Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Entropy-based weighted multi-channel convolutional neural network method for node importance assessment

JIANG Tingshuai RUAN Yirun LI Hai BAI Liang YUAN Yifei YU Tianyuan

Citation:

Entropy-based weighted multi-channel convolutional neural network method for node importance assessment

JIANG Tingshuai, RUAN Yirun, LI Hai, BAI Liang, YUAN Yifei, YU Tianyuan
cstr: 32037.14.aps.74.20250329
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Identifying key nodes in complex networks or evaluating the relative node importance with respect to others by using quantitative methods is a fundamental issue in network science. To address the limitations of existing approaches—namely the subjectivity in assigning weights to importance indicators and the insufficient integration of global and local structural information—this paper proposes an entropy-weighted multi-channel convolutional neural network framework (EMCNN). First, a parameter-free entropy-based weight allocation model is constructed to dynamically assign weights to multiple node importance indicators by computing their entropy values, thereby mitigating the subjectivity inherent in traditional parameter-setting methods and enhancing the objectivity of indicator fusion. Second, global and local structural features are decoupled and reconstructed into separate channels to form multi-channel feature maps, which significantly enhance the representational capacity of the network structure. Third, by leveraging the feature extraction capabilities of convolutional neural networks and the integration power of attention mechanisms, the framework extracts deep representations of nodes from the multi-channel feature maps, while emphasizing key structural information through attention-based weighting, thus enabling more accurate identification and characterization of node importance. To validate the effectiveness of the proposed method, extensive experiments are conducted on nine real-world networks by using the SIR spreading model, thereby assessing performance in terms of correlation, accuracy, and robustness. The Kendall correlation coefficient is used as the primary evaluation metric to measure the consistency between predicted node importance and actual spreading influence. Additionally, experiments are performed on three representative synthetic networks to further test the model’s generalizability. Experimental results demonstrate that EMCNN consistently and effectively evaluates node influence under varying transmission rates, and significantly outperforms mainstream algorithms in both correlation and accuracy. These findings highlight the powerful generalization ability and wide applicability of this method in the identification of key nodes in complex networks.
      Corresponding author: YU Tianyuan, ty.yu@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 72101265).
    [1]

    Lü L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar

    [2]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200Google Scholar

    [3]

    Albert R, Barabási A L 2002 Rev. Modern Phys. 74 47Google Scholar

    [4]

    Zeng Y 2020 Neurocomputing 416 158Google Scholar

    [5]

    Albert R, Jeong H, Barabási A L 1999 Nature 401 130Google Scholar

    [6]

    Lü L, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168Google Scholar

    [7]

    Xu X, Zhu C, Wang Q Y, Zhu X Q, Zhou Y 2020 Sci. Rep. 10 2691Google Scholar

    [8]

    Brin S, Page L 1998 Computer Networks and ISDN Systems 30 107Google Scholar

    [9]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [10]

    Sabidussi G 1966 Psychometrika 31 581Google Scholar

    [11]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [12]

    Bonacich P 1987 Am. J. Sociology 92 1170Google Scholar

    [13]

    Lü L, Zhang Y C, Yeung C H, Zhou T 2011 PLoS One 6 21202Google Scholar

    [14]

    Curado M, Tortosa L, Vicent J F 2023 Inform. Sci. 628 177Google Scholar

    [15]

    Ullah A, Wang B, Sheng J F, Long J, Khan N, Sun Z J 2021 Expert Syst. Appl. 186 115778Google Scholar

    [16]

    Liu W Z, Lu P L, Zhang T 2023 IEEE Trans. Comput. Soc. Syst. 11 2105Google Scholar

    [17]

    Ruan Y R, Liu S Z, Tang J, Guo Y M, Yu T Y 2024 Expert Syst. Appl. 268 126292Google Scholar

    [18]

    Rezaei A A, Munoz J, Jalili M, Khayyam H 2023 Expert Syst. Appl. 214 119086Google Scholar

    [19]

    Li X Y, Zhang Z J, Liu J M, Gai K K 2019 Proceedings of the 2019 ACM International Symposium on Blockchain and Secure Critical Infrastructure New York, USA, May 9–12, 2019 p13

    [20]

    Zhao G H, Jia P, Zhou A M, Zhang B 2020 Neurocomputing 414 18Google Scholar

    [21]

    Yu E Y, Wang Y P, Fu Y, Chen D B, Xie M 2020 Knowl-Based Syst. 198 105893Google Scholar

    [22]

    Zhang M, Wang X J, Jin L, Song M, Li Z Y 2022 Neurocomputing 497 13Google Scholar

    [23]

