, and Dev. 3 exhibit the physical phenomena of half-band-gap turn-on (1.1 V), sub-band-gap turn-on (2.1 V) and normal turn-on (4.1 V) properties, respectively. The magneto-electroluminescence (MEL) results show that the half-band-gap turn-on characteristic of high EIL electron mobility (Dev. 1) is attributed to the triplet-triplet annihilation (TTA, T1,Rb + T1,Rb → S1,Rb + S0) process which can effectively reduce the turn-on voltage. However, the half-band-gap turn-on characteristic is not observed in the devices (Dev. 2 and Dev. 3) with low carrier mobility, which can be reasonably explained by a higher voltage that is applied to the EIL with low electron mobility in order to inject more electrons. The higher voltage offsets the reduced turn-on voltage of the TTA process, resulting in Dev. 2 and Dev. 3 with sub-band-gap turn-on and normal turn-on, respectively. In addition, although the TTA process is observed in all three devices, the TTA process is stronger and the EL is higher in Dev. 1 with high EIL electron mobility. This is because a large number of triplet Rubrene/C60 exciplex states (EX3) are formed at the Rubrene/C60 interface, enhancing the Dexter energy transfer (DET, EX3 → T1,Rb) process from EX3 to triplet exciton of Rubrene (T1,Rb). That is, Dev. 1 exhibits stronger TTA process and higher EL due to the presence of a large number of T1,Rb excitons formed by DET process than Dev. 2 and Dev. 3. Furthermore, by measuring the I-V curves of devices at low temperature, it is found that the reduced carrier mobility caused by lowering operational temperature increases the turn-on voltages of these three devices. The significantly different increases in the turn-on voltages of Dev. 1–3 at the same low temperature are due to the different influences of temperature on the electron mobility of EIL. The tradeoff between the decrease of carrier mobility and the extension of exciton lifetime makes the MEL curves present different temperature-dependent behaviors. This work further deepens the understanding of the influence of EIL electron mobility on the turn-on voltage and the related physical microscopic mechanism in Rubrene/C60 devices.
      Corresponding author: Xiong Zu-Hong, zhxiong@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12474074).
    [1]

    D’Andrade B W, Esler J, Lin C, Adamovich V, Xia S, Weaver M S, Kwong R, Brown J J 2008 Proc SPIE 7051 70510QGoogle Scholar

    [2]

    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K 2009 Nature 459 234Google Scholar

    [3]

    Helander M G, Wang Z B, Qiu J, Greiner M T, Puzzo D P, Liu Z W, Lu Z H 2011 Science 332 944Google Scholar

    [4]

    Komoda T, Yamae K, Kittichungchit V, Tsuji H, Ide N 2012 J. Photopolym. Sci. Technol. 25 321Google Scholar

    [5]

    Pandey A K, Nunzi J M 2007 Adv. Mater. 19 3613Google Scholar

    [6]

    Engmann S, Barito A J, Bittle E G, Giebink N C, Richter L J, Gundlach D J 2019 Nat. Commun. 10 227Google Scholar

    [7]

    Chen Q S, Jia W Y, Chen L X, Yuan D, Zou Y, Xiong Z H 2016 Sci. Rep. 6 25331Google Scholar

    [8]

    Tu L Y, Tang X T, Wang Y, Zhao X, Ma C H, Ye S N, Xiong Z H 2021 Phys. Rev. Appl. 16 064002Google Scholar

    [9]

    Xiang C Y, Peng C, Chen Y, So F 2015 Small 11 5439Google Scholar

    [10]

    He S J, Lu Z H 2016 J. Photonics Energy 6 036001Google Scholar

    [11]

    Tang X T, Hu Y Q, Jia W Y, Pan R H, Deng J Q, He Z H, Xiong Z H 2018 ACS Appl. Mater. Interfaces 10 1948Google Scholar

    [12]

    Yasuda T, Yamaguchi Y, Zou D C, Tsutsui T 2002 Jpn. J. Appl. Phys. 41 5626Google Scholar

    [13]

    Wang Y P, Li B, Jiang C, Fang Y, Bai P, Wang Y 2021 J. Phys. Chem. C 125 16753Google Scholar

    [14]

    Hung W Y, Ke T H, Lin Y T, Wu C C, Hung T H, Chao T C, Wong K T, Wu C I 2006 Appl. Phys. Lett. 88 064102Google Scholar

