Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study of tunable terahertz radiation from differential frequency generation in high-Q geometrically perturbed grating waveguide structures

LIANG Shijie ZOU Jiaqi WANG Wenjing LIU Di HUO Yanyan NING Tingyin

Citation:

Numerical study of tunable terahertz radiation from differential frequency generation in high-Q geometrically perturbed grating waveguide structures

LIANG Shijie, ZOU Jiaqi, WANG Wenjing, LIU Di, HUO Yanyan, NING Tingyin
cstr: 32037.14.aps.74.20240854
PDF
HTML
Get Citation
  • Nonlinear difference frequency generation (DFG) is a key mechanism for realizing terahertz (THz) sources. Utilization of DFG within micro- and nano-structures can circumvent the phase-matching limitations while supporting device miniaturization and integrability, thus the DFG is made a significant area of research. Enhancing the local electric fields through resonant modes in micro- and nano-structures has become a promising approach to achieving efficient and tunable THz sources across a broad wavelength range. In this work, the mechanism of DFG in high-Q-factor grating-waveguide structures for efficiently tuning THz radiation over a wide spectral range is investigated by using numerical simulations based on the finite element method (COMSOL Multiphysics). Theoretical analysis reveals that modulating the positional perturbation of one of the adjacent gratings effectively doubles the grating period, causing Brillouin zone to fold. This folding shifts the dispersion curve of the guided mode (GM) within the waveguide layer above the light cone, forming a guided mode resonance (GMR) with an ultra-high Q-factor, thereby significantly enhancing THz generation in a broad spectral range. Taking a cadmium sulfide (CdS) grating-waveguide structure for example, numerical simulations demonstrate that the THz conversion efficiency reaches an order of 10–8 W–1 when both fundamental frequency beams have an intensity of 100 kW/cm2, which is 109 times higher than the conversion efficiency of a CdS film of the same thickness. Moreover, the fundamental frequency resonance wavelength can be widely tuned by adjusting the incident angle. High-Q-factor resonance modes enable various fundamental frequency combinations by changing the incident angles of the two fundamental frequency beams, facilitating the generation of THz waves with arbitrary frequencies. This approach ultimately enables a highly efficient and tunable THz source in a wide spectral range, providing valuable insights for generating THz sources on micro- and nanophotonic platforms.
      Corresponding author: NING Tingyin, ningtingyin@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174228).
    [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Huang Y, Shen Y C, Wang J Y 2023 Engineering 22 106Google Scholar

    [3]

    Koch M, Mittleman D M, Ornik J, Castro-Camus E 2023 Nat. Rev. Methods Primers 3 48Google Scholar

    [4]

    Rubano A, Mou S, Marrucci L, Paparo D 2019 ACS Photonics 6 1515Google Scholar

    [5]

    Li X R, Li J X, Li Y H, Ozcan A, Jarrahi M 2023 Light Sci. Appl. 12 233Google Scholar

    [6]

    Lewis R A 2014 J. Phys. D: Appl. Phys. 47 374001Google Scholar

    [7]

    Li H T, Lu Y L, He Z G, Jia Q K, Wang L 2016 J. Infrared, Millimeter, Terahertz Waves 37 649Google Scholar

    [8]

    Li Q, Li Y D, Ding S H, Wang Q 2012 J. Infrared Millim. Te. 33 548Google Scholar

    [9]

    曹俊诚, 韩英军 2024 中国激光 51 0114001Google Scholar

    Cao J C, Han Y J 2024 Chin. J. Lasers 51 0114001Google Scholar

    [10]

    Lai R K, Hwang J R, Norris T B, Whitaker J F 1998 Appl. Phys. Lett. 72 3100Google Scholar

    [11]

    Upadhya P C, Fan W H, Burnett A, Cunningham J, Davies A G, Linfield E H, Lloyd-Hughes J, Castro-Camus E, Johnston M B, Beere H 2007 Opt. Lett. 32 2297Google Scholar

    [12]

