Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Key factors of spontaneous polarization magnitude in wurtzite materials

KANG Yao CHEN Jian TONG Yi WANG Xinpeng DUAN Kun WANG Jiaqi WANG Xudong ZHOU Dayu YAO Man

Citation:

Key factors of spontaneous polarization magnitude in wurtzite materials

KANG Yao, CHEN Jian, TONG Yi, WANG Xinpeng, DUAN Kun, WANG Jiaqi, WANG Xudong, ZHOU Dayu, YAO Man
cstr: 32037.14.aps.74.20241520
PDF
HTML
Get Citation
  • Emerging wurtzite ferroelectric materials have aroused significant interest due to their high spontaneous polarization magnitude (Ps). However, there is a limited understanding of the key factors that influence Ps. Herein, a machine-learning regression model is developed to predict the Ps using a dataset consisting of 40 binary and 89 simple ternary wurtzite materials. Features are extracted based on elemental properties, crystal parameters and electronic properties. Feature selection is carried out using the Boruta algorithm and distance correlation analysis, resulting in a comprehensive machine learning model. Furthermore, SHapley Additive exPlanations analysis identifies the average cation-ion potential (IPi_Aave) and the lattice parameter (a) as significant determinants of Ps, with IPi_Aave having the most prominent effect. A lower IPi_Aave corresponds to a lower Ps in the material. Additionally, a exhibits an approximately negative correlation with Ps.This multifactorial analysis fills the existing gap in understanding the determinants of Ps, and makes a foundational contribution to the evaluating emerging wurtzite materials and expediting the discovery of high-performance ferroelectric materials.The dataset in this work can be accessed in the Scientific Data Bank https://www.doi.org/10.57760/sciencedb.j00213.00073.
      Corresponding author: ZHOU Dayu, zhoudayu@dlut.edu.cn ; YAO Man, yaoman@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51974056, 51474047, 52472120), the Fundamental Research Funds for the Central Universities of China (Grant No. DUT24LAB117), and the Suzhou Laboratory Project (Grant No. SK-1202-2024-012).
    [1]

    Ishiwara H 2012 J. Nanosci. Nanotechnol. 12 7619Google Scholar

    [2]

    Arimoto Y, Ishiwara H 2004 Mrs. Bull. 29 823Google Scholar

    [3]

    Song S, Kim K H, Chakravarthi S, Han Z, Kim G, Ma K Y, Shin H S, Olsson R H, Jariwala D 2023 Appl. Phys. Lett. 123 183501Google Scholar

    [4]

    Muralt P 2000 J. Micromech. Microeng. 10 136Google Scholar

    [5]

    Takayama R, Tomita Y, Iijima K, Ueda I 1991 Ferroelectrics 118 325Google Scholar

    [6]

    Han X, Ji Y, Yang Y 2022 Adv. Funct. Mater. 32 2109625Google Scholar

    [7]

    钟维烈 1996 (北京: 科学出版社) 第1页

    Zhong W L 1996 Physics of Ferroelectric Materials (Beijing: Science Press) p1

    [8]

    李飞, 张树君, 徐卓 2020 物理学报 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [9]

    Fan Y T, Tan G J 2022 Mater. Lab 1 220008

    [10]

    Fichtner S, Wolff N, Lofink F, Kienle L, Wagner B 2019 J. Appl. Phys. 125 114103Google Scholar

    [11]

    Zhao Z, Chen Y R, Wang J F, Chen Y W, Zou J R, Lin Y X, Xing Y F, Liu C W, Hu C M 2022 IEEE Electr. Device L 43 553Google Scholar

    [12]

    Hayden J, Hossain M D, Xiong Y H, Ferri K, Zhu W L, Imperatore M V, Giebink N, Trolier-McKinstry S, Dabo I, Maria J P 2021 Phys. Rev. Mater. 5 044412Google Scholar

    [13]

    Wang D, Mondal S, Liu J N, Hu M T, Wang P, Yang S, Wang D H, Xiao Y X, Wu Y P, Ma T, Mi Z 2023 Appl. Phys. Lett. 123 033504Google Scholar

    [14]

    Wang D, Wang P, Wang B Y, Mi Z 2021 Appl. Phys. Lett. 119 111902Google Scholar

    [15]

