Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of temperature cycling on leakage mechanism of through-silicon via insulation layer

REN Yunkun CHEN Si QIN Fei

Citation:

Effects of temperature cycling on leakage mechanism of through-silicon via insulation layer

REN Yunkun, CHEN Si, QIN Fei
cstr: 32037.14.aps.74.20241381
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Through-silicon via (TSV), as a key technology for realizing interconnections in three-dimensional integrated circuits (3D ICs), critically depends on the integrity of its sidewall interfaces to maintain optimal leakage characteristics. In this work, the temperature cycling experiments, incorporating leakage current I-V testing, microstructural observations are conducted, and the EDS elemental analysis is made to evaluate the effects of temperature cycling on the integrity of TSV sidewall interfaces and the leakage mechanisms in the insulation layer. The results indicate that as the number of temperature cycles increases, the alternating cyclic loads progressively degrade the integrity of the TSV barrier layer, transitioning from an intact interface to the formation of micro-voids and micro-cracks, which results in a significant increase in leakage current. When through-thickness cracks appear at the interface, a sudden decrease in leakage current occurs. The TSV failure mode is transforms from thermally induced leakage to mechanical cracking. The leakage mechanism of the insulation layer transforms from the Schottky emission mechanism (Cycle≤60) into a combination of Schottky emission and Poole-Frenkel emission mechanisms (Cycle≥90), and this transformation becomes more pronounced under high electric field conditions. Further analysis of TSV interface integrity reveals that thermomechanical stress induced by temperature cycling generates defects at the interface between the TSV copper fill and the barrier layer. As thermally induced defects accumulate, the barrier height of the insulation layer continuously decreases, making it easier for electrons in the metal to overcome the Schottky barrier under thermal and electric field excitation, thereby forming leakage currents. Moreover, these defects facilitate the diffusion of copper atoms into the insulation layer, thereby forming localized high electric field regions. These high-field regions in the insulation layer increase electron emission rates through the Poole-Frenkel emission mechanism, creating leakage paths. Therefore, copper diffusion emerges as one of the primary causes of dielectric performance degradation in the insulation layer.
      Corresponding author: CHEN Si, chensiceprei@yeah.net ; QIN Fei, qfei@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61804032).
    [1]

    Wang Y K, Liu H Z, Huo L H, Li H B, Tian W C, Ji H Y, Chen S 2024 Micromachines 15 422Google Scholar

    [2]

    Jang Y J, Sharma A, Jung J P 2023 Materials 16 7652Google Scholar

    [3]

    董刚, 武文珊, 杨银堂 2015 物理学报 64 026601Google Scholar

    Dong G, Wu W S, Yang Y T 2015 Acta Phys. Sin. 64 026601Google Scholar

    [4]

    董刚, 刘荡, 石涛, 杨银堂 2015 物理学报 64 176601Google Scholar

    Dong G, Liu D, Shi T, Yang Y T 2015 Acta Phys. Sin. 64 176601Google Scholar

    [5]

    Fan Z W, Chen X, Wang Y S, Jiang Y, Zhang S F 2022 Microelectron. Reliab. 138 114643Google Scholar

    [6]

    Kumari V, Chandrakar S, Verma S, Majumder M K 2023 IEEE Trans. Compon. Packag. Manuf. Technol. 13 1734Google Scholar

    [7]

    Chan J M, Lee K C, Tan C S 2018 IEEE Trans. Device Mater. Reliab. 18 520Google Scholar

    [8]

    Chan J M, Cheng X, Lee K C, Kanert W, Tan C S 2017 IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, April 2–6, 2017 p4A

    [9]

    Chandrakar M, Majumder M K 2022 IEEE Trans. Compon. Packag. Manuf. Technol. 12 1832Google Scholar

    [10]

    Gong T, Xie L L, Chen S, Lu X J, Zhao M R, Zhu J Y, Yang X F, Wang Z Z 2024 Crystals 14 37

    [11]

    Shen Z S, Jing S Y, Heng Y Y, Yao Y F, Tu K N, Liu Y X 2023 Appl. Phys. Rev. 10 021309Google Scholar

    [12]

    Nakamura T, Kitada H, Mizushima Y, Maeda N, Fujimoto K, Ohba T 2012 IEEE 2011 International 3D Systems Integration Conference (3DIC) Osaka, Japan, January 31– February 2, 2012 p1

    [13]

    Ranganathan N, Lee D Y, Youhe L, Lo G Q, Prasad K, Pey K L 2011 IEEE Trans. Compon. Packag. Manuf. Technol. 1 1497Google Scholar

    [14]

