Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Intelligent prediction of manta ray flow field based on a denoising probabilistic diffusion model

BAI Jingyi HUANG Qiaogao GAO Pengcheng WEN Xin CHU Yong

Citation:

Intelligent prediction of manta ray flow field based on a denoising probabilistic diffusion model

BAI Jingyi, HUANG Qiaogao, GAO Pengcheng, WEN Xin, CHU Yong
cstr: 32037.14.aps.74.20241499
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The manta ray is a large marine species, which has the ability of gliding efficiently and flapping rapidly. It can autonomously switch between various motion modes, such as gliding, flapping, and group swimming, based on ocean currents and seabed conditions. To address the computational resource and time constraints of traditional numerical simulation methods in modeling the manta ray’s three-dimensional (3D) large-deformation flow field, this study proposes a novel generative artificial intelligence approach based on a denoising probabilistic diffusion model (surf-DDPM). This method predicts the surface flow field of the manta ray by inputting a set of motion parameter variables. Initially, we establish a numerical simulation method for the manta ray’s flapping mode by using the immersed boundary method and the spherical function gas kinetic scheme (IB-SGKS), generating an unsteady flow dataset comprising 180 sets under frequency conditions of 0.3–0.9 Hz and amplitude conditions of 0.1–0.6 body lengths. Data augmentation is then performed. Subsequently, a Markov chain for the noise diffusion process and a neural network model for the denoising generation process are constructed. A pretrained neural network embeds the motion parameters and diffusion time step labels into the flow field data, which are then fed into a U-Net for model training. Notably, a transformer network is incorporated into the U-Net architecture to enable the handling of long-sequence data. Finally, we examine the influence of neural network hyperparameters on model performance and visualize the predicted pressure and velocity fields for multi-flapping postures that were not included in the training set, followed by a quantitative analysis of prediction accuracy, uncertainty, and efficiency. The results demonstrate that the proposed model achieves fast and accurate predictions of the manta ray’s surface flow field, characterized by extensive high-dimensional upsampling. The minimum PSNR value and SSIM value of the predictions are 35.931 dB and 0.9524, respectively, with all data falling within the 95% prediction interval. Compared with CFD simulations, the single-condition simulations by using AI model show that the prediction efficiency is enhanced by 99.97%.
      Corresponding author: HUANG Qiaogao, huangqiaogao@nwpu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFC2805200), the National Natural Science Foundation of China (Grant Nos. 52301387, 52201381, 12002282), the State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University, China (Grant No. GKZDO10089), the State Key Laboratory of High Temperature Gas Dynamics of Institute of Mechanics, Chinese Academy of Sciences, China (Grant No. 2023KF11), and the China Postdoctoral Science Foundation (Grant No. 2023M742851).
    [1]

    王亮 2007 博士学位论文 (南京: 河海大学)

    Wang L 2007 Ph. D. Dissertation (Nanjing: Hehai University

    [2]

    Asada T, Furuhashi H 2024 Ocean Eng. 308 118261Google Scholar

    [3]

    Xing C, Yin Z, Xu H, Cao Y, Qu Y, Huang Q 2024 Ocean Eng. 312 119039Google Scholar

    [4]

    Bao T, Cao Y, Cao Y H, Lu Y, Pan G, Huang Q G 2024 Ocean Eng. 309 118377Google Scholar

    [5]

    Dong H, Bozkurttas M, Mittal R, Madden P, Laude G V 2010 J. Fluid Mech. 645 34Google Scholar

    [6]

    Huang Z, Menzer A, Guo J, Dong H 2024 Bioinspir Biomim 19 026004Google Scholar

    [7]

    Wang S, Gao P, Huang Q G, Pan G, Tian X 2024 Ocean Eng. 294 116799Google Scholar

    [8]

    Gao P C, Song B, Huang Q G, Tian X S, Pan G, Chu Y, Bai J Y 2024 Ocean Eng. 313 119415Google Scholar

    [9]

    Gao P C, Huang Q G, Pan G, Cao Y, Luo Y 2023 Ocean Eng. 278 114389Google Scholar

    [10]

    Miyanawala T P, Li Y, Law Y Z 2024 Ocean Eng. 306 118003Google Scholar

    [11]

    Li G, Zhu H, Jian H 2023 J. Hydrol. 625 130025Google Scholar

    [12]

    战庆亮, 葛耀君, 白春锦 2022 物理学报 71 074701Google Scholar

    Zhan Q L, Ge Y J, Bai C J 2022 Acta Phys. Sin. 71 074701Google Scholar

    [13]