    [15]

    Niu L B, Zhang Y, Chen L J, Zhang Q M, Guan Y X 2020 Org. Electron. 87 105971Google Scholar

    [16]

    Jin P F, Zhou Z Y, Wang H, Hao J J, Chen R, Wang J Y, Zhang C 2022 J. Phys. Chem. Lett. 13 2516Google Scholar

    [17]

    吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 物理学报 71 227201Google Scholar

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar

    [18]

    Bai J W, Chen P, Lei Y L, Zhang Y, Zhang Q M 2014 Org. Electron. 15 169Google Scholar

    [19]

    Piland G B, Burdett J J, Kurunthu D, Bardeen C J 2013 J. Phys. Chem. C 117 1224Google Scholar

    [20]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

    [21]

    Geng R, Subedi R C, Luong H M, Pham M T, Huang W C, Li X G, Hong K L, Shao M, Xiao K, Hornak L A, Nguyen T D 2018 Phys. Rev. Lett. 120 086602Google Scholar

    [22]

    Hosokawa C, Tokailin H, Higashi H, Kusumoto T 1992 Appl. Phys. Lett. 60 1220Google Scholar

    [23]

    黄维, 密保秀, 高志强 2011 有机电子学 (北京: 科学出版社) 第300页

    Huang W, Mi B X, Gao Z Q 2011 Organic Electronic (Beijing: Science Press) p300

    [24]

    Park B, In I, Gopalan P, Evans P G, King S, Lyman P F 2008 Appl. Phys. Lett. 92 133302Google Scholar

    [25]

    Kobayashi S, Takenobu T, Mori S, Fujiwara A, Iwasa Y 2003 Sci. Technol. Adv. Mater. 4 371Google Scholar

    [26]

    Peng Q, Chen P, Li F 2013 Appl. Phys. Lett. 102 023301Google Scholar

    [27]

    Qiao X F, Yuan P S, Ma D G, Ahamad T, Alshehri S M 2017 Org. Electron. 46 1Google Scholar

    [28]

    Lei Y L, Zhang Y, Liu R, Chen P, Song Q L 2009 Org. Electron. 10 889Google Scholar

    [29]

    Liu Y, Wu X M, Zhao Z H, Gao J N, Zhan J, Rui H S, Lin X, Zhang N, Hua Y L, Yin S G 2017 Appl. Surf. Sci. 413 302Google Scholar

    [30]

    Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H 2020 Adv. Funct. Mater. 5 765Google Scholar

    [31]

    王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 物理学报 71 217201Google Scholar

    Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201Google Scholar

    [32]

    Wang Y, Ning Y R, Wu F G, Chen J, Chen X L, Xiong Z H 2022 Adv. Funct. Mater. 32 2202882Google Scholar

    [33]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W R, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [34]

    Peng Q M, Li A W, Fan Y X, Chen P, Li F 2014 J. Mater. Chem. C 2 6264Google Scholar

    [35]

    陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪 2015 物理学报 64 177801Google Scholar

    Chen Q S, Yuan D, Jia W Y, Chen L X, Zou Y, Xiang J, Chen Y B, Zhang Q M, Xiong Z H 2015 Acta Phys. Sin. 64 177801Google Scholar

  • 图 1  (a) 器件1—3的能级结构示意图; (b) 器件1—3的归一化EL谱; (c), (d) 室温下器件1—3的亮度-电压特性曲线和电流-电压特性曲线

    Figure 1.  (a) Energy level diagram of device 1–3; (b) normalized EL spectra of devices 1–3; (c), (d) the brightness-voltage and current-voltage curves of devices 1–3 at room temperature.

    图 2  Rubrene/C60型器件中激发态的微观演化过程, 其中插图分别展示了C60和Rubrene的化学分子结构

    Figure 2.  Microscopic evolution processes of excited states occurring in the Rubrene/C60 device. The inset shows the chemical molecular structure of C60 and Rubrene.

    图 3  (a)—(c) 器件1—3的微观机理示意图

    Figure 3.  (a)–(c) The schematic diagram of microscopic mechanisms occurring in devices 1–3.

    图 4  (a)—(c) 室温下器件1—3的MEL曲线

    Figure 4.  (a)–(c) The MEL curves of devices 1–3 at room temperature.

