Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of annealing temperature on the performance of radio frequency magnetron sputtered Sn-doped Ga2O3 films and its solar-blind photodetector

XU Yihong FAN Weihang WANG Chen

Citation:

Influence of annealing temperature on the performance of radio frequency magnetron sputtered Sn-doped Ga2O3 films and its solar-blind photodetector

XU Yihong, FAN Weihang, WANG Chen
cstr: 32037.14.aps.74.20240972
PDF
HTML
Get Citation
  • In this study, Sn-doped Ga2O3 thin films are prepared on sapphire substrate by radio frequency magnetron sputtering at ambient temperature, and then annealed at different temperatures (400–800 ℃) in nitrogen atmosphere. The corresponding metal-semiconductor-metal (MSM) solar blind photodetectors (PDs) are prepared based on those films before and after annealing to explore the influence of annealing temperature on the characteristics of the films and device properties. The results show that the as-deposited Sn-doped Ga2O3 film displays amorphous structure. With the increase of annealing temperature, the proportion of OL, Ga3+ and Sn4+ ions in the film increase, and the band gap of the film decreases slightly, indicating that the conductivity of the film is enhanced and the quality of the film is improved. When the annealing temperature increases to 700 ℃, the β-Ga2O3 (${\bar 402} $) crystal surface diffraction peak appeares, indicating that the film begins to crystallize. As the annealing temperature increases to 800 ℃, the proportion of OL, Ga3+ and Sn4+ decreases, and the quality and conductive properties of the film deteriorate, which may be attributed to Sn surface segregation and Al diffusion into the film from the substrate. In addition, the average particle size and surface roughness of the film surface increase with annealing temperature increasing, which is consistent with the changing trend of film characteristics. Then, based on Sn-doped Ga2O3 thin films before and after annealing, the MSM solar blind PDs are prepared to explore the influence of annealing temperature on device performance. The quality of the film and its conductive characteristics play a role in regulating the performance of Sn-doped Ga2O3 solar blind PD. The optimal device performance can be obtained when the annealing temperature is 700 ℃, with a low dark current of 89.97 pA, a responsivity of 18.4 mA/W, a light-dark current up to 1264, and the rise/fall time of 0.93 s/0.87 s. In summary, the annealing temperature has an important effect on the characteristics of Sn-doped Ga2O3 films and the performance of solar blind PDs, which has certain guiding significance for the preparation of high-quality Sn-doped Ga2O3 films and high-performance solar blind PDs.
      Corresponding author: WANG Chen, chenwang@xmut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Xiamen, China (Grant No. 3502Z202373061), the Natural Science Foundation of Fujian Province, China (Grant No. 2023J011459), the National Natural Science Foundation of China (Grant No. 61904155), the Science and Technology Project of Fujian Provincial Department of Education, China (Grant No. JAT200484), and the Association for Science and Technology of Fujian Province, China.
    [1]

    Pearton S, Yang J, Cary IV P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Express 5 011301

    [2]

    Wang C, Fan W H, Cao R J, et al. 2024 Vacuum 225 113246Google Scholar

    [3]

    Zhang Y J, Yan J L, Zhao G, Xie W F 2010 Physica B 405 3899Google Scholar

    [4]

    Kudou J, Funasaki S, Takahara M, et al. 2012 Materials Science Forum. Trans Tech Publications Ltd 725 269

    [5]

    Vega E, Isukapati S B, Oder T N 2021 J. Vac. Sci. Technol. A 39 033412Google Scholar

    [6]

    Lee S Y, Kang H C 2018 Jpn. J. Appl. Phys. 57 01AE02Google Scholar

    [7]

    Li L J, Li C K, Wang S Q, Lu Q, Jia Y F, Chen H F 2023 J. Semicond. 44 062805Google Scholar

    [8]

    王尘, 张宇超, 范伟航, 李世韦, 张小英, 林海军, 连水养, 朱文章 2022 光学学报 42 0831001Google Scholar

    Wang C, Zhang Y C, Fan W H, Li S W, Zhang X Y, Lin H J, Lien S Y, Zhu W Z 2022 Acta Opt. Sin. 42 0831001Google Scholar

    [9]

    Dorneles L S, O’Mahony D, Fitzgerald C B, McGee F, Venkatesan M, Stanca I, Lunney J G, Coey J M D 2005 Appl. Surf. Sci. 248 406Google Scholar

    [10]