    Wang Z, Zhang W 2023 Phys. Fluids 35 025124Google Scholar

    [14]

    Qiu C C, Huang Q G, Pan G 2023 Phys. Fluids 35 017132Google Scholar

    [15]

    Xia Y, Li T, Wang Q, Yue J, Peng B, Yi X 2024 Phys. Fluids 36 103313Google Scholar

    [16]

    Li R, Song B, Chen Y 2024 Ocean Eng. 304 117857Google Scholar

    [17]

    Caraccio P, Marseglia G, Lauria A 2024 Phys. Fluids 36 107120Google Scholar

    [18]

    Qiu C C, Huang Q G, Pan G 2023 Ocean Eng. 281 114555Google Scholar

    [19]

    Gao H, Gao L, Shi Z, Sun D, Sun X 2024 Aerosp. Sci. Technol. 147 108977Google Scholar

    [20]

    Lin H, Jiang X, Deng X 2024 Thinking Skills and Creativity 54 101649Google Scholar

    [21]

    Kartashov N, Vlassis N N 2024 arXiv: 2409.14473 [cs.CE]

    [22]

    Torem N, Ronen R, Schechner Y Y, Elad M 2023 Proceedings of the IEEE/CVF International Conference on Computer Vision Paris, France, October 2–6, 2023 p3810

    [23]

    Ho J, Jain A, Abbeel P 2020 Adv. Neural Inf. Process. Syst. 33 6840Google Scholar

    [24]

    Rombach R, Blattmann A, Loren D, Esser P, Ommer B 2022 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition New Orleans, LA, June 18–24, 2022 p10674

    [25]

    Song J, Meng C, Ermon S 2020 arXiv: 2010.02502 [cs.LG]

    [26]

    Nichol A, Dhariwal P, Ramesh A, Shyam P, Mishkin P, McGrew B 2021 arXiv: 2112.10741 [cs.CV]

    [27]

    Huang L, Zheng C, Chen Y 2024 Phys. Fluids 36 095113Google Scholar

    [28]

    Rybchuk A, Hassanaly M, Hamilton N 2023 Phys. Fluids 35 126604Google Scholar

    [29]

    Gao P C, Tian X, Huang Q G 2024 Phys. Fluids 36 011902Google Scholar

    [30]

    Gao P C, Huang Q G, Pan G 2023 Phys. Fluids 35 061909Google Scholar

    [31]

    张栋 2020 博士学位论文 (西安: 西北工业大学)

    Zhang D 2020 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

  • 图 1  蝠鲼模型与流场网格划分

    Figure 1.  Manta ray model and flow field mesh partitioning.

    图 2  蝠鲼模型单周期运动

    Figure 2.  Single-cycle motion process of the manta ray simulation mode.

    图 3  仿真结果准确性验证

    Figure 3.  Accuracy validation of the simulation results.

    图 4  不同扑动频率对应CFD仿真时间步数

    Figure 4.  CFD simulation time steps corresponding to different flapping frequencies.

    图 5  蝠鲼表面流场数值模拟压力与速度场云图

    Figure 5.  Pressure and Velocity Field Contours in Numerical Simulation of Manta Ray Surface Flow Dynamics.

    图 6  原始数据填充与归一化处理结果对比

    Figure 6.  Comparison of original data padding and normalized processing results.

    图 7  去噪扩散概率模型原理

    Figure 7.  Principle of the denoising diffusion probabilistic model.

    图 8  surf-DDPM神经网络算法框图 (a)运动参数与噪声扩散时间步嵌入模块; (b) U-Net去噪生成模块; (c) Transformer自注意力机制模块

    Figure 8.  The surf-DDPM neural network algorithm flowchart: (a) Motion parameters and noise diffusion time step embedding module; (b) U-Net denoising generation module; (c) transformer self-attention mechanism module.

    图 9  超参数影响分析 (a)噪声调度时间表函数影响; (b) U-Net的网络层数影响; (c)噪声扩散步数影响

    Figure 9.  Hyperparameter impact analysis: (a) Effect of noise scheduling function on results; (b) impact of U-Net network depth on performance; (c) effect of noise diffusion steps on generation quality.