    Fan W H 2011 Chin. Opt. Lett. 9 110008Google Scholar

    [13]

    Bakunov M I, Bodrov S B 2014 J. Opt. Soc. Am. B 31 2549Google Scholar

    [14]

    柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702Google Scholar

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702Google Scholar

    [15]

    黄敬国, 陆金星, 周炜, 童劲超, 黄志明, 褚君浩 2013 物理学报 62 120704Google Scholar

    Huang J G, Lu J X, Zhou W, Tong J C, Huang Z, Chu J H 2013 Acta Phys. Sin. 62 120704Google Scholar

    [16]

    刘欢, 徐德刚, 姚建铨 2008 物理学报 57 5662Google Scholar

    Liu H, Xu D G, Yao J Q 2008 Acta Phys. Sin. 57 5662Google Scholar

    [17]

    钟凯, 姚建铨, 徐德刚, 张会云, 王鹏 2011 物理学报 60 034210Google Scholar

    Zhong K, Yao J Q, Xu D G, Zhang H Y, Wang P 2011 Acta Phys. Sin. 60 034210Google Scholar

    [18]

    Bakunov M I, Efimenko E S, Gorelov S D, Abramovsky N A, Bodrov S B 2020 Opt. Lett. 45 3533Google Scholar

    [19]

    Lu Y, Wang X, Miao L, Zuo D, Cheng Z 2011 Appl. Phys. B 103 387Google Scholar

    [20]

    Tochitsky S Y, Ralph J E, Sung C, Joshi C 2005 J. Appl. Phys. 98 026101Google Scholar

    [21]

    Zhong K, Yao J Q, Xu D G, Wang Z, Li Z Y, Zhang H Y, Wang P 2010 Opt. Commun. 283 3520Google Scholar

    [22]

    Jiang Y, Ding Y J 2007 Appl. Phys. Lett. 91 091108Google Scholar

    [23]

    Shi W, Ding Y J 2005 Opt. Lett. 30 1861Google Scholar

    [24]

    Brenier A 2018 Appl. Phys. B 124 194Google Scholar

    [25]

    Liu P X, Xu D G, Li J Q, Yan C, Li Z X, Wang Y Y, Yao J Q 2014 IEEE Photonics Technol. Lett. 26 494Google Scholar

    [26]

    Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [27]

    Ning T Y, Li X, Zhao Y, Yin L Y, Huo Y Y, Zhao L N, Yue Q Y 2020 Opt. Express 28 34024Google Scholar

    [28]

    Wu F, Qin M B, Xiao S Y 2022 J. Appl. Phys. 132 193101Google Scholar

    [29]

    Wu F, Liu T T, Long Y, Xiao S Y, Chen G Y 2023 Phys. Rev. B 107 165428Google Scholar

    [30]

    Wu F, Qi X, Luo M, Liu T T, Xiao S Y 2023 Phys. Rev. B 108 165404Google Scholar

    [31]

    Wu F, Qi X, Qin M B, Luo M, Long Y, Wu J J, Sun Y, Jiang H T, Liu T T, Xiao S Y, Chen H 2024 Phys. Rev. B 109 085436Google Scholar

    [32]

    闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕 2023 物理学报 72 044202Google Scholar

    Yan M, Sun K, Ning T Y, Zhao L N, Ren Y Y, Huo Y Y 2023 Acta Phys. Sin. 72 044202Google Scholar

    [33]

    Sun K L, Wei H, Chen W J, Chen Y, Cai Y J, Qiu C W, Han Z H 2023 Phys. Rev. B 107 115415Google Scholar

    [34]

    Boyd R W 2020 Nonlinear Optics (London: Academic Press

    [35]

    Jiang H, Han Z H 2022 J. Phys. D: Appl. Phys. 55 385106Google Scholar

    [36]

    Sutherland R L 2003 Handbook of Nonlinear Optics (New York: Marcel Dekker

    [37]

    Amnon Yariv, Yeh P 1984 Optical Waves in Crystals (New York: Wiley

    [38]