    王博雅, 杨小春, 卢升荣, 唐勇平, 洪树权, 蒋惠园 2024 物理学报 73 226401Google Scholar

    Wang B Y, Yang X C, Lu S R, Tang Y P, Hong S Q, Jiang H Y 2024 Acta Phys. Sin. 73 226401Google Scholar

    [24]

    Chen L Y, Xi Y, Dong L, Zhao M J, Li C L, Liu X, Cui X H 2024 Inf. Process. Manag. 61 103775Google Scholar

    [25]

    Tang J X, Qu J T, Song S H, Zhao Z L, Du Q 2024 J. King Saud Univ. –Comput. Inf. Sci. 36 102183Google Scholar

    [26]

    Zhang P, Wang J L, Li X J, Li M H, Di Z R, Fan Y 2008 Physica A 387 6869Google Scholar

    [27]

    Zhang J X, Chen D B, Dong Q, Zhao Z D 2016 Sci. Rep. 6 27823Google Scholar

    [28]

    Hajarathaiah K, Enduri M K, Dhuli S, Anamalamudi S, Cenkeramaddi L R 2023 IEEE Access 11 808Google Scholar

    [29]

    Sheng J F, Dai J Y, Wang B, Duan G H, Long J, Zhang J K, Guan K R, Hu S, Chen L, Guan W H 2020 Physica A 541 123262Google Scholar

    [30]

    Kermack W O, McKendrick A G 1927 Proc. R. Soc. Lond. Ser. A - Contain. Pap. Math. Phys. Charact. 115 700Google Scholar

    [31]

    Bae J, Kim S 2014 Physica A 395 549Google Scholar

    [32]

    Kendall M G 1945 Biometrika 33 239Google Scholar

    [33]

    Barabási A L, Albert R 1999 Sci. 286 509Google Scholar

    [34]

    Dorogovtsev S N, Goltsev A V, Mendes J F F 2006 Phys. Rev. Lett. 96 040601Google Scholar

    [35]

    Blagus N, Šubelj L, Bajec M 2012 Physica A 391 2794Google Scholar

    [36]

    Newman M E J 2006 Phys. Rev. E 74 036104Google Scholar

    [37]

    Rual J F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz G F, Gibbons F D, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg D S, Zhang L V, Wong S L, Franklin G, Li S M, Albala J S, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski R S, Vandenhaute J, Zoghbi H Y, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick M E, Hill D E, Roth F P, Vidal M 2005 Nature 437 1173Google Scholar

    [38]

    Jeong H, Mason S P, Barabási A L, Oltvai Z N 2001 Nature 411 41Google Scholar

    [39]

    Knuth D E 1993 The Stanford GraphBase: A Platform for Combinatorial Computing (New York: ACM Press

    [40]

    Gleiser P M, Danon L 2003 Adv. Complex Syst. 6 565Google Scholar

    [41]

    Colizza V, Pastor-Satorras R, Vespignani A 2007 Nat. Phys. 3 276Google Scholar

    [42]

    Kunegis J 2013 Proceedings of the 22nd International Conference on World Wide Web Rio de Janeiro, Brazil, May 13–17, 2013 p1343

    [43]

    Batagelj V, Mrvar A 1998 Connections 21 47Google Scholar

  • 图 1  EMCNN框架识别过程

    Figure 1.  EMCNN framework identification process.

    图 2  一跳邻接矩阵${\boldsymbol{E}}$提取示意图, 展示了从一个包含8个节点和11条边的局部网络中, 获取节点3的大小为$L = 5$的一跳邻接矩阵, 首先识别与节点3直接相连的邻居节点(节点1, 2, 4, 6, 7), 并依据其度值${W^{{\text{DC}}}}$进行降序排序, 随后根据排序后的节点顺序构建出节点3的一跳邻接矩阵${{\boldsymbol{E}}_3}$

    Figure 2.  Illustration of one-hop adjacency matrix ${\boldsymbol{E}}$ extraction. The figure shows the process of extracting a one-hop adjacency matrix of size $L = 5$ for node 3 from a local network with 8 nodes and 11 edges, the direct neighbors of node 3 (nodes 1, 2, 4, 6, and 7) are first identified and then sorted in descending order based on their degree values ${W^{{\text{DC}}}}$, finally, the one-hop adjacency matrix ${{\boldsymbol{E}}_3}$ is constructed according to the sorted neighbor order.

    图 3  参数分析

    Figure 3.  Parameter analysis.

    图 4  8种方法预测的节点影响力与SIR传播感染节点数的相关性(由于各算法在评分机制和输出尺度上的差异, 横坐标的取值范围不一致) (a) Facebook; (b) Netscience; (c) Protain; (d) Yeast; (e) CA-GrQc; (f) Lesmis; (g) Jazz; (h) USAir; (i) Faa

    Figure 4.  Correlation between the node influence predicted by eight algorithms and the number of infected nodes simulated by the SIR model: (a) Facebook; (b) Netscience; (c) Protain; (d) Yeast; (e) CA-GrQc; (f) Lesmis; (g) Jazz; (h) USAir; (i) Faa. Due to differences in scoring mechanisms and output scales among the algorithms, the horizontal axis values are not on a unified scale.