    图 10  内插测试工况压力与速度场预测结果与误差 (a), (d), (g)压力场CFD计算真值; (b), (e), (h) surf-DDPM人工智能模型预测结果; (c), (f), (i)预测值误差云图; (j), (m), (p)速度场CFD计算真值; (k), (n), (q) surf-DDPM人工智能模型预测结果; (l), (o), (r)预测值误差云图

    Figure 10.  Predicted results and errors of surface pressure and velocity fields for the interpolation test case: (a), (d), (g) True values of dynamic pressure field from CFD simulations; (b), (e), (h) pressure field predicted by surf-DDPM AI model; (c), (f), (i) absolute error contour of pressure field; (j), (m), (p) true values of velocity flow field from CFD simulations; (k), (n), (q) velocity field predicted by surf-DDPM AI model; (l), (o), (r) absolute error contour of velocity field.

    图 11  外推测试工况压力场与速度场预测结果与误差 (a), (d), (g)压力场CFD计算真值; (b), (e), (h) surf-DDPM人工智能模型预测结果; (c), (f), (i)预测值误差云图; (j), (m), (p)速度场CFD计算真值; (k), (n), (q) surf-DDPM人工智能模型预测结果; (l), (o), (r)预测值误差云图

    Figure 11.  Prediction results and errors of pressure and velocity fields in extrapolation test cases: (a), (d), (g) True values ofdynamic pressure field from CFD simulations; (b), (e), (h) pressure field predicted by surf-DDPM AI model; (c), (f), (i) absoluteer-ror contour of pressure field; (j), (m), (p) true values of velocity flow field from CFD simulations; (k), (n), (q) velocity fieldpre-dicted by surf-DDPM AI model; (l), (o), (r) absolute error contour of velocity field.

    图 12  翼尖位置网格节点流场预测结果95%置信区间 (a) d1姿态压力场; (b) d1姿态速度场; (c) d3姿态压力场; (d) d3姿态速度场

    Figure 12.  95% Prediction intervals for flow field predictions at wingtip locations: (a) Dynamic pressure field for d1 configuration; (b) velocity field for d1 configuration; (c) dynamic pressure field for d3 configuration; (d) velocity field for d3 configuration.

    表 1  不同扑动频率对应数据提取起始与间隔时间步

    Table 1.  Starting times and interval steps for data extraction at different flapping frequencies.

    扑动频率/Hz起始时间步间隔时间步
    0.31139057
    0.5683835
    0.6569829
    0.7488425
    0.9379919
    DownLoad: CSV

    表 2  流场预测结果准确性定量分析

    Table 2.  Quantitative analysis of accuracy in flow field predictions.

    预测结果内插测试工况外推测试工况
    RMSEPSNR/dBSSIMRMSEPSNR/dBSSIM
    d1-P0.022437.0310.96790.026336.0850.9598
    d2-P0.012238.2030.97540.023336.5560.9624
    d3-P0.021437.4860.96880.020836.3870.9533
    d1-U0.024536.4750.96130.027235.9020.9587
    d2-U0.014638.8110.98130.026135.2410.9496
    d3-U0.025035.9310.95240.030135.1580.9571
    DownLoad: CSV

    表 3  CFD与人工智能方法预测流场效率对比

    Table 3.  Comparison of flow field prediction efficiency between CFD and surf-DDPM methods.

    扑动频率/Hz CFD/核时 AI训练/卡时 AI预测/s
    0.3 120 24 30
    0.5 72
    0.6 60
    0.7 48
    0.9 36
    DownLoad: CSV
  • [1]

    王亮 2007 博士学位论文 (南京: 河海大学)

    Wang L 2007 Ph. D. Dissertation (Nanjing: Hehai University

    [2]

    Asada T, Furuhashi H 2024 Ocean Eng. 308 118261Google Scholar

    [3]

    Xing C, Yin Z, Xu H, Cao Y, Qu Y, Huang Q 2024 Ocean Eng. 312 119039Google Scholar

    [4]

    Bao T, Cao Y, Cao Y H, Lu Y, Pan G, Huang Q G 2024 Ocean Eng. 309 118377Google Scholar

    [5]

    Dong H, Bozkurttas M, Mittal R, Madden P, Laude G V 2010 J. Fluid Mech. 645 34Google Scholar

    [6]

    Huang Z, Menzer A, Guo J, Dong H 2024 Bioinspir Biomim 19 026004Google Scholar

    [7]

    Wang S, Gao P, Huang Q G, Pan G, Tian X 2024 Ocean Eng. 294 116799Google Scholar

    [8]