    Lin Y, Tan C S 2018 Jpn. J. Appl. Phys. 57 07MF01Google Scholar

    [15]

    Chen S, Jian X D, Li K, Li G Y, Wang Z Z, Yang X F, Wang H Y, Fu Z W 2023 Microelectron. Reliab. 141 114889Google Scholar

    [16]

    Hung J F, Lau J H, Chen P S, Wu S H, Lai S J, Li M L, Sheu S S, Tzeng P J, Lin Z H, Ku T K, Lo W C, Kao M J 2012 IEEE 62nd Electronic Components and Technology Conference(ECTC) San Diego, CA, May 29–June 1, 2012 p564

    [17]

    Krause M, Altmann F, Schmidt C, Petzold M, Malta D, Temple D 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) Lake Buena Vista, FL, May 31–June 3, 2011 p1452

    [18]

    Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 578168Google Scholar

    [19]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. London, Ser. A 119 173Google Scholar

    [20]

    Frenkel J 1938 Phys. Rev. 54 647Google Scholar

    [21]

    Schottky W 1939 Z. Phys. 113 367Google Scholar

  • 图 1  测试平台及样品介绍

    Figure 1.  Test platform and sample introduction.

    图 2  0—300次温度循环样品I-V (J-E )测试结果

    Figure 2.  I-V (J-E ) test results of samples after 0–300 temperature cycles.

    图 3  LIT定位TSV侧壁缺陷结果图

    Figure 3.  LIT detection results of TSV sidewall defects.

    图 4  不同温度循环次数下TSV界面微观结构图

    Figure 4.  Microstructure of TSV interfaces under different temperature cycling numbers.

    图 5  Cycle-30 EDS元素分析结果图

    Figure 5.  Results of cycle-30 EDS elemental analysis.

    图 6  漏电机制拟合曲线 (a) 肖特基拟合; (b) P-F拟合

    Figure 6.  Leakage current mechanism fitting curves: (a) Schottky fitting; (b) P-F fitting.

    图 7  不同温度循环次数后绝缘层势垒高度变化值

    Figure 7.  Variation in insulation layer barrier height after different numbers of temperature cycles.

    表 1  不同温度循环次数下绝缘层中Cu元素比例

    Table 1.  Cu element proportion in insulation layer under different temperature cycling numbers.

    温循次数0306090120150180210240270300
    Cu质量含量/%9.199.2212.5518.0727.4433.5937.1641.9844.1948.2915.85
    DownLoad: CSV

    表 2  漏电机制模型

    Table 2.  Leakage mechanism models.

    漏电机制 理论公式 拟合公式 参数说明
    P-F发射 $ {J_{{\text{F-P}}}} = CE\exp \left( {\dfrac{{ - {\varphi _{\text{t}}} + q\sqrt {qE/4{\text{π}}{\varepsilon _0}{\varepsilon _{\text{r}}}} }}{{kT}}} \right) $ $ \mathrm{ln}\left(J_{\text{F-P}}/E\right)=A_{{\text{F-P}}}\sqrt{E}+B_{{\text{F-P}}} $ J 为电流密度
    q 为电子电荷
    E为电场强度
    φt 为势陷深度
    ε0 为真空介电常数
    εr 为介电常数
    肖特基发射 ${J_{\text{S}}} = A{T^2}\exp \left( {\dfrac{{ - {\varphi _{\text{s}}} + q\sqrt {qE/4{\text{π}}{\varepsilon _0}{\varepsilon _{\text{r}}}} }}{{kT}}} \right)$ $ \mathrm{ln}J_{\text{S}}=A_{\text{S}}\sqrt{E}+B_{\text{S}} $ A 为有效理查德森常数
    T 为绝对温度
    φs 为肖特基势垒高度
    k 为玻尔兹曼常数
    DownLoad: CSV
  • [1]

    Wang Y K, Liu H Z, Huo L H, Li H B, Tian W C, Ji H Y, Chen S 2024 Micromachines 15 422Google Scholar

    [2]

    Jang Y J, Sharma A, Jung J P 2023 Materials 16 7652Google Scholar

    [3]

    董刚, 武文珊, 杨银堂 2015 物理学报 64 026601Google Scholar

    Dong G, Wu W S, Yang Y T 2015 Acta Phys. Sin. 64 026601Google Scholar

    [4]

    董刚, 刘荡, 石涛, 杨银堂 2015 物理学报 64 176601Google Scholar

    Dong G, Liu D, Shi T, Yang Y T 2015 Acta Phys. Sin. 64 176601Google Scholar

    [5]

    Fan Z W, Chen X, Wang Y S, Jiang Y, Zhang S F 2022 Microelectron. Reliab. 138 114643Google Scholar

