Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4.5 kW, 1050 nm bidirectional output near-single-mode all-fiber laser oscillator

LI Ke YE Yun LI Xinran DING Xinyi XU Xiaoyong SU Rongtao WANG Xiaolin NING Yu XI Fengjie

Citation:

4.5 kW, 1050 nm bidirectional output near-single-mode all-fiber laser oscillator

LI Ke, YE Yun, LI Xinran, DING Xinyi, XU Xiaoyong, SU Rongtao, WANG Xiaolin, NING Yu, XI Fengjie
cstr: 32037.14.aps.74.20250072
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • High-power fiber laser oscillators have been widely used in industrial processing, material processing, biomedical and other fields due to their compact structure, simple logic and strong power scalability. With the increasing demand for laser performance in industrial applications, bidirectional output fiber laser based on a single resonator structure has a broad application prospect. In this work, we first establish a theoretical model for a 1050-nm bidirectional output fiber laser oscillator based on the steady-state rate equation, and simulate the relationship between the length of the gain fiber and output power, efficiency, and the intensity of stimulated Raman scattering (SRS). A high-power bidirectional output fiber laser with a central wavelength of 1050 nm is built using an ytterbium-doped fiber with a core/cladding diameter of 20/400 μm. The output characteristics of the 1050-nm bidirectional output fiber laser oscillator under different pump methods (unidirectional pump, bidirectional pump) are experimentally studied in detail. With a total pump power of 5262 W, A-end output power reaches 1419 W and B-end output power reaches 3051 W. Therefore, a total output power of 4470 W with an optical-to-optical conversion efficiency of 84.9% is achieved. The corresponding beam qualities (M2 factor) of both ends are 1.27 and 1.31 when the output powers reach 1458 W and 2733 W, respectively. By further optimizing the length of the gain fiber, the amplified spontaneous emission (ASE) and SRS are effectively suppressed. With a total pump power of 5262 W, the Raman suppression ratios at A-end and B-end are enhanced by ~6.6 dB and ~8.1 dB, respectively. It is expected that higher output power can be achieved by increasing the pump power and optimizing the laser structure in the future.
      Corresponding author: YE Yun, yeyun2015@163.com ; SU Rongtao, surongtao@126.com
    • Funds: Project supported by the Fund for Distinguished Young Scholars of Hunan Province, China (Grant No. 2023JJ10057) and the Training Program for Excellent Young Innovations of Changsha, China (Grant No. kq2305038).
    [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar

    [2]

    Zervas, Michalis N 2014 Int. J. Mod. Phys. B 28 1442009Google Scholar

    [3]

    王小林, 张汉伟, 杨保来, 奚小明, 王鹏, 史尘, 王泽锋, 周朴, 许晓军, 陈金宝 2021 中国激光 48 0401004Google Scholar

    Wang X L, Zhang H W, Yang B L, Xi X M, Wang P, Shi C, Wang Z F, Zhou P, Xu X J, Chen J B 2021 Chin. J. Lasers 48 0401004Google Scholar

    [4]

    Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645Google Scholar

    [5]

    Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [6]

    Zervas M N 2019 Opt. Express 27 19019Google Scholar

    [7]

    Augst S J, Ranka J K, Fan T Y, Sanchez A 2007 J. Opt. Soc. Am. B 24 1707Google Scholar

    [8]

    辛国锋, 皮浩洋, 沈力, 瞿荣辉, 蔡海文, 方祖捷, 陈高庭 2010 激光与光电子学进展 47 17Google Scholar

    Xin G F, Pi H Y, Shen L, Ju R H, Cai H W, Fang Z J, Chen G T 2010 Laser Optoelectron. Prog. 47 17Google Scholar

    [9]

    王小林, 曾令筏, 叶云, 刘佳琪, 吴函烁, 王鹏, 杨保来, 奚小明, 张汉伟, 史尘, 习锋杰, 王泽锋, 周朴, 许晓军, 陈金宝 2024 中国激光 51 223Google Scholar

    Wang X L, Zeng L F, Ye Y, Liu J Q, Wu H S, Wang P, Yang B L, Xi X M, Zhang H W, Shi C, Xi F J, Wang Z F, Zhou P, Xu X J, Chen J B 2024 Chin. J. Laser 51 223Google Scholar