    Lu J, Ding B Y, Huo Y Y, Ning T Y 2018 Opt. Commun. 415 146Google Scholar

    [39]

    Liu W X, Li Y H, Jiang H T, Lai Z Q, Chen H 2013 Opt. Lett. 38 163Google Scholar

  • 图 1  四部分光栅-波导结构和光配置示意图, 其中Λ是光栅-波导结构的周期, wg是 CdS 的宽度, wawb是空气的宽度, hghw 分别是光栅层和波导层的高度

    Figure 1.  Schematic diagram of grating waveguide structure and light configuration. Λ is the periodicity of grating waveguide structure, wg is the width of CdS, wa and wb are the width of air, hg and hw are the height of grating layer and waveguide layer, respectively.

    图 2  (a) TE偏振光照射下周期为P = Λ/2的未扰动光栅-波导结构(绿点)和几何扰动δ = 0.1、周期为Λ的光栅结构-波导结构(红点和蓝点)的能带, 插图显示了箭头所示位置的GMR模式的电场(TE)分布; (b)波段A和波段B的Q因子与kx的关系; (c)波导层中TE0导波模式的色散关系(黑色实线), 以及kx = kx, i (i = –1, –2)在不同入射角θ下的色散关系, 分别为θ = 1° (酒红色虚线)、2° (红色虚线)、4° (绿色虚线)、6° (蓝色虚线)、8° (青色虚线)、10° (品红色虚线)

    Figure 2.  (a) Band structure of the unperturbated grating-waveguide nanostructure of period P = Λ/2 (green dots) and geometrical perturbated δ = 0.1 grating-waveguide nanostructure of period Λ (red and blue dots). The inset shows the electric field (TE) distribution of the GMR mode at the kx as the arrow given. (b) Dependence of Q-factors of band A and B on kx. (c) Dispersion relations of the TE0 guide mode in the waveguide layer (black solid line), and kx = kx, i (i = –1, –2) under different angle of incidence θ = 1° (Wine red dashed line), 2° (red dashed lines), 4° (green dashed lines), 6° (blue dashed lines), 8° (cyan dashed lines), 10° (Magenta dashed line), respectively.

    图 3  (a)不同参数δ的光栅-波导结构在入射角θ = 6°时的透射光谱, 插图分别显示了 δ = 0.2和1.0 结构中共振模式处的Ez分布; (b) δ = 0.1 的光栅-波导结构的透射率与入射角的关系, 插图显示了θ = 6°结构中共振模式处的电场Ez分布; (c) 在TE偏振光照射下, 光栅-波导结构的Q因子与δ的关系, 插图显示了Q因子与δ–2之间的线性关系, 虚线为线性拟合; (d) δ = 0.1 时, 共振波长(黑色实线)和品质因数(黑色虚线)与入射角的关系

    Figure 3.  (a) Transmittance spectra of grating waveguide structure of different parameter δ at the incidence angle θ = 6°. The inset shows the electric field Ez distribution at the resonance modes in the structure of δ = 0.2 and 1.0, respectively. (b) The dependence of transmittance of grating waveguide structure of δ = 0.1 on the incidence angle. The inset shows the electric field Ez distribution at the resonance modes in the structure of θ = 6°. (c) Dependence of Q-factor of the grating waveguide structure on δ under TE-polarized light irradiation. The inset shows the linear relationship between Q-factor and δ–2, and the dash line is a linear fitting. (d) The relation of resonance wavelength (solid black line) and quality factor (black dashed line) with the angle of incidence at the grating waveguide structure of δ = 0.1.

    图 4  不同入射角下DFG产生的THz转换效率与入射波长的关系, 其中入射角分别为(a) 1°和2°, (b) 3°和4°, (c) 5°和6°及(d) 7°和8°

    Figure 4.  Generated THz conversion efficiency (CE) from DFG as a function of incident wavelength for different incidence angles. The incident angles are (a) 1° and 2°, (b) 3° and 4°, (c) 5° and 6°, and (d) 7° and 8°.