    图 5  (a)—(c) 器件1—3在不同温度下的电流-电压特性曲线; (d) 在300 K和100 K下器件1—3中电荷载流子的运输和复合过程的微观示意图

    Figure 5.  (a)–(c) Current-voltage curves of devices 1–3 at different operating temperatures; (d) schematic diagram of charge-carrier transport and recombination in devices 1–3 at 300 K and 100 K.

    图 6  (a)—(c) 电流500 µA时器件1—3中温度依赖的MEL曲线

    Figure 6.  (a)–(c) Temperature-dependent MEL curves of devices 1–3 at bias current of 500 µA.

    表 1  器件1—3的具体结构

    Table 1.  Specific structure of devices 1–3.

    Device nameStructure
    Dev. 1ITO/PEDOT:PSS/Rubrene (35 nm)/BCP (3 nm)/C60 (50 nm)/BCP (10 nm)/LiF (1 nm)/Al (100 nm)
    Dev. 2ITO/PEDOT:PSS/Rubrene (35 nm)/BCP (3 nm)/C60 (50 nm)/Bphen (10 nm)/LiF (1 nm)/Al (100 nm)
    Dev. 3ITO/PEDOT:PSS/Rubrene (35 nm)/BCP (3 nm)/C60 (50 nm)/TPBi (10 nm)/LiF (1 nm)/Al (100 nm)
    DownLoad: CSV
  • [1]

    D’Andrade B W, Esler J, Lin C, Adamovich V, Xia S, Weaver M S, Kwong R, Brown J J 2008 Proc SPIE 7051 70510QGoogle Scholar

    [2]

    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K 2009 Nature 459 234Google Scholar

    [3]

    Helander M G, Wang Z B, Qiu J, Greiner M T, Puzzo D P, Liu Z W, Lu Z H 2011 Science 332 944Google Scholar

    [4]

    Komoda T, Yamae K, Kittichungchit V, Tsuji H, Ide N 2012 J. Photopolym. Sci. Technol. 25 321Google Scholar

    [5]

    Pandey A K, Nunzi J M 2007 Adv. Mater. 19 3613Google Scholar

    [6]

    Engmann S, Barito A J, Bittle E G, Giebink N C, Richter L J, Gundlach D J 2019 Nat. Commun. 10 227Google Scholar

    [7]

    Chen Q S, Jia W Y, Chen L X, Yuan D, Zou Y, Xiong Z H 2016 Sci. Rep. 6 25331Google Scholar

    [8]

    Tu L Y, Tang X T, Wang Y, Zhao X, Ma C H, Ye S N, Xiong Z H 2021 Phys. Rev. Appl. 16 064002Google Scholar

    [9]

    Xiang C Y, Peng C, Chen Y, So F 2015 Small 11 5439Google Scholar

    [10]

    He S J, Lu Z H 2016 J. Photonics Energy 6 036001Google Scholar

    [11]

    Tang X T, Hu Y Q, Jia W Y, Pan R H, Deng J Q, He Z H, Xiong Z H 2018 ACS Appl. Mater. Interfaces 10 1948Google Scholar

    [12]

    Yasuda T, Yamaguchi Y, Zou D C, Tsutsui T 2002 Jpn. J. Appl. Phys. 41 5626Google Scholar

    [13]

    Wang Y P, Li B, Jiang C, Fang Y, Bai P, Wang Y 2021 J. Phys. Chem. C 125 16753Google Scholar

    [14]

    Hung W Y, Ke T H, Lin Y T, Wu C C, Hung T H, Chao T C, Wong K T, Wu C I 2006 Appl. Phys. Lett. 88 064102Google Scholar

    [15]

    Niu L B, Zhang Y, Chen L J, Zhang Q M, Guan Y X 2020 Org. Electron. 87 105971Google Scholar

    [16]

    Jin P F, Zhou Z Y, Wang H, Hao J J, Chen R, Wang J Y, Zhang C 2022 J. Phys. Chem. Lett. 13 2516Google Scholar

    [17]

    吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 物理学报 71 227201Google Scholar

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar

    [18]

    Bai J W, Chen P, Lei Y L, Zhang Y, Zhang Q M 2014 Org. Electron. 15 169Google Scholar