    [10]

    Zeng L F, Ding X Y, Liu J Q, Wang X L, Ye Y, Wu H S, Wang P, Xi X M, Zhang H W, Shi C, Xi F J, Xu X J 2024 Micromachines-Basel 15 153Google Scholar

    [11]

    Schmidt O, Wirth C, Rhein S, Rekas M, Kliner A, Schreiber T, Tünnermann R E, Andreas 2011 The European Conference on Lasers and Electro-Optics Munich, Germany, May 22–26, 2011 p1

    [12]

    Roman Y, Nikolai P, Alexander Y, Valentin P G 2016 Proc. SPIE San Francisco, March 9, 2016 p972807

    [13]

    孙殷宏, 柯伟伟, 冯昱骏, 王岩山, 彭万敬, 马毅, 李腾龙, 王小军, 唐淳, 张凯 2016 中国激光 43 0601003Google Scholar

    Sun Y H, Ke W W, Feng Y J, Wang Y S, Peng W J, Ma Y, Li T L, Wang X J, Tang C, Zhang K 2016 Chin. J. Laser 43 0601003Google Scholar

    [14]

    Chu Q H, Shu Q, Liu Y 2020 Opt. Lett. 45 6502Google Scholar

    [15]

    Xu Y, Sheng Q, Wang P 2021 Appl. Opt. 60 3740Google Scholar

    [16]

    Zheng Y H, Han Z G, Li Y L 2022 Opt. Express 30 12670Google Scholar

    [17]

    Liu Z J, Ma P F, Tao R M, Wang X L, Zhou P 2015 Ieee J. Quantum Elect. 51 1Google Scholar

    [18]

    Silva A, Boller K, Lindsay I D 2011 Opt. Express 19 10511Google Scholar

    [19]

    Liu C H, Galvanauskas A, Ehlers B, Doerfel F, Heinemann S, Carter A, Tankala K, Farroni J 2004 Advanced Solid-State Photonics Santa Fe, New Mexico, February 1–4, 2004 p17

    [20]

    王小林, 叶云, 奚小明, 史尘, 张汉伟, 韩凯, 王泽锋, 许晓军, 周朴, 司磊, 陈金宝 2018 中国专利201821644646.3

    Wang X L, Ye Y, Xi X M, Shi C, Zhang H W, Han K, Wang Z F, Xu X J, Zhou P, Si L, Chen J B 2018 CN Patent 201821644646.3

    [21]

    Zhong P L, Wang L, Yang B L 2022 Opt. Lett. 47 2806Google Scholar

    [22]

    Liu J Q, Zeng L F, Wang X L, Shi C, Wu H S, Wang P, Xi X M, Zhang H W, Ning Y, Xi F J 2024 Opt. Laser Technol. 169 110031Google Scholar

    [23]

    Li F C, Ding X Y, Wang P, Yang B L, Xi X M, Zhang H W, Wang X L, Chen J B 2023 Photonics-Basel 10 912Google Scholar

  • 图 1  双端输出光纤振荡器仿真简化结构示意图

    Figure 1.  Schematic diagram of the simulation simplified structure of bidirectional output fiber oscillator.

    图 2  (a) 输出功率及效率随YDF长度变化情况; (b) 双向泵浦下两端输出光谱; (c) 不同增益光纤长度下光谱对比

    Figure 2.  (a) Output power and optical efficiency versus with the length of the YDF; (b) output spectrum under bidirectional pump; (c) spectral comparison at different gain fiber lengths.

    图 3  1050 nm双端输出光纤激光振荡器实验结构

    Figure 3.  Experimental setup of 1050 nm bidirectional output fiber laser oscillator.

    图 4  A端泵浦方式下的实验结果 (a) 输出功率及效率; (b) 时域信号, 插图为傅里叶频谱图

    Figure 4.  Experimental results under A-end pump: (a) Output power and efficiency; (b) temporal signal (inset: Fourier spectrum).

    图 5  双向泵浦方式下的实验结果 (a) 输出功率及效率; (b) 时域信号和频谱图; (c) 两端输出光谱; (d) 两端光束质量

    Figure 5.  Experimental results under bidirectional pump: (a) Output power and efficiency; (b) temporal signal and Fourier spectrum; (c) output spectra of two ends; (d) beam quality of two ends.