    图 5  DFG产生THz波功率与入射强度 I1I2 的关系

    Figure 5.  Relationship of THz power via DFG with the incident intensities I1 and I2.

  • [1]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [2]

    Huang Y, Shen Y C, Wang J Y 2023 Engineering 22 106Google Scholar

    [3]

    Koch M, Mittleman D M, Ornik J, Castro-Camus E 2023 Nat. Rev. Methods Primers 3 48Google Scholar

    [4]

    Rubano A, Mou S, Marrucci L, Paparo D 2019 ACS Photonics 6 1515Google Scholar

    [5]

    Li X R, Li J X, Li Y H, Ozcan A, Jarrahi M 2023 Light Sci. Appl. 12 233Google Scholar

    [6]

    Lewis R A 2014 J. Phys. D: Appl. Phys. 47 374001Google Scholar

    [7]

    Li H T, Lu Y L, He Z G, Jia Q K, Wang L 2016 J. Infrared, Millimeter, Terahertz Waves 37 649Google Scholar

    [8]

    Li Q, Li Y D, Ding S H, Wang Q 2012 J. Infrared Millim. Te. 33 548Google Scholar

    [9]

    曹俊诚, 韩英军 2024 中国激光 51 0114001Google Scholar

    Cao J C, Han Y J 2024 Chin. J. Lasers 51 0114001Google Scholar

    [10]

    Lai R K, Hwang J R, Norris T B, Whitaker J F 1998 Appl. Phys. Lett. 72 3100Google Scholar

    [11]

    Upadhya P C, Fan W H, Burnett A, Cunningham J, Davies A G, Linfield E H, Lloyd-Hughes J, Castro-Camus E, Johnston M B, Beere H 2007 Opt. Lett. 32 2297Google Scholar

    [12]

    Fan W H 2011 Chin. Opt. Lett. 9 110008Google Scholar

    [13]

    Bakunov M I, Bodrov S B 2014 J. Opt. Soc. Am. B 31 2549Google Scholar

    [14]

    柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702Google Scholar

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702Google Scholar

    [15]

    黄敬国, 陆金星, 周炜, 童劲超, 黄志明, 褚君浩 2013 物理学报 62 120704Google Scholar

    Huang J G, Lu J X, Zhou W, Tong J C, Huang Z, Chu J H 2013 Acta Phys. Sin. 62 120704Google Scholar

    [16]

    刘欢, 徐德刚, 姚建铨 2008 物理学报 57 5662Google Scholar

    Liu H, Xu D G, Yao J Q 2008 Acta Phys. Sin. 57 5662Google Scholar

    [17]

    钟凯, 姚建铨, 徐德刚, 张会云, 王鹏 2011 物理学报 60 034210Google Scholar

    Zhong K, Yao J Q, Xu D G, Zhang H Y, Wang P 2011 Acta Phys. Sin. 60 034210Google Scholar

    [18]

    Bakunov M I, Efimenko E S, Gorelov S D, Abramovsky N A, Bodrov S B 2020 Opt. Lett. 45 3533Google Scholar

    [19]

    Lu Y, Wang X, Miao L, Zuo D, Cheng Z 2011 Appl. Phys. B 103 387Google Scholar

    [20]

    Tochitsky S Y, Ralph J E, Sung C, Joshi C 2005 J. Appl. Phys. 98 026101Google Scholar

    [21]

    Zhong K, Yao J Q, Xu D G, Wang Z, Li Z Y, Zhang H Y, Wang P 2010 Opt. Commun. 283 3520Google Scholar

    [22]

    Jiang Y, Ding Y J 2007 Appl. Phys. Lett. 91 091108Google Scholar

    [23]

    Shi W, Ding Y J 2005 Opt. Lett. 30 1861Google Scholar

    [24]

    Brenier A 2018 Appl. Phys. B 124 194Google Scholar

    [25]

    Liu P X, Xu D G, Li J Q, Yan C, Li Z X, Wang Y Y, Yao J Q 2014 IEEE Photonics Technol. Lett. 26 494Google Scholar