    [6]

    Kumari V, Chandrakar S, Verma S, Majumder M K 2023 IEEE Trans. Compon. Packag. Manuf. Technol. 13 1734Google Scholar

    [7]

    Chan J M, Lee K C, Tan C S 2018 IEEE Trans. Device Mater. Reliab. 18 520Google Scholar

    [8]

    Chan J M, Cheng X, Lee K C, Kanert W, Tan C S 2017 IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, April 2–6, 2017 p4A

    [9]

    Chandrakar M, Majumder M K 2022 IEEE Trans. Compon. Packag. Manuf. Technol. 12 1832Google Scholar

    [10]

    Gong T, Xie L L, Chen S, Lu X J, Zhao M R, Zhu J Y, Yang X F, Wang Z Z 2024 Crystals 14 37

    [11]

    Shen Z S, Jing S Y, Heng Y Y, Yao Y F, Tu K N, Liu Y X 2023 Appl. Phys. Rev. 10 021309Google Scholar

    [12]

    Nakamura T, Kitada H, Mizushima Y, Maeda N, Fujimoto K, Ohba T 2012 IEEE 2011 International 3D Systems Integration Conference (3DIC) Osaka, Japan, January 31– February 2, 2012 p1

    [13]

    Ranganathan N, Lee D Y, Youhe L, Lo G Q, Prasad K, Pey K L 2011 IEEE Trans. Compon. Packag. Manuf. Technol. 1 1497Google Scholar

    [14]

    Lin Y, Tan C S 2018 Jpn. J. Appl. Phys. 57 07MF01Google Scholar

    [15]

    Chen S, Jian X D, Li K, Li G Y, Wang Z Z, Yang X F, Wang H Y, Fu Z W 2023 Microelectron. Reliab. 141 114889Google Scholar

    [16]

    Hung J F, Lau J H, Chen P S, Wu S H, Lai S J, Li M L, Sheu S S, Tzeng P J, Lin Z H, Ku T K, Lo W C, Kao M J 2012 IEEE 62nd Electronic Components and Technology Conference(ECTC) San Diego, CA, May 29–June 1, 2012 p564

    [17]

    Krause M, Altmann F, Schmidt C, Petzold M, Malta D, Temple D 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) Lake Buena Vista, FL, May 31–June 3, 2011 p1452

    [18]

    Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 578168Google Scholar

    [19]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. London, Ser. A 119 173Google Scholar

    [20]

    Frenkel J 1938 Phys. Rev. 54 647Google Scholar

    [21]