    图 6  (a) 双向泵浦下结构优化前后输出功率及效率对比; (b) 双向泵浦方式下两端输出光谱

    Figure 6.  (a) Comparison of output power and efficiency before and after structure optimization under bidirectional pump; (b) output spectrum of both ends under bidirectional pump.

    表 1  速率方程主要参数

    Table 1.  Main parameters of the rate equation.

    物理量物理意义物理量物理意义
    R反射率${N_2}$激发态粒子数
    Z增益光纤纵向坐标${N_1}$基态粒子数
    $m$泵浦光波长序数${N_0}$掺杂离子浓度
    $n$信号光波长序数${g_{\text{R}}}$拉曼增益系数
    ${A_{{\text{eff}}}}$纤芯有效面积$\sigma _n^{{\text{es}}}$n个信号光吸收截面
    ${\varGamma _{\text{s}}}$信号光填充因子$\sigma _n^{{\text{as}}}$n个信号光发射截面
    ${\varGamma _{\text{p}}}$泵浦光填充因子$\alpha _n^{\text{p}}(\lambda _n^{\text{p}})$信号光损耗系数
    DownLoad: CSV

    表 2  仿真主要参数

    Table 2.  Simulation parameter.

    主要参数
    信号光中心波长/nm1050
    泵浦光中心波长/nm976
    总泵浦功率/W6000
    纤芯/内包层/μm20/400
    泵浦吸收系数0.44 dB/m@915 nm
    增益光纤长度/m16.6/14.6/12.6/10.6/8.6
    FBG-A的反射率/%10
    FBG-B的反射率/%10
    FBG-A的半高全宽/nm2
    FBG-B的半高全宽/nm2
    DownLoad: CSV
  • [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar

    [2]

    Zervas, Michalis N 2014 Int. J. Mod. Phys. B 28 1442009Google Scholar

    [3]

    王小林, 张汉伟, 杨保来, 奚小明, 王鹏, 史尘, 王泽锋, 周朴, 许晓军, 陈金宝 2021 中国激光 48 0401004Google Scholar

    Wang X L, Zhang H W, Yang B L, Xi X M, Wang P, Shi C, Wang Z F, Zhou P, Xu X J, Chen J B 2021 Chin. J. Lasers 48 0401004Google Scholar

    [4]

    Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645Google Scholar

    [5]

    Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [6]

    Zervas M N 2019 Opt. Express 27 19019Google Scholar

    [7]

    Augst S J, Ranka J K, Fan T Y, Sanchez A 2007 J. Opt. Soc. Am. B 24 1707Google Scholar

    [8]

    辛国锋, 皮浩洋, 沈力, 瞿荣辉, 蔡海文, 方祖捷, 陈高庭 2010 激光与光电子学进展 47 17Google Scholar

    Xin G F, Pi H Y, Shen L, Ju R H, Cai H W, Fang Z J, Chen G T 2010 Laser Optoelectron. Prog. 47 17Google Scholar

    [9]

    王小林, 曾令筏, 叶云, 刘佳琪, 吴函烁, 王鹏, 杨保来, 奚小明, 张汉伟, 史尘, 习锋杰, 王泽锋, 周朴, 许晓军, 陈金宝 2024 中国激光 51 223Google Scholar

    Wang X L, Zeng L F, Ye Y, Liu J Q, Wu H S, Wang P, Yang B L, Xi X M, Zhang H W, Shi C, Xi F J, Wang Z F, Zhou P, Xu X J, Chen J B 2024 Chin. J. Laser 51 223Google Scholar

    [10]

    Zeng L F, Ding X Y, Liu J Q, Wang X L, Ye Y, Wu H S, Wang P, Xi X M, Zhang H W, Shi C, Xi F J, Xu X J 2024 Micromachines-Basel 15 153Google Scholar

    [11]

    Schmidt O, Wirth C, Rhein S, Rekas M, Kliner A, Schreiber T, Tünnermann R E, Andreas 2011 The European Conference on Lasers and Electro-Optics Munich, Germany, May 22–26, 2011 p1

    [12]

    Roman Y, Nikolai P, Alexander Y, Valentin P G 2016 Proc. SPIE San Francisco, March 9, 2016 p972807

    [13]