    [26]

    Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [27]

    Ning T Y, Li X, Zhao Y, Yin L Y, Huo Y Y, Zhao L N, Yue Q Y 2020 Opt. Express 28 34024Google Scholar

    [28]

    Wu F, Qin M B, Xiao S Y 2022 J. Appl. Phys. 132 193101Google Scholar

    [29]

    Wu F, Liu T T, Long Y, Xiao S Y, Chen G Y 2023 Phys. Rev. B 107 165428Google Scholar

    [30]

    Wu F, Qi X, Luo M, Liu T T, Xiao S Y 2023 Phys. Rev. B 108 165404Google Scholar

    [31]

    Wu F, Qi X, Qin M B, Luo M, Long Y, Wu J J, Sun Y, Jiang H T, Liu T T, Xiao S Y, Chen H 2024 Phys. Rev. B 109 085436Google Scholar

    [32]

    闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕 2023 物理学报 72 044202Google Scholar

    Yan M, Sun K, Ning T Y, Zhao L N, Ren Y Y, Huo Y Y 2023 Acta Phys. Sin. 72 044202Google Scholar

    [33]

    Sun K L, Wei H, Chen W J, Chen Y, Cai Y J, Qiu C W, Han Z H 2023 Phys. Rev. B 107 115415Google Scholar

    [34]

    Boyd R W 2020 Nonlinear Optics (London: Academic Press

    [35]

    Jiang H, Han Z H 2022 J. Phys. D: Appl. Phys. 55 385106Google Scholar

    [36]

    Sutherland R L 2003 Handbook of Nonlinear Optics (New York: Marcel Dekker

    [37]

    Amnon Yariv, Yeh P 1984 Optical Waves in Crystals (New York: Wiley

    [38]

    Lu J, Ding B Y, Huo Y Y, Ning T Y 2018 Opt. Commun. 415 146Google Scholar

    [39]