    Ferri K, Bachu S, Zhu W L, Imperatore M, Hayden J , Alem N, Giebink N, Trolier-McKinstry S, Maria J P 2021 J. Appl. Phys. 130 044101Google Scholar

    [16]

    Zhang Y L, Zhu Q X, Tian B B, Duan C G 2024 Nano-Micro Lett. 16 227Google Scholar

    [17]

    Yasuoka S, Shimizu T, Tateyama A, Uehara M, Yamada H, Akiyama M, Hiranaga Y, Yasuo C, Funakubo H 2020 J. Appl. Phys. 128 114103Google Scholar

    [18]

    Ye K H, Han G, Yeu I W, Hwang C S, Choi J H 2021 Phys. Status Solidi R 15 2100009Google Scholar

    [19]

    Wang P, Wang D, Vu N M, Chiang T, Heron J T, Mi Z 2021 Appl. Phys. Lett. 118 223504Google Scholar

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [24]

    Dreyer C E, Janotti A, Van de Walle C G, Vanderbilt D 2016 Phys. Rev. X 6 021038

    [25]

    Fichtner S, Yassine M, Van de Walle C G, Ambacher O 2024 Appl. Phys. Lett. 125 040501Google Scholar

    [26]

    Liu Z J, Wang X Y, Ma X Y, Yang Y R, Wu D 2023 Appl. Phys. Lett. 122 122901Google Scholar

    [27]

    Calderon S, Hayden J, Baksa S M, Tzou W, McKinstry S T, Dabo I, Maria J P, Dickey E C 2023 Science 380 1034Google Scholar

    [28]

    Lee C W, Yazawa K, Zakutayev A, Brennecka G L, Gorai P 2024 Sci. Adv. 10 eadl0848Google Scholar

    [29]

    Lee C W, Din N U, Yazawa K, Brennecka G L, Zakutayev A, Gorai P 2024 Matter 7 1644Google Scholar

    [30]

    Spaldin N A 2012 J. Solid State Chem. 195 2Google Scholar

    [31]

    Kursa M B, Rudnicki W R 2010 J. Stat. Softw. 36 1

    [32]

    Kim Y, Kim Y 2022 Sustain. Cities Soc. 79 103677Google Scholar

    [33]

    Moriwake H, Yokoi R, Taguchi A, Ogawa T, Fisher C AJ, Kuwabara A, Sato Y, Shimizu T, Hamasaki Y, Takashima H, Itoh M 2020 APL Mater. 8 121102Google Scholar

    [34]

    Kang Y, Chen J, Sui J Y, Wang X D, Zhou D Y, Yao M 2024 ACS Appl. Mater. Interfaces. 16 49484Google Scholar

    [35]

    Sun J A, Zhang J F, Yan J Y, Wang Y L, Lou J Z, Yan X B, Guo J X 2022 Phys. Status. Solidi. B 259 2200079Google Scholar

    [36]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 NPJ Comput Mater. 1 15010Google Scholar

    [37]

    杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山 2019 物理学报 68 210502Google Scholar

    Yang Z X, Gao Z R, Sun X F, Cai H L, Zhang F M, Wu X S 2019 Acta Phys. Sin. 68 210502Google Scholar

  • 图 1  (a)初始筛选元素在元素周期表内的体现, 其中蓝色代表阳离子, 橙色代表阴离子; (b)元素筛选的条件和具体流程; (c) 二元纤锌矿材料合理的元素组成

    Figure 1.  (a) The representation of initial screening elements in the periodic table, where blue represents cations and orange represents anions; (b) the conditions and specific process for screening; (c) reasonable composition elements of binary wurtzite materials obtained through screening.

    图 2  (a) AB, (b) A1A2B, (c) AB1B2体系的Ps数值; (d)单价、二价、三价阳离子和整个数据集的箱线图

    Figure 2.  Ps of (a) AB, (b) A1A2B, and (c) AB1B2 systems; (d) box plots of Ps for monovalent, divalent, and trivalent cations as well as all systems.

    图 3  四面体结构参数示意图

    Figure 3.  Schematic diagram of tetrahedral structure parameters

    图 4  曲线路径示意图

    Figure 4.  Schematic diagram of curve path.