    Schurig P, Couturier M, Becker M, Polity A, Klar P J 2019 Phys. Status Solidi A. 216 1900385Google Scholar

    [11]

    Wu J W, Mi W, Yang Z C, Chen Y T, Li P J, Zhao J S, Zhang K L, Zhang X C, Luan C B 2019 Vacuum 167 6Google Scholar

    [12]

    Joshi G, Chauhan Y S, Verma A 2021 J. Alloy. Compd. 883 160799Google Scholar

    [13]

    Wang C, Li S W, Zhang Y C, Fan W H, Lin H J, Wuu D S, Lien S Y, Zhu W Z 2022 Vacuum 202 111176Google Scholar

    [14]

    Zhao X L, Cui W, Wu Z P, Guo D Y, Li P G, An Y H, Li L H, Tang W H 2017 J. Electronic Mater. 46 2366Google Scholar

    [15]

    Spencer J A, Mock A L, Jacobs A G, Schubert M, Zhang Y H, Tadjer M J 2022 Appl. Phys. Rev. 9 011315Google Scholar

    [16]

    Khan A F, Mehmood M, Rana A M, Bhatti M T 2009 Appl. Surf. Sci. 255 8562Google Scholar

    [17]

    Ghose S, Rahman S, Hong L, Rojas-Ramirez J S, Jin H, Park K, Klie R, Droopad R 2017 J. Appl. Phys. 122 095302Google Scholar

    [18]

    Qian L X, Liu H Y, Zhang H F, Wu Z H, Zhang W L 2019 Appl. Phys. Lett. 114 113506Google Scholar

    [19]

    Zhang J, Shi J, Qi D C, Chen L, Zhang K H L 2020 APL Mater. 8 020906Google Scholar

    [20]

    Blumenschein N, Kadlec C, Romanyuk O, Paskova T, Muth J F, Kadlec F 2020 J. Appl. Phys. 127 165702Google Scholar

    [21]

    Singh R, Lenka T R, Panda D K, et al. 2020 Mat. Sci. Semicon. Proc. 119 105216Google Scholar

    [22]

    Nie Y Y, Jiao S J, Meng F X, Lu H L, Wang D B, Li L, Gao S Y, Wang J Z, Wang X H 2019 J. Alloy. Compd. 798 568Google Scholar

    [23]

    Kuznetsov M V, Safonov A V 2023 Mater. Chem. Phys. 302 127739Google Scholar

    [24]

    Jubu P R, Yam F K, Igba V M, Beh K P 2020 J. Solid State Chem. 290 121576Google Scholar

    [25]

    Gutierrez G, Sundin E M, Nalam P G, et al. 2021 J. Phys. Chem. C 125 20468Google Scholar

    [26]

    Korhonen E, Tuomisto F, Bierwagen O, Speck J S, Galazka Z 2014 Phys. Rev. B 90 245307Google Scholar

  • 图 1  Sn掺杂Ga2O3薄膜退火前后X射线衍射图

    Figure 1.  XRD diffraction property of Sn-doped Ga2O3 films annealed at various temperatures.

    图 2  退火前后Sn掺杂Ga2O3薄膜的XPS图谱 (a) 全谱图; (b) 元素比例

    Figure 2.  (a) XPS survey spectrum, (b) atomic percent of O, Ga, C, and Sn of Sn-doped Ga2O3 films annealed at various temperatures.

    图 3  Sn掺杂Ga2O3薄膜退火前后的XPS核心能谱图 (a) O 1s, (b) Ga 3d, (c) Sn 3d; (d)晶格氧OL/(OL+ONL)的比例; (e) Ga3+/(Ga3++Ga+)比例; (f) Sn4+/(Sn4++Sn2+)比例

    Figure 3.  High-resolution XPS spectra and its fitting spectra of (a) O 1s, (b) Ga 3d, and (c) Sn 3d; the OL proportion (d), Ga3+ ratio (e) and Sn4+ percentage (f) of the films annealed at various temperatures.

    图 4  Sn掺杂Ga2O3薄膜的SIMS图 (a) 未退火; (b) 800 ℃退火后

    Figure 4.  SIMS data of the Sn-doped Ga2O3 films: (a) before and (b) after 800 ℃ annealing.