    [19]

    Piland G B, Burdett J J, Kurunthu D, Bardeen C J 2013 J. Phys. Chem. C 117 1224Google Scholar

    [20]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

    [21]

    Geng R, Subedi R C, Luong H M, Pham M T, Huang W C, Li X G, Hong K L, Shao M, Xiao K, Hornak L A, Nguyen T D 2018 Phys. Rev. Lett. 120 086602Google Scholar

    [22]

    Hosokawa C, Tokailin H, Higashi H, Kusumoto T 1992 Appl. Phys. Lett. 60 1220Google Scholar

    [23]

    黄维, 密保秀, 高志强 2011 有机电子学 (北京: 科学出版社) 第300页

    Huang W, Mi B X, Gao Z Q 2011 Organic Electronic (Beijing: Science Press) p300

    [24]

    Park B, In I, Gopalan P, Evans P G, King S, Lyman P F 2008 Appl. Phys. Lett. 92 133302Google Scholar

    [25]

    Kobayashi S, Takenobu T, Mori S, Fujiwara A, Iwasa Y 2003 Sci. Technol. Adv. Mater. 4 371Google Scholar

    [26]

    Peng Q, Chen P, Li F 2013 Appl. Phys. Lett. 102 023301Google Scholar

    [27]

    Qiao X F, Yuan P S, Ma D G, Ahamad T, Alshehri S M 2017 Org. Electron. 46 1Google Scholar

    [28]

    Lei Y L, Zhang Y, Liu R, Chen P, Song Q L 2009 Org. Electron. 10 889Google Scholar

    [29]

    Liu Y, Wu X M, Zhao Z H, Gao J N, Zhan J, Rui H S, Lin X, Zhang N, Hua Y L, Yin S G 2017 Appl. Surf. Sci. 413 302Google Scholar

    [30]

    Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H 2020 Adv. Funct. Mater. 5 765Google Scholar

    [31]

    王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 物理学报 71 217201Google Scholar

    Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201Google Scholar

    [32]

    Wang Y, Ning Y R, Wu F G, Chen J, Chen X L, Xiong Z H 2022 Adv. Funct. Mater. 32 2202882Google Scholar

    [33]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W R, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [34]

    Peng Q M, Li A W, Fan Y X, Chen P, Li F 2014 J. Mater. Chem. C 2 6264Google Scholar

    [35]

    陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪 2015 物理学报 64 177801Google Scholar

    Chen Q S, Yuan D, Jia W Y, Chen L X, Zou Y, Xiang J, Chen Y B, Zhang Q M, Xiong Z H 2015 Acta Phys. Sin. 64 177801Google Scholar