    图 5  组内距离自相关系数热图 (a) 元素基本属性特征; (b) 晶体结构特征; (c) DC特征; (d) COHP, BC, ELF特征; (e) DOS特征. (f) 保留特征的组间距离自相关系数热图

    Figure 5.  Heatmap of distance correlation coefficients: (a) element properties; (b) crystal parameters; (c) DC properties; (d) COHP, BC, ELF properties; (e) DOS properties. (f) Feature preserving inter group distance autocorrelation coefficient heat map.

    图 6  6种含105特征机器学习模型的(a) R2, (b) RMSE, (c) XGBR模型的预测散点图; 6种含10特征机器学习模型的(d) R2, (e)RMSE, (f) XGBR模型的预测散点图

    Figure 6.  (a) R2 and (b) RMSE values of six machine-learning models and (c) scatter plot of the XGBR model with 105 features; (d) R2 and (e) RMSE values of six machine-learning models and (f) scatter plot of the XGBR model with 10 features.

    图 7  含10个特征XGBR模型的 (a) SHAP散点图和(b) SHAP特征重要性; (c) IPi_Aave, (d) a, (e) IPi_Bave特征的部分依赖图

    Figure 7.  (a) SHAP summary plot, (b) SHAP feature importance of XGBR model with 10 features; partial dependence plots for the top three important features of (c) IPi_Aave, (d)a, (e) IPi_Bave.

    表 1  用于描述纤锌矿材料的特征类型——元素基本属性

    Table 1.  Parameters describing the characteristic types of wurtzite materials—Basic element attributes.

    特征定义特征定义
    aN原子序数aM相对原子质量
    ICVICSD数据库内晶体体积aD原子密度
    X电负性VE价电子
    Rc共价半径Ri离子半径
    Ra原子半径IPi离子势(VE/Ri)
    FIP第一电离势SIP第二电离势
    TIP第三电离势CP化学势
    FAE自由原子能量Men门捷列夫数
    DownLoad: CSV

    表 3  用于描述纤锌矿材料的特征类型——电子结构参数

    Table 3.  Parameters describing the characteristic types of wurtzite materials—Electronic parameters.

    分析特征定义特征定义
    COHP分析ICa, ICe轴向键与平向键键强ICa-ICe轴向键与平向键键强的差值
    ICa/ICe轴向键与平向键键强的比值IC四面体内平均键强
    BC分析AtV原子体积Bad巴德电荷
    DOS分析Bc_tot总能带中心Bc_out外层轨道的能带中心
    Bw_tot总能带宽度Bw_out外层轨道的能带宽度
    Bs_tot总能带偏度Bs_out外层轨道的能带偏度
    Bk_tot总能带峰度Bk_out外层轨道的能带峰度
    ELF分析ELF _Cat阳离子位置的ELF值ELF_Ani阴离子位置的ELF值
    ELF_dCA阴阳离子位置ELF值的差值ELF_MaxELF曲线峰值
    ELF_MPELF曲线峰值的位置ELF_FELF曲线半峰全宽
    DC分析DC_Cat阳离子位置的DC值DC_Ani阴离子位置的DC值
    DC_dCA阴阳离子位置DC值的差值DC_MaxDC曲线峰值
    DC_MPDC曲线峰值的位置DC_FDC曲线半峰全宽
    DownLoad: CSV

    表 2  用于描述纤锌矿材料的特征类型——晶体结构参数

    Table 2.  Parameters describing the characteristic types of wurtzite materials—Crystal structure parameters.

    特征 定义 特征 定义
    c, a 晶胞参数 c/a 晶胞参数比值
    V 晶胞体积 S 晶胞底面积
    H_tetra 四面体高度 V_tetra 四面体体积
    d 阳离子到四面体底部的距离 μ 四面体内部曲折度(d/H_tetra)
    La, Le 轴向键与平向键键长 LaLe 轴向键与平向键键长的差值
    La/Le 轴向键与平向键键长的比值 L 四面体内平均键长
    Aa, Ae 轴向键与平向键键角 AaAe 轴向键与平向键键角的差值
    Aa/Ae 轴向键与平向键键角的比值 A 四面体内平均键角
    DownLoad: CSV
  • [1]

    Ishiwara H 2012 J. Nanosci. Nanotechnol. 12 7619Google Scholar

    [2]

    Arimoto Y, Ishiwara H 2004 Mrs. Bull. 29 823Google Scholar

    [3]