    Liu W X, Li Y H, Jiang H T, Lai Z Q, Chen H 2013 Opt. Lett. 38 163Google Scholar

  • [1] WANG Zelong, WANG Yuye, LI Haibin, ZHANG Jingxi, XU Degang, YAO Jianquan. Tunable continuous-wave terahertz generator based on difference frequency generation with DAST crystal. Acta Physica Sinica, 2025, 74(3): 034201. doi: 10.7498/aps.74.20241349
    [2] Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei. Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films. Acta Physica Sinica, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [3] Cui Tao, Wang Kang-Ni, Gao Kai-Ge, Qian Lin-Yong. Enhanced dye lasing emission by guided-mode resonance grating with mesoporous silica as spacing layer. Acta Physica Sinica, 2021, 70(1): 014201. doi: 10.7498/aps.70.20201017
    [4] Wang Hang-Tian, Zhao Hai-Hui, Wen Liang-Gong, Wu Xiao-Jun, Nie Tian-Xiao, Zhao Wei-Sheng. High-performance THz emission: From topological insulator to topological spintronics. Acta Physica Sinica, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [5] Xu Yong, Zhang Fan, Zhang Xiao-Qiang, Du Yin-Chang, Zhao Hai-Hui, Nie Tian-Xiao, Wu Xiao-Jun, Zhao Wei-Sheng. Research advances in spintronic terahertz sources. Acta Physica Sinica, 2020, 69(20): 200703. doi: 10.7498/aps.69.20200623
    [6] Ma Jin-Dong, Wu Hao-Yu, Lu Qiao, Ma Ting, Shi Lei, Sun Qing, Mao Qing-He. Fiber-type difference frequency generation infrared optical frequency comb based on the femtosecond pulses generated by a mode-locked fiber laser. Acta Physica Sinica, 2018, 67(9): 094207. doi: 10.7498/aps.67.20172503
    [7] Zuo Jian, Zhang Liang-Liang, Gong Chen, Zhang Cun-Lin. Research progress of super-continuum terahertz source based on nano-structures and terahertz lab on-chip system. Acta Physica Sinica, 2016, 65(1): 010704. doi: 10.7498/aps.65.010704
    [8] Chai Lu, Niu Yue, Li Yan-Feng, Hu Ming-Lie, Wang Qing-Yue. Recent progress of tunable terahertz sources based on difference frequency generation. Acta Physica Sinica, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [9] Zhao Wen-Juan, Chen Zai-Gao, Guo Wei-Jie. Influence of slow wave structure explosive emission on high-power surface wave oscillator. Acta Physica Sinica, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [10] Sang Tian, Cai Tuo, Liu Fang, Cai Shao-Hong, Zhang Da-Wei. Design and analysis of guided-mode resonance filter containing an absentee layer with an antireflective surface. Acta Physica Sinica, 2013, 62(2): 024215. doi: 10.7498/aps.62.024215
    [11] Huang Jing-Guo, Lu Jin-Xing, Zhou Wei, Tong Jing-Chao, Huang Zhi, Chu Jun-Hao. Investigation of high power terahertz emission in gap crystal based on collinear difference frequency generation. Acta Physica Sinica, 2013, 62(12): 120704. doi: 10.7498/aps.62.120704
    [12] Ma Feng-Ying, Chen Ming, Liu Xiao-Li, Liu Jian-Li, Chi Quan, Du Yan-Li, Guo Mao-Tian, Yuan Bin. Design and characterization of a terahertz microcavity structure. Acta Physica Sinica, 2012, 61(11): 114205. doi: 10.7498/aps.61.114205
    [13] Liu Wei-Hao, Zhang Ya-Xin, Hu Min, Zhou Jun, Liu Sheng-Gang. Mechanism study of a THz source using field emission array. Acta Physica Sinica, 2012, 61(12): 127901. doi: 10.7498/aps.61.127901
    [14] Liu Wei-Hao, Zhang Ya-Xin, Zhou Jun, Gong Sen, Liu Sheng-Gang. Radiation from the unsymmetrical modes of the periodical waveguide structure excited by eccentric electron beam. Acta Physica Sinica, 2012, 61(23): 234209. doi: 10.7498/aps.61.234209
    [15] Zhong Kai, Yao Jian-Quan, Xu De-Gang, Zhang Hui-Yun, Wang Peng. Theoretical research on cascaded difference frequency generation of terahertz radiation. Acta Physica Sinica, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [16] Gao Peng, Booske John H., Yang Zhong-Hai, Li Bin, Xu Li, He Jun, Gong Yu-Bin, Tian Zhong. Physics and simulation of terahertz folded waveguide traveling wave tube regenerative feedback oscillators. Acta Physica Sinica, 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
    [17] Jiang Jian, Chang Jian-Hua, Feng Su-Juan, Mao Qing-He. Mid-IR multiwavelength difference frequency generation laser source based on fiber lasers. Acta Physica Sinica, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [18] Ma Jian-Yong, Liu Shi-Jie, Wei Chao-Yang, Jin Yun-Xia, Zhao Yuan-An, Shao Jian-Da, Fan Zhen-Xiu. Design and analysis of double layer resonant grating filters in the visible spectral region. Acta Physica Sinica, 2008, 57(7): 4195-4201. doi: 10.7498/aps.57.4195
    [19] Ma Jian-Yong, Liu Shi-Jie, Wei Chao-Yang, Xu Cheng, Jin Yun-Xia, Zhao Yuan-An, Shao Jian-Da, Fan Zheng-Xiu. Design of reflection resonant grating filters. Acta Physica Sinica, 2008, 57(2): 827-832. doi: 10.7498/aps.57.827
    [20] Zhou Chuan-Hong, Wang Lei, Nei Ya, Wang Zhi-Heng. . Acta Physica Sinica, 2002, 51(1): 68-73. doi: 10.7498/aps.51.68
Metrics
  • Abstract views:  249
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2024
  • Accepted Date:  09 December 2024
  • Available Online:  25 December 2024
  • Published Online:  05 February 2025

/

返回文章
返回