    Schottky W 1939 Z. Phys. 113 367Google Scholar

  • [1] Ma Xin, Lu Bin, Dong Lin-Peng, Miao Yuan-Hao. A novel TMOSFET ternary inverter based on hybrid conduction mechanism. Acta Physica Sinica, 2023, 72(18): 188501. doi: 10.7498/aps.72.20230819
    [2] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [3] Yuan Bo, Shui Guo-Shuang, Wang Yue-Sheng. Nonlinear ultrasonic evaluation of damage to bonding interface under cyclic temperature fatigue. Acta Physica Sinica, 2018, 67(7): 074302. doi: 10.7498/aps.67.20172265
    [4] Fu Min, Wen Shang-Sheng, Xia Yun-Yun, Xiang Chang-Ming, Ma Bing-Xu, Fang Fang. Failure analysis of GaN-based Light-emitting diode with hole vertical structure. Acta Physica Sinica, 2017, 66(4): 048501. doi: 10.7498/aps.66.048501
    [5] Cheng Guang-Gui, Zhang Wei, Fang Jun, Jiang Shi-Yu, Ding Jian-Ning, Noshir S. Pesika, Zhang Zhong-Qiang, Guo Li-Qiang, Wang Ying. Fabrication of triboelectric nanogenerator with textured surface and its electric output performance. Acta Physica Sinica, 2016, 65(6): 060201. doi: 10.7498/aps.65.060201
    [6] Wang Hai-Feng, Li Wang, Gu Guo-Biao, Shen Jun, Teng Qi-Zhi. Static bifurcation analysis of natural circulation inner evaporative cooling system in wind turbine. Acta Physica Sinica, 2016, 65(3): 030501. doi: 10.7498/aps.65.030501
    [7] Dong Gang, Wu Wen-Shan, Yang Yin-Tang. Stack-through silicon via dynamic power consumption optimization in three-dimensional integrated circuit. Acta Physica Sinica, 2015, 64(2): 026601. doi: 10.7498/aps.64.026601
    [8] Dong Gang, Liu Dang, Shi Tao, Yang Yin-Tang. Effects of thermal stress induced by mulitiple through silicon vias on mobility and keep out zone. Acta Physica Sinica, 2015, 64(17): 176601. doi: 10.7498/aps.64.176601
    [9] Wang Fang, Wang Jin-Zhi, Feng Tang-Fu, Sun Ren-Bing, Yu Sheng. Curie temperature mechanism in La(Fe, Si)13 compound. Acta Physica Sinica, 2014, 63(12): 127501. doi: 10.7498/aps.63.127501
    [10] Qian Li-Bo, Zhu Zhang-Ming, Yang Yin-Tang. Through-silicon-via-aware interconnect prediction model for 3D integrated circuirt. Acta Physica Sinica, 2012, 61(6): 068001. doi: 10.7498/aps.61.068001
    [11] Zhu Zhang-Ming, Zuo Ping, Yang Yin-Tang. An analytical thermal model for 3D integrated circuit considering through silicon via. Acta Physica Sinica, 2011, 60(11): 118001. doi: 10.7498/aps.60.118001
    [12] Zhu Zhang-Ming, Hao Bao-Tian, Qian Li-Bo, Zhong Bo, Yang Yin-Tang. A compact interconnect temperature distribution model considering the via effect and the heat fringing effect. Acta Physica Sinica, 2009, 58(10): 7130-7135. doi: 10.7498/aps.58.7130
    [13] Wu Zhen-Yu, Yang Yin-Tang, Chai Chang-Chun, Li Yue-Jin, Wang Jia-You, Liu Bin. The effect of via size on the stress migration of Cu interconnects. Acta Physica Sinica, 2008, 57(6): 3730-3734. doi: 10.7498/aps.57.3730
    [14] Wang Yan-Gang, Xu Ming-Zhen, Tan Chang-Hua, Duan Xiao-Rong. Conduction mechanism of ultra-thin gate oxide n-MOSFET after soft breakdown. Acta Physica Sinica, 2005, 54(8): 3884-3888. doi: 10.7498/aps.54.3884
    [15] Xu Hai-Jun, Fu Xiao-Nan, Sun Xin-Rui, Li Xin-Jian. Investigations on the structural and optical properties of silicon nanoporous pillar array. Acta Physica Sinica, 2005, 54(5): 2352-2357. doi: 10.7498/aps.54.2352
    [16] XU GANG-YI, WANG TIAN-MIN, HE YU-LIANG, MA ZHI-XUN, ZHENG GUO-ZHEN. THE TRANSPORT MECHANISM IN NANOCRYSTALLINE SILICON FILMS AT LOW TEMPERATURE. Acta Physica Sinica, 2000, 49(9): 1798-1803. doi: 10.7498/aps.49.1798
    [17] LIU XIAO-BING, XIONG ZU-HONG, YUAN SHUAI, CHEN YAN-DONG, HE JUN, LIAO LIANG-SHENG, DING XUN-MIN, HOU XIAO-YUAN. STUDIES ON TEMPERATURE DEPENDENCE OF PHOTOLUMINESCENCE IN POROUS SILICON. Acta Physica Sinica, 1998, 47(8): 1391-1396. doi: 10.7498/aps.47.1391
    [18] ZHAO LI-ZENG, MA XIAO, QIN YONG, LU ZHEN-ZHONG, NIE YU-XIN, WANG DUO-YUAN, HU MIN-XUE. HOLOGRAPHIC DETECTION OF PHOTON-GATED SPECTRAL HOLES AND IMAGE STORAGE. Acta Physica Sinica, 1997, 46(8): 1487-1492. doi: 10.7498/aps.46.1487
    [19] LIN JUN, ZHANG LI-ZHU, CHEN ZHI-JIAN, SONG HAI-ZHI, YAO DE-CHENG, DUAN JIA-QI, FU JI-SHI, ZHANG BO-RUI, QIN GUO-GANG. BLUE LIGHT EMISSION FROM POROUS SILICON AND PHOTOLUMINESCENCE MECHANISM. Acta Physica Sinica, 1996, 45(1): 121-125. doi: 10.7498/aps.45.121
    [20] HUANG TONG-KAI, TETSURO NAKAMURA. MECHANISM OF CONDUCTION IN BaSn1-xSbxO3-δ AND Ba1-yLaySnO3-δ. Acta Physica Sinica, 1994, 43(11): 1840-1846. doi: 10.7498/aps.43.1840
Metrics
  • Abstract views:  529
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  30 September 2024
  • Accepted Date:  03 January 2025
  • Available Online:  08 January 2025
  • Published Online:  05 March 2025

/

返回文章
返回