    Song S, Kim K H, Chakravarthi S, Han Z, Kim G, Ma K Y, Shin H S, Olsson R H, Jariwala D 2023 Appl. Phys. Lett. 123 183501Google Scholar

    [4]

    Muralt P 2000 J. Micromech. Microeng. 10 136Google Scholar

    [5]

    Takayama R, Tomita Y, Iijima K, Ueda I 1991 Ferroelectrics 118 325Google Scholar

    [6]

    Han X, Ji Y, Yang Y 2022 Adv. Funct. Mater. 32 2109625Google Scholar

    [7]

    钟维烈 1996 (北京: 科学出版社) 第1页

    Zhong W L 1996 Physics of Ferroelectric Materials (Beijing: Science Press) p1

    [8]

    李飞, 张树君, 徐卓 2020 物理学报 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [9]

    Fan Y T, Tan G J 2022 Mater. Lab 1 220008

    [10]

    Fichtner S, Wolff N, Lofink F, Kienle L, Wagner B 2019 J. Appl. Phys. 125 114103Google Scholar

    [11]

    Zhao Z, Chen Y R, Wang J F, Chen Y W, Zou J R, Lin Y X, Xing Y F, Liu C W, Hu C M 2022 IEEE Electr. Device L 43 553Google Scholar

    [12]

    Hayden J, Hossain M D, Xiong Y H, Ferri K, Zhu W L, Imperatore M V, Giebink N, Trolier-McKinstry S, Dabo I, Maria J P 2021 Phys. Rev. Mater. 5 044412Google Scholar

    [13]

    Wang D, Mondal S, Liu J N, Hu M T, Wang P, Yang S, Wang D H, Xiao Y X, Wu Y P, Ma T, Mi Z 2023 Appl. Phys. Lett. 123 033504Google Scholar

    [14]

    Wang D, Wang P, Wang B Y, Mi Z 2021 Appl. Phys. Lett. 119 111902Google Scholar

    [15]

    Ferri K, Bachu S, Zhu W L, Imperatore M, Hayden J , Alem N, Giebink N, Trolier-McKinstry S, Maria J P 2021 J. Appl. Phys. 130 044101Google Scholar

    [16]

    Zhang Y L, Zhu Q X, Tian B B, Duan C G 2024 Nano-Micro Lett. 16 227Google Scholar

    [17]

    Yasuoka S, Shimizu T, Tateyama A, Uehara M, Yamada H, Akiyama M, Hiranaga Y, Yasuo C, Funakubo H 2020 J. Appl. Phys. 128 114103Google Scholar

    [18]

    Ye K H, Han G, Yeu I W, Hwang C S, Choi J H 2021 Phys. Status Solidi R 15 2100009Google Scholar

    [19]

    Wang P, Wang D, Vu N M, Chiang T, Heron J T, Mi Z 2021 Appl. Phys. Lett. 118 223504Google Scholar

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [24]

    Dreyer C E, Janotti A, Van de Walle C G, Vanderbilt D 2016 Phys. Rev. X 6 021038

    [25]

    Fichtner S, Yassine M, Van de Walle C G, Ambacher O 2024 Appl. Phys. Lett. 125 040501Google Scholar

    [26]

    Liu Z J, Wang X Y, Ma X Y, Yang Y R, Wu D 2023 Appl. Phys. Lett. 122 122901Google Scholar

    [27]

    Calderon S, Hayden J, Baksa S M, Tzou W, McKinstry S T, Dabo I, Maria J P, Dickey E C 2023 Science 380 1034Google Scholar

    [28]

    Lee C W, Yazawa K, Zakutayev A, Brennecka G L, Gorai P 2024 Sci. Adv. 10 eadl0848Google Scholar

    [29]

    Lee C W, Din N U, Yazawa K, Brennecka G L, Zakutayev A, Gorai P 2024 Matter 7 1644Google Scholar

    [30]

    Spaldin N A 2012 J. Solid State Chem. 195 2Google Scholar

    [31]

    Kursa M B, Rudnicki W R 2010 J. Stat. Softw. 36 1

    [32]

    Kim Y, Kim Y 2022 Sustain. Cities Soc. 79 103677Google Scholar

    [33]