    孙殷宏, 柯伟伟, 冯昱骏, 王岩山, 彭万敬, 马毅, 李腾龙, 王小军, 唐淳, 张凯 2016 中国激光 43 0601003Google Scholar

    Sun Y H, Ke W W, Feng Y J, Wang Y S, Peng W J, Ma Y, Li T L, Wang X J, Tang C, Zhang K 2016 Chin. J. Laser 43 0601003Google Scholar

    [14]

    Chu Q H, Shu Q, Liu Y 2020 Opt. Lett. 45 6502Google Scholar

    [15]

    Xu Y, Sheng Q, Wang P 2021 Appl. Opt. 60 3740Google Scholar

    [16]

    Zheng Y H, Han Z G, Li Y L 2022 Opt. Express 30 12670Google Scholar

    [17]

    Liu Z J, Ma P F, Tao R M, Wang X L, Zhou P 2015 Ieee J. Quantum Elect. 51 1Google Scholar

    [18]

    Silva A, Boller K, Lindsay I D 2011 Opt. Express 19 10511Google Scholar

    [19]

    Liu C H, Galvanauskas A, Ehlers B, Doerfel F, Heinemann S, Carter A, Tankala K, Farroni J 2004 Advanced Solid-State Photonics Santa Fe, New Mexico, February 1–4, 2004 p17

    [20]

    王小林, 叶云, 奚小明, 史尘, 张汉伟, 韩凯, 王泽锋, 许晓军, 周朴, 司磊, 陈金宝 2018 中国专利201821644646.3

    Wang X L, Ye Y, Xi X M, Shi C, Zhang H W, Han K, Wang Z F, Xu X J, Zhou P, Si L, Chen J B 2018 CN Patent 201821644646.3

    [21]

    Zhong P L, Wang L, Yang B L 2022 Opt. Lett. 47 2806Google Scholar

    [22]

    Liu J Q, Zeng L F, Wang X L, Shi C, Wu H S, Wang P, Xi X M, Zhang H W, Ning Y, Xi F J 2024 Opt. Laser Technol. 169 110031Google Scholar

    [23]

    Li F C, Ding X Y, Wang P, Yang B L, Xi X M, Zhang H W, Wang X L, Chen J B 2023 Photonics-Basel 10 912Google Scholar