    图 5  退火前后Sn掺杂Ga2O3薄膜的FESEM, AFM及颗粒尺寸统计图 (a) 未退火; (b)—(f) 400—800 ℃退火后

    Figure 5.  The FESEM, AFM, and cluster size distribution pictures of the Sn-doped Ga2O3 films annealed at different temperatures: (a) As-dep; (b)–(f) after 400–800 ℃ annealing.

    图 6  退火前后Sn掺杂Ga2O3薄膜 (a)透射光谱, 插图为(αhν)2的Tauc图; (b)光学带隙随退火温度变化曲线

    Figure 6.  (a) The transmittance as well as Tauc plot of (αhν)2 versus (inset) spectra and (b) optical bandgap of the Sn-doped Ga2O3 films for varying annealing temperatures.

    图 7  不同退火温度下Sn掺杂Ga2O3薄膜的载流子浓度、电阻率和迁移率

    Figure 7.  Carrier concentration, resistivity, and hall mobility of Sn-doped Ga2O3 films with different annealing temperatures.

    图 8  不同退火温度下Sn掺杂Ga2O3日盲光电探测器 (a) 暗电流, 插图为光学显微镜下器件的俯视图; (b) 光电流; (c) 瞬态响应

    Figure 8.  (a) The dark current-voltage curves, the inset is the physical top-view of photodetectors; (b) the photocurrent–voltage curves; (c) the transient response (I-t) curves of photodetectors under different annealing temperature.

    表 1  磁控溅射Sn掺杂Ga2O3薄膜工艺及退火参数

    Table 1.  Growth and annealing parameters of the sputtered Sn-doped Ga2O3 films.

    参数
    背景压力/Torr 5×10–7
    工作压力/Torr 9×10–3
    溅射功率/W 500
    气体总流量/SCCM 40
    氧流量比[O2/(O2+Ar)]/% 1.0
    沉积温度/℃ 室温
    薄膜厚度/nm ~102
    退火气氛和时间 N2气体和2 h
    退火温度/℃ As-dep., 400, 500, 600, 700, 800
    注: SCCM为体积流量单位(standard cubic centimeter per minute).
    DownLoad: CSV

    表 2  退火前后Sn掺杂Ga2O3探测器的性能参数

    Table 2.  Performance of the Sn-doped Ga2O photodetectors before and after annealing.

    退火温度/℃ 暗电流/pA 光电流/nA 光暗>电流比 响应度/(mA·W–1) 上升时间/s 下降时间/s
    As-dep. 1.10 0.94 854.5 0.15 1.61 1.02
    400 23.33 22.05 945.14 3.57 2.28 3.54
    500 63.85 66.73 1045.11 10.8 1.43 1.34
    600 80.28 89.65 1116.72 14.5 1.03 0.98
    700 89.97 113.74 1264.20 18.4 0.93 0.87
    800 1.14 0.09 82.46 0.02 1.12 17.36
    DownLoad: CSV
  • [1]

    Pearton S, Yang J, Cary IV P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Express 5 011301

    [2]

    Wang C, Fan W H, Cao R J, et al. 2024 Vacuum 225 113246Google Scholar

    [3]

    Zhang Y J, Yan J L, Zhao G, Xie W F 2010 Physica B 405 3899Google Scholar

    [4]

    Kudou J, Funasaki S, Takahara M, et al. 2012 Materials Science Forum. Trans Tech Publications Ltd 725 269

    [5]

    Vega E, Isukapati S B, Oder T N 2021 J. Vac. Sci. Technol. A 39 033412Google Scholar

    [6]

    Lee S Y, Kang H C 2018 Jpn. J. Appl. Phys. 57 01AE02Google Scholar

    [7]

    Li L J, Li C K, Wang S Q, Lu Q, Jia Y F, Chen H F 2023 J. Semicond. 44 062805Google Scholar

    [8]

    王尘, 张宇超, 范伟航, 李世韦, 张小英, 林海军, 连水养, 朱文章 2022 光学学报 42 0831001Google Scholar

    Wang C, Zhang Y C, Fan W H, Li S W, Zhang X Y, Lin H J, Lien S Y, Zhu W Z 2022 Acta Opt. Sin. 42 0831001Google Scholar

    [9]

    Dorneles L S, O’Mahony D, Fitzgerald C B, McGee F, Venkatesan M, Stanca I, Lunney J G, Coey J M D 2005 Appl. Surf. Sci. 248 406Google Scholar

    [10]

    Schurig P, Couturier M, Becker M, Polity A, Klar P J 2019 Phys. Status Solidi A. 216 1900385Google Scholar