    Moriwake H, Yokoi R, Taguchi A, Ogawa T, Fisher C AJ, Kuwabara A, Sato Y, Shimizu T, Hamasaki Y, Takashima H, Itoh M 2020 APL Mater. 8 121102Google Scholar

    [34]

    Kang Y, Chen J, Sui J Y, Wang X D, Zhou D Y, Yao M 2024 ACS Appl. Mater. Interfaces. 16 49484Google Scholar

    [35]

    Sun J A, Zhang J F, Yan J Y, Wang Y L, Lou J Z, Yan X B, Guo J X 2022 Phys. Status. Solidi. B 259 2200079Google Scholar

    [36]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 NPJ Comput Mater. 1 15010Google Scholar

    [37]

    杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山 2019 物理学报 68 210502Google Scholar

    Yang Z X, Gao Z R, Sun X F, Cai H L, Zhang F M, Wu X S 2019 Acta Phys. Sin. 68 210502Google Scholar

  • [1] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [2] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-Qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of magnetic Janus materials based on machine learning and first-principles calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [4] Li Wei, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Classification of magnetic ground states and prediction of magnetic moments of inorganic magnetic materials based on machine learning. Acta Physica Sinica, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [5] Zhu Ping, Zhang Qiang, Gou Hua-Song, Wang Ping-Ping, Shao Pu-Zhen, Kobayashi Equo, Wu Gao-Hui. First-principles calculation of diamond/Al interface properties and study of interface reaction. Acta Physica Sinica, 2021, 70(17): 178101. doi: 10.7498/aps.70.20210341
    [6] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [7] Wang Wei, Jie Quan-Lin. Identifying phase transition point of J1-J2 antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [8] Luo Ya, Zhang Yun, Liang Jin-Ling, Liu Lin-Feng. First-principles study of Cu:Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [9] Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min. First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Physica Sinica, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [10] Liang Jin-Ling, Zhang Yun, Qiu Xiao-Yan, Wu Sheng-Yu, Luo Ya. First-principles study of Fe:Mg:LiTaO3 crystals. Acta Physica Sinica, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [11] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [12] Zhou Peng-Li, Zheng Shu-Kai, Tian Yan, Zhang Shuo-Ming, Shi Ru-Qian, He Jing-Fang, Yan Xiao-Bing. First principles calculation of dielectric properties of Al and N codoped 3C-SiC. Acta Physica Sinica, 2014, 63(5): 053102. doi: 10.7498/aps.63.053102
    [13] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [14] Li Qing-Kun, Sun Yi, Zhou Yu, Zeng Fan-Lin. First principles study of the uniaxial compressive strength of bct-C4 carbon allotrope. Acta Physica Sinica, 2012, 61(9): 093104. doi: 10.7498/aps.61.093104
    [15] Han Jiu-Rong, Jiang Xue-Fan, Liu Xian-Feng. First-principles studies of helical-spin order in frustrated triangular antiferromagnet AgCrO2. Acta Physica Sinica, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [16] Lu Zhi-Peng, Zhu Wen-Jun, Liu Shao-Jun, Lu Tie-Cheng, Chen Xiang-Rong. Structure phase transition from α to ε in Fe under non-hydrostatic pressure: an ab initio study. Acta Physica Sinica, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [17] Sun Yuan, Huang Zu-Fei, Fan Hou-Gang, Ming Xing, Wang Chun-Zhong, Chen Gang. First-principles investigation on the role of ions in ferroelectric transition of BiFeO3. Acta Physica Sinica, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [18] Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Zheng Xin, Fang Yu-Chao, Gao Tao. First-pricinples design on atomic scale for new lightweight hydrogen storage materials. Acta Physica Sinica, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [19] Huang Yun-Xia, Cao Quan-Xi, Li Zhi-Min, Li Gui-Fang, Wang Yu-Peng, Wei Yun-Ge. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physica Sinica, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [20] Sun Yuan, Ming Xing, Meng Xing, Sun Zheng-Hao, Xiang Peng, Lan Min, Chen Gang. First-principles investigation of the electronic properties of multiferroic BaCoF4. Acta Physica Sinica, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
  • supplement 2-20241520-Suppl.pdf supplement
Metrics
  • Abstract views:  398
  • PDF Downloads:  32
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2024
  • Accepted Date:  28 November 2024
  • Available Online:  04 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回