  • [1] Liu Qing-Kang, Zhang Xu, Cai Hong-Bo, Zhang En-Hao, Gao Yan-Qi, Zhu Shao-Ping. Suppression of stimulated Raman scattering kinetic bursts by intensity-modulated broadband laser. Acta Physica Sinica, 2024, 73(5): 055202. doi: 10.7498/aps.73.20231679
    [2] Ding Xin-Yi, Wang Li, Zeng Ling-Fa, Wu Han-Shuo, Wang Xiao-Lin, Ning Yu, Xi Feng-Jie. Double-ended output near-single-mode quasi-continuous wave monolithic fiber laser. Acta Physica Sinica, 2023, 72(15): 154205. doi: 10.7498/aps.72.20230616
    [3] Sun Jian, Li Tang-Jun, Wang Mu-Guang, Jia Nan, Shi Yan-Chao, Wang Chun-Can, Feng Su-Chun. Evolution of non-frequency shift components of pulse tail in normal dispersion region of highly nonlinear fiber. Acta Physica Sinica, 2019, 68(11): 114210. doi: 10.7498/aps.68.20190111
    [4] Shi Jiu-Lin, Xu Jin, Luo Ning-Ning, Wang Qing, Zhang Yu-Bao, Zhang Wei-Wei, He Xing-Dao. Enhanced stimulated Raman scattering by suppressing stimulated Brillouin scattering in liquid water. Acta Physica Sinica, 2019, 68(4): 044201. doi: 10.7498/aps.68.20181548
    [5] Liu Jia-Xing, Liu Xia, Zhong Shou-Dong, Wang Jian-Qiang, Zhang Da-Peng, Wang Xing-Long. Fiber gratings matching and output characteristics of fiber laser. Acta Physica Sinica, 2019, 68(11): 114205. doi: 10.7498/aps.68.20190178
    [6] Su Rong-Tao, Zhang Peng-Fei, Zhou Pu, Xiao Hu, Wang Xiao-Lin, Duan Lei, Lü Pin, Xu Xiao-Jun. Theoretical and numerical study on narrow-linewidth nanosecond pulsed Raman fiber amplifier. Acta Physica Sinica, 2018, 67(15): 154202. doi: 10.7498/aps.67.20172679
    [7] Wang Sheng-Han, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei. Influence of laser-induced plasma on stimulated Raman scatting of OH stretching vibrational from water molecules. Acta Physica Sinica, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [8] Zhang Li-Ming, Zhou Shou-Huan, Zhao Hong, Zhang Kun, Hao Jin-Ping, Zhang Da-Yong, Zhu Chen, Li Yao, Wang Xiong-Fei, Zhang Hao-Bin. 780 W narrow linewidth all fiber laser. Acta Physica Sinica, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [9] Li Zhan-Long, Wang Yi-Ding, Zhou Mi, Men Zhi-Wei, Sun Cheng-Lin, Li Zuo-Wei. Stimulated Raman scattering in liquid water in a low-frequency region. Acta Physica Sinica, 2012, 61(6): 064217. doi: 10.7498/aps.61.064217
    [10] Cao An-Yang, Li Zhan-Long, Li Zuo-Wei, Sun Cheng-Lin, Jiang Yong-Heng. Enhanced stimulated Raman scattering of weak-gain mode C—H stretching vibration of benzene. Acta Physica Sinica, 2011, 60(6): 064211. doi: 10.7498/aps.60.064211
    [11] Li Zhan-Long, Zhou Mi, He Li-Qiao, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei. Enhanced stimulated Raman scattering of binary solution by intermolecular Fermi resonance. Acta Physica Sinica, 2011, 60(9): 094217. doi: 10.7498/aps.60.094217
    [12] Zhang Lei, Dong Quan-Li, Zhao Jing, Wang Shou-Jun, Sheng Zheng-Ming, He Min-Qing, Zhang Jie. Saturation of stimulated Raman scattering in laser-plasma interaction. Acta Physica Sinica, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [13] Deng Li, Sun Zhen-Rong, Lin Wei-Zhu, Wen Jin-Hui. The stimulated Raman scattering and the four wave mixing in the generation of sub-10 fs pulses. Acta Physica Sinica, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [14] Hu Da-Wei, Wang Zheng-Ping, Zhang Huai-Jin, Xu Xin-Guang, Wang Ji-Yang, Shao Zong-Shu. Stimulated Raman scattering of YbVO4 crystal. Acta Physica Sinica, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [15] Zang Jing-Cun, Xie Li-Yan, Li Xiao, Zhang Dong-Xiang, Feng Bao-Hua. Investigating of SRS and luminescence of ZnWO4 crystals. Acta Physica Sinica, 2007, 56(5): 2689-2692. doi: 10.7498/aps.56.2689
    [16] Wang Jing, Shi Yan-Mei. Study of chirps induced by the higher-order nonlinear effects in the photonic crystal fiber. Acta Physica Sinica, 2006, 55(6): 2820-2824. doi: 10.7498/aps.55.2820
    [17] Li Zhen-Sheng, Cheng Juan, Wang Zhi-Hua, Luo Shi-Rong, Yang Jing-Guo. Investigation of amplification characteristics of SRS in acetone enhanced by DCM dye fluorescence. Acta Physica Sinica, 2005, 54(9): 4164-4168. doi: 10.7498/aps.54.4164
    [18] Pu Xiao-Yun, Yang Rui, Wang Ya-Li, Chen Tian-Jiang, Jiang Nan. Enhancement of stimulated Raman scattering of minority species of binary mixture in pendant drops by dye lasing gain. Acta Physica Sinica, 2004, 53(8): 2509-2514. doi: 10.7498/aps.53.2509
    [19] Pu Xiao-Yun, Yang Zheng, Jiang Nan, Chen Yong-Kang, Dai Hong. Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain. Acta Physica Sinica, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [20] Zhang Xi-He, Wang Zhao-Min, Wan Chun-Ming. . Acta Physica Sinica, 2002, 51(6): 1251-1255. doi: 10.7498/aps.51.1251
Metrics
  • Abstract views:  455
  • PDF Downloads:  24
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2025
  • Accepted Date:  28 February 2025
  • Available Online:  26 March 2025
  • Published Online:  20 May 2025

/

返回文章
返回