  • [1] Yang Sanxiang, Zhao Yide, Dai Peng, Li Jianpeng, Geng Hai, Yang JunTai, Jia Yanhui, GuoNing. Two-dimensional simulation of the influence of plume magnetic field on the performance of hall thrusters. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241331
    [2] Ren Xing, Yu Hong-Yu, Zhang Yong. Electroluminescence efficiency and stability of near ultraviolet organic light-emitting diodes based on BCPO luminous materials. Acta Physica Sinica, 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [3] Bao Xi, Guan Yun-Xia, Li Wan-Jiao, Song Jia-Yi, Chen Li-Jia, Xu Shuang, Peng Ke-Ao, Niu Lian-Bin. Carrier ladder effect regulated dissociation and scattering of triplet excitons in OLED. Acta Physica Sinica, 2023, 72(21): 217101. doi: 10.7498/aps.72.20230851
    [4] Liu Meng-Jiao, Zhang Xin-Wen, Wang Jiong, Qin Ya-Bo, Chen Yue-Hua, Huang Wei. Research progress of light out-coupling in organic light-emitting diodes with non-period micro/nanostructures. Acta Physica Sinica, 2018, 67(20): 207801. doi: 10.7498/aps.67.20181209
    [5] Zhang Ya-Nan, Wang Jun-Feng. Improvement of the color-stability in top-emitting white organic light-emitting diodes by utilizing step-doping in emission layers. Acta Physica Sinica, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [6] Huang Di, Xu Zheng, Zhao Su-Ling. Enhanced performance of organic light-emitting diodes by using PTB7 as anode modification layer. Acta Physica Sinica, 2014, 63(2): 027301. doi: 10.7498/aps.63.027301
    [7] Yu Yao, Zhang Jing-Si, Chen Dai-Dai, Guo Rui-Qian, Gu Zhi-Hua. Improving the mobility of the amorphous silicon TFT with the new stratified structure by PECVD. Acta Physica Sinica, 2013, 62(13): 138501. doi: 10.7498/aps.62.138501
    [8] Liu Bai-Quan, Lan Lin-Feng, Zou Jian-Hua, Peng Jun-Biao. A novel organic light-emitting diode by utilizing double hole injection layer. Acta Physica Sinica, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [9] Zhang Yong, Liu Ya-Li, Jiao Wei, Chen Lin, Xiong Zu-Hong. Magnetoconductance effect in organic light-emitting devices. Acta Physica Sinica, 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [10] Yang Fu-Jun, Ban Shi-Liang. Influence of optical-phonon scattering on electron mobility in wurtzite AlGaN/AlN/GaN heterostructures. Acta Physica Sinica, 2012, 61(8): 087201. doi: 10.7498/aps.61.087201
    [11] Jiao Wei, Lei Yan-Lian, Zhang Qiao-Ming, Liu Ya-Li, Chen Lin, You Yin-Tao, Xiong Zu-Hong. Light-induced magnetoconductance effect in organic light-emitting diodes. Acta Physica Sinica, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [12] Liu Nan-Liu, Ai Na, Hu Dian-Gang, Yu Shu-Fu, Peng Jun-Biao, Cao Yong, Wang Jian. Effect of spin-coating process on the performance of passive-matrix organic light-emitting display. Acta Physica Sinica, 2011, 60(8): 087805. doi: 10.7498/aps.60.087805
    [13] Wang Xiao-Yan, Zhang He-Ming, Song Jian-Jun, Ma Jian-Li, Wang Guan-Yu, An Jiu-Hua. Electron mobility of strained Si/(001)Si1- x Ge x. Acta Physica Sinica, 2011, 60(7): 077205. doi: 10.7498/aps.60.077205
    [14] Yang Yang, Chen Shu-Fen, Xie Jun, Chen Chun-Yan, Shao Ming, Guo Xu, Huang Wei. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [15] Li Bin, Liu Hong-Xia, Yuan Bo, Li Jin, Lu Feng-Ming. Model of electron mobility in inversion layer of strained Si/Si1-xGex n type metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, 2011, 60(1): 017202. doi: 10.7498/aps.60.017202
    [16] Zhang Yong, Liu Rong, Lei Yan-Lian, Chen Ping, Zhang Qiao-Ming, Xiong Zu-Hong. Magnetoconductance in Alq3-based organic light-emitting diodes. Acta Physica Sinica, 2010, 59(8): 5817-5822. doi: 10.7498/aps.59.5817
    [17] Cheng Ping, Gao Feng, Chen Xiang-Dong, Yang Ji-Ping. Effect of the electric field on the decay of excited states in poly-phenylenevinylene. Acta Physica Sinica, 2010, 59(4): 2831-2835. doi: 10.7498/aps.59.2831
    [18] Wang Jun, Wei Xiao-Qiang, Rao Hai-Bo, Cheng Jian-Bo, Jiang Ya-Dong. High-efficiency and high-stability phosphorescent OLED based on new Ir complex. Acta Physica Sinica, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [19] Zhang Xiu-Long, Yang Sheng-Yi, Lou Zhi-Dong, Hou Yan-Bing. Dynamic electrical characteristics of organic light-emitting diodes. Acta Physica Sinica, 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [20] Zheng Zhong-Shan, Liu Zhong-Li, Zhang Guo-Qiang, Li Ning, Fan Kai, Zhang En-Xia, Yi Wan-Bing, Chen Meng, Wang Xi. Effects of the technology of implanting nitrogen into buried oxide layer on the characteristics of partially depleted SOI nMOSFET. Acta Physica Sinica, 2005, 54(1): 348-353. doi: 10.7498/aps.54.348
Metrics
  • Abstract views:  509
  • PDF Downloads:  29
  • Cited By: 0
Publishing process
  • Received Date:  22 June 2024
  • Accepted Date:  18 September 2024
  • Available Online:  25 September 2024
  • Published Online:  05 November 2024

/

返回文章
返回