    Gao P C, Song B, Huang Q G, Tian X S, Pan G, Chu Y, Bai J Y 2024 Ocean Eng. 313 119415Google Scholar

    [9]

    Gao P C, Huang Q G, Pan G, Cao Y, Luo Y 2023 Ocean Eng. 278 114389Google Scholar

    [10]

    Miyanawala T P, Li Y, Law Y Z 2024 Ocean Eng. 306 118003Google Scholar

    [11]

    Li G, Zhu H, Jian H 2023 J. Hydrol. 625 130025Google Scholar

    [12]

    战庆亮, 葛耀君, 白春锦 2022 物理学报 71 074701Google Scholar

    Zhan Q L, Ge Y J, Bai C J 2022 Acta Phys. Sin. 71 074701Google Scholar

    [13]

    Wang Z, Zhang W 2023 Phys. Fluids 35 025124Google Scholar

    [14]

    Qiu C C, Huang Q G, Pan G 2023 Phys. Fluids 35 017132Google Scholar

    [15]

    Xia Y, Li T, Wang Q, Yue J, Peng B, Yi X 2024 Phys. Fluids 36 103313Google Scholar

    [16]

    Li R, Song B, Chen Y 2024 Ocean Eng. 304 117857Google Scholar

    [17]

    Caraccio P, Marseglia G, Lauria A 2024 Phys. Fluids 36 107120Google Scholar

    [18]

    Qiu C C, Huang Q G, Pan G 2023 Ocean Eng. 281 114555Google Scholar

    [19]

    Gao H, Gao L, Shi Z, Sun D, Sun X 2024 Aerosp. Sci. Technol. 147 108977Google Scholar

    [20]

    Lin H, Jiang X, Deng X 2024 Thinking Skills and Creativity 54 101649Google Scholar

    [21]

    Kartashov N, Vlassis N N 2024 arXiv: 2409.14473 [cs.CE]

    [22]

    Torem N, Ronen R, Schechner Y Y, Elad M 2023 Proceedings of the IEEE/CVF International Conference on Computer Vision Paris, France, October 2–6, 2023 p3810

    [23]

    Ho J, Jain A, Abbeel P 2020 Adv. Neural Inf. Process. Syst. 33 6840Google Scholar

    [24]

    Rombach R, Blattmann A, Loren D, Esser P, Ommer B 2022 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition New Orleans, LA, June 18–24, 2022 p10674

    [25]

    Song J, Meng C, Ermon S 2020 arXiv: 2010.02502 [cs.LG]

    [26]

    Nichol A, Dhariwal P, Ramesh A, Shyam P, Mishkin P, McGrew B 2021 arXiv: 2112.10741 [cs.CV]

    [27]

    Huang L, Zheng C, Chen Y 2024 Phys. Fluids 36 095113Google Scholar

    [28]

    Rybchuk A, Hassanaly M, Hamilton N 2023 Phys. Fluids 35 126604Google Scholar

    [29]

    Gao P C, Tian X, Huang Q G 2024 Phys. Fluids 36 011902Google Scholar

    [30]

    Gao P C, Huang Q G, Pan G 2023 Phys. Fluids 35 061909Google Scholar

    [31]

    张栋 2020 博士学位论文 (西安: 西北工业大学)