    [11]

    Wu J W, Mi W, Yang Z C, Chen Y T, Li P J, Zhao J S, Zhang K L, Zhang X C, Luan C B 2019 Vacuum 167 6Google Scholar

    [12]

    Joshi G, Chauhan Y S, Verma A 2021 J. Alloy. Compd. 883 160799Google Scholar

    [13]

    Wang C, Li S W, Zhang Y C, Fan W H, Lin H J, Wuu D S, Lien S Y, Zhu W Z 2022 Vacuum 202 111176Google Scholar

    [14]

    Zhao X L, Cui W, Wu Z P, Guo D Y, Li P G, An Y H, Li L H, Tang W H 2017 J. Electronic Mater. 46 2366Google Scholar

    [15]

    Spencer J A, Mock A L, Jacobs A G, Schubert M, Zhang Y H, Tadjer M J 2022 Appl. Phys. Rev. 9 011315Google Scholar

    [16]

    Khan A F, Mehmood M, Rana A M, Bhatti M T 2009 Appl. Surf. Sci. 255 8562Google Scholar

    [17]

    Ghose S, Rahman S, Hong L, Rojas-Ramirez J S, Jin H, Park K, Klie R, Droopad R 2017 J. Appl. Phys. 122 095302Google Scholar

    [18]

    Qian L X, Liu H Y, Zhang H F, Wu Z H, Zhang W L 2019 Appl. Phys. Lett. 114 113506Google Scholar

    [19]

    Zhang J, Shi J, Qi D C, Chen L, Zhang K H L 2020 APL Mater. 8 020906Google Scholar

    [20]

    Blumenschein N, Kadlec C, Romanyuk O, Paskova T, Muth J F, Kadlec F 2020 J. Appl. Phys. 127 165702Google Scholar

    [21]

    Singh R, Lenka T R, Panda D K, et al. 2020 Mat. Sci. Semicon. Proc. 119 105216Google Scholar

    [22]

    Nie Y Y, Jiao S J, Meng F X, Lu H L, Wang D B, Li L, Gao S Y, Wang J Z, Wang X H 2019 J. Alloy. Compd. 798 568Google Scholar

    [23]

    Kuznetsov M V, Safonov A V 2023 Mater. Chem. Phys. 302 127739Google Scholar

    [24]

    Jubu P R, Yam F K, Igba V M, Beh K P 2020 J. Solid State Chem. 290 121576Google Scholar

    [25]

    Gutierrez G, Sundin E M, Nalam P G, et al. 2021 J. Phys. Chem. C 125 20468Google Scholar

    [26]

    Korhonen E, Tuomisto F, Bierwagen O, Speck J S, Galazka Z 2014 Phys. Rev. B 90 245307Google Scholar