    Zhang D 2020 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

  • [1] XU Jiaxin, XU Lechen, LIU Jingyang, DING Huajian, WANG Qin. Research Progress on Artificial Intelligence Empowered Quantum Communication and Quantum Sensing Systems. Acta Physica Sinica, 2025, 74(12): . doi: 10.7498/aps.74.20250322
    [2] Gao Peng-Cheng, Tian Xu-Shun, Huang Qiao-Gao, Pan Guang, Chu Yong. Hydrodynamic performance of manta rays swimming in staggered arranged group. Acta Physica Sinica, 2024, 73(13): 134702. doi: 10.7498/aps.73.20240399
    [3] Pu Shi, Huang Xu-Guang. Relativistic spin hydrodynamics. Acta Physica Sinica, 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [4] Pan Xin-Yu, Bi Xiao-Xue, Dong Zheng, Geng Zhi, Xu Han, Zhang Yi, Dong Yu-Hui, Zhang Cheng-Long. Review of development for ptychography algorithm. Acta Physica Sinica, 2023, 72(5): 054202. doi: 10.7498/aps.72.20221889
    [5] Hou Chen-Yang, Meng Fan-Chao, Zhao Yi-Ming, Ding Jin-Min, Zhao Xiao-Ting, Liu Hong-Wei, Wang Xin, Lou Shu-Qin, Sheng Xin-Zhi, Liang Sheng. “Machine micro/nano optics scientist”: Application and development of artificial intelligence in micro/nano optical design. Acta Physica Sinica, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [6] Shen Pei-Xin, Jiang Wen-Jie, Li Wei-Kang, Lu Zhi-De, Deng Dong-Ling. Adversarial learning in quantum artificial intelligence. Acta Physica Sinica, 2021, 70(14): 140302. doi: 10.7498/aps.70.20210789
    [7] Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong. A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm. Acta Physica Sinica, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [8] Liu Quan, Yu Ming, Lin Zhong, Wang Rui-Li. Conservative sliding algorithms for hydrodynamics. Acta Physica Sinica, 2015, 64(19): 194701. doi: 10.7498/aps.64.194701
    [9] Li Lu-Lu, Zhang Hua, Yang Xian-Jun. Two-dimensional magneto-hydrodynamic description of field reversed configuration. Acta Physica Sinica, 2014, 63(16): 165202. doi: 10.7498/aps.63.165202
    [10] Chen Yan-Pei, Pierre Evesque, Hou Mei-Ying. Experimental study on the local equation of state for vibrated granular gases. Acta Physica Sinica, 2013, 62(16): 164503. doi: 10.7498/aps.62.164503
    [11] Liang Jia-Yuan, Ten Wei-Zhong, Xue Yu. Study on the energy dissipation of macroscopic traffic models. Acta Physica Sinica, 2013, 62(2): 024706. doi: 10.7498/aps.62.024706
    [12] Li Chuan-Qi, Gu Bin, Mu Li-Li, Zhang Qing-Mei, Chen Mei-Hong, Jiang Yong. An MHD simulation study on the location and shape of magnetopause in equatorial plane. Acta Physica Sinica, 2012, 61(21): 219402. doi: 10.7498/aps.61.219402
    [13] Yuan Yong-Teng, Hao Yi-Dan, Hou Li-Fei, Tu Shao-Yong, Deng Bo, Hu Xin, Yi Rong-Qing, Cao Zhu-Rong, Jiang Shao-En, Liu Shen-Ye, Ding Yong-Kun, Miao Wen-Yong. The study of hydrodynamic instability growth measurement. Acta Physica Sinica, 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [14] Wen Jian, Tian Huan-Huan, Xue Yu. Lattice hydrodynamic model for pedestrian traffic with the next-nearest-neighbor pedestrian. Acta Physica Sinica, 2010, 59(6): 3817-3823. doi: 10.7498/aps.59.3817
    [15] Pang Hai-Long, Li Ying-Jun, Lu Xin, Zhang Jie. Hydrodynamic model of transient Ni-like X-ray lasers driven by Gaussian laser pulse. Acta Physica Sinica, 2006, 55(12): 6382-6386. doi: 10.7498/aps.55.6382
    [16] Cang Yu, Lu Xin, Wu Hui-Chun, Zhang Jie. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics. Acta Physica Sinica, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [17] DAI ZHONG-LING, WANG YOU-NIAN, MA TENG-CAI. DYNAMICAL MODEL OF THE RADIO-FREQUENCY PLASMA SHEATH. Acta Physica Sinica, 2001, 50(12): 2398-2402. doi: 10.7498/aps.50.2398
    [18] ZHU WU-BIAO, WANG YOU-NAIN, DENG XIN-LU, MA TENG-CAI. HYDRODYNAMICS SIMULATION OF RF DISCHARGE COURSES WITH NEGATIVE BIAS. Acta Physica Sinica, 1996, 45(7): 1138-1145. doi: 10.7498/aps.45.1138
    [19] YANG WEI-HONG, HU XI-WEI. MAGNETOHYDRODYNAMICS WAVES IN A NONHOMEG-ENEOUS CURRENT-CARRYING CYLINDRICAL PLASMA. Acta Physica Sinica, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [20] LIU MU-REN, KONG LING-JIANG, JIANG FENG. MEAN FREE PATH OF PARTICLES IN FHP HYDRODYNAMICAL MODELS. Acta Physica Sinica, 1991, 40(11): 1736-1740. doi: 10.7498/aps.40.1736
Metrics
  • Abstract views:  452
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Received Date:  26 October 2024
  • Accepted Date:  28 March 2025
  • Available Online:  01 April 2025
  • Published Online:  20 May 2025

/

返回文章
返回