  • [1] Luo Ju-Xin, Gao Hong-Li, Deng Jin-Xiang, Ren Jia-Hui, Zhang Qing, Li Rui-Dong, Meng Xue. Effects of annealing temperature on properties of gallium oxide thin films and ultraviolet detectors. Acta Physica Sinica, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [2] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [3] Cheng Jing-Yun, Kang Chao-Yang, Zong Hai-Tao, Cao Guo-Hua, Li Ming. Structural and photoelectrical properties of AZO thin films improved by Ag buffer layers. Acta Physica Sinica, 2017, 66(2): 027702. doi: 10.7498/aps.66.027702
    [4] Guo Hong-Li, Yang Huan-Yin, Tang Huan-Fang, Hou Hai-Jun, Zheng Yong-Lin, Zhu Jian-Guo. Effects of high pressure annealing technique on the structure, morphology and electric properties of 0.65PMN-0.35PT thin films. Acta Physica Sinica, 2013, 62(13): 130704. doi: 10.7498/aps.62.130704
    [5] Xu Hui, Wang Shun-Li, Liu Ai-Ping, Chen Ben-Yong, Tang Wei-Hua. Electronic state and its effect on the hydrophilicity of Cu/TiOx composite films. Acta Physica Sinica, 2010, 59(5): 3601-3606. doi: 10.7498/aps.59.3601
    [6] Gao Li, Zhang Jian-Min. Photoluminescence of diluted Mg doped ZnO thin films and band-gap change mechanisms. Acta Physica Sinica, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [7] Xie Jing, Li Bing, Li Yuan-Jie, Yan Pu, Feng Liang-Huan, Cai Ya-Ping, Zheng Jia-Gui, Zhang Jing-Quan, Li Wei, Wu Li-Li, Lei Zhi, Zeng Guang-Gen. Study of ZnS thin films prepared by RF magnetron sputtering technique. Acta Physica Sinica, 2010, 59(8): 5749-5754. doi: 10.7498/aps.59.5749
    [8] Gao Li, Zhang Jian-Min. Preparation of Mg and Al co-doped ZnO thin films with tunable band gap. Acta Physica Sinica, 2009, 58(10): 7199-7203. doi: 10.7498/aps.58.7199
    [9] Li Yang-Ping, Liu Zheng-Tang. Plasma emission diagnostics for the optimization of deposition parameters in RF magnetron sputtering of GaP film. Acta Physica Sinica, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [10] Wang Zhen-Ning, Jiang Mei-Fu, Ning Zhao-Yuan, Zhu Li. Structure and photoluminescence of Zn2GeO4 polycrystalline films prepared by radio-frequency magnetron sputtering. Acta Physica Sinica, 2008, 57(10): 6507-6512. doi: 10.7498/aps.57.6507
    [11] Li Yang-Ping, Liu Zheng-Tang, Liu Wen-Ting, Yan Feng, Chen Jing. Preparation and properties of GeC thin films deposited by reactive RF magnetron sputtering. Acta Physica Sinica, 2008, 57(10): 6587-6592. doi: 10.7498/aps.57.6587
    [12] Wang Nan, Kong Chun-Yang, Zhu Ren-Jiang, Qin Guo-Ping, Dai Te-Li, Nan Mao, Ruan Hai-Bo. Preparation and characteristics research of p-type ZnO films. Acta Physica Sinica, 2007, 56(10): 5974-5978. doi: 10.7498/aps.56.5974
    [13] Liu Huang-Qing, Wang Ling-Ling, Zou Bing-Suo. Effect of annealing temperature on luminescence of nanocrystal ZrO2: Eu3+. Acta Physica Sinica, 2007, 56(1): 556-560. doi: 10.7498/aps.56.556
    [14] Li Yang-Ping, Liu Zheng-Tang, Zhao Hai-Long, Liu Wen-Ting, Yan Feng. RF magnetron sputtering of GaP thin film and computer simulation of its depositing process. Acta Physica Sinica, 2007, 56(5): 2937-2944. doi: 10.7498/aps.56.2937
    [15] Zhang Xi-Jian, Ma Hong-Lei, Wang Qing-Pu, Ma Jin, Zong Fu-Jian, Xiao Hong-Di, Ji Feng. Effect of annealing on optical properties of MgxZn1-xO thin films deposited at low temperature. Acta Physica Sinica, 2006, 55(1): 437-440. doi: 10.7498/aps.55.437
    [16] Zhang Xi-Jian, Ma Hong-Lei, Wang Qing-Pu, Ma Jin, Zong Fu-Jian, Xiao Hong-Di, Ji Feng. Structural and optical properties of MgxZn1-xO thin films deposited by radio frequency magnetron sputtering. Acta Physica Sinica, 2005, 54(9): 4309-4312. doi: 10.7498/aps.54.4309
    [17] Wang Yu-Heng, Ma Jin, Ji Feng, Yu Xu-Hu, Zhang Xi-Jian, Ma Hong-Lei. Structural and photoluminescence characters of SnO22:Sb thin films pr epared by rf magnetron sputtering. Acta Physica Sinica, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
    [18] Zhang De-Heng, Wang Qing-Pu, Xue Zhong-Ying. Ultra violet photoluminescenc of ZnO films on different substrates. Acta Physica Sinica, 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [19] Li Jun-Jie, Zheng Wei-Tao, Bian Hai-Jiao, Lü Xian-Yi, Jiang Zhi-Gang, Bai Yi-Zhen, Jin Zeng-Sun, Zhao Yong-Nian. The effect of annealing on the field emission properties of amorphous CNx films. Acta Physica Sinica, 2003, 52(7): 1797-1801. doi: 10.7498/aps.52.1797
    [20] Yang Shen-Dong, Ning Zhao-Yuan, Huang Feng, Cheng Shan-Hua, Ye Chao. . Acta Physica Sinica, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
Metrics
  • Abstract views:  367
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2024
  • Accepted Date:  07 November 2024
  • Available Online:  03 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回