    图 5  8种节点排序性方法在9个真实网络上的Kendall相关系数对比 (a) Facebook; (b) Netscience; (c) Protain; (d) Yeast; (e) CA-GrQc; (f) Lesmis; (g) Jazz; (h) USAir; (i) Faa

    Figure 5.  Comparison of Kendall correlation coefficient for 8 node ranking methods on 9 networks: (a) Facebook; (b) Netscience; (c) Protain; (d) Yeast; (e) CA-GrQc; (f) Lesmis; (g) Jazz; (h) USAir; (i) Faa.

    图 6  不同比例节点下8种评估算法的Kendall相关系数对比 (a) Facebook; (b) Netscience; (c) Protain; (d) Yeast; (e) CA-GrQc; (f) Lesmis; (g) Jazz; (h) USAir; (i) Faa

    Figure 6.  Comparison of Kendall correlation coefficients of 8 node influence evaluation algorithms under different scale nodes: (a) Facebook; (b) Netscience; (c) Protain; (d) Yeast; (e) CA-GrQc; (f) Lesmis; (g) Jazz; (h) USAir; (i) Faa.

    图 7  合成网络数据集上8种评估算法的Kendall相关系数对比 (a) LFR2000-5; (b) LFR2000-10; (c) BA200-4

    Figure 7.  Comparison of Kendall correlation coefficients of 8 evaluation algorithms on synthetic networks datasets: (a) LFR2000-5; (b) LFR2000-10; (c) BA200-4.

    表 1  真实网络参数描述

    Table 1.  Parameters description of real networks.

    网络$N$$E$$\langle d\rangle $${\beta _{{\text{th}}}}$$\beta $$\langle k\rangle $$C$$k{s_{\max }}$
    CA-GrQc4158134226.0490.05560.066.45590.55643
    Facebook32422183.0530.04660.0513.6910.46518
    Netscience3799146.0410.12460.134.82320.7418
    Protain278367264.8390.06330.074.4720.0716
    Yeast145819486.8120.14030.152.67210.075
    Lesmis772542.6410.08290.096.59740.5739
    Jazz19827422.2350.02580.0327.6960.61729
    USAir33221262.2730.02250.0312.8070.426
    Faa122624085.9280.13590.143.92820.0674
    DownLoad: CSV

    表 2  合成网络参数描述

    Table 2.  Parameters description of synthetic networks.

    网络$N$$E$$\langle d\rangle $${\beta _{{\text{th}}}}$$\beta $$\langle k\rangle $$C$$k{s_{\max }}$
    LFR2000-52000100345.698360.098360.150.377398
    LFR2000-102000206344.472040.072270.08100.4104111
    BA500-45009963.715120.096170.140.058802
    DownLoad: CSV
  • [1]

    Lü L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar

    [2]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200Google Scholar

    [3]

    Albert R, Barabási A L 2002 Rev. Modern Phys. 74 47Google Scholar

    [4]

    Zeng Y 2020 Neurocomputing 416 158Google Scholar

    [5]

    Albert R, Jeong H, Barabási A L 1999 Nature 401 130Google Scholar

    [6]

    Lü L, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168Google Scholar

    [7]

    Xu X, Zhu C, Wang Q Y, Zhu X Q, Zhou Y 2020 Sci. Rep. 10 2691Google Scholar

    [8]

    Brin S, Page L 1998 Computer Networks and ISDN Systems 30 107Google Scholar

    [9]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [10]

    Sabidussi G 1966 Psychometrika 31 581Google Scholar

    [11]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [12]

    Bonacich P 1987 Am. J. Sociology 92 1170Google Scholar

    [13]

    Lü L, Zhang Y C, Yeung C H, Zhou T 2011 PLoS One 6 21202Google Scholar

    [14]

    Curado M, Tortosa L, Vicent J F 2023 Inform. Sci. 628 177Google Scholar

    [15]

    Ullah A, Wang B, Sheng J F, Long J, Khan N, Sun Z J 2021 Expert Syst. Appl. 186 115778Google Scholar

    [16]

    Liu W Z, Lu P L, Zhang T 2023 IEEE Trans. Comput. Soc. Syst. 11 2105Google Scholar

    [17]

    Ruan Y R, Liu S Z, Tang J, Guo Y M, Yu T Y 2024 Expert Syst. Appl. 268 126292Google Scholar

    [18]

    Rezaei A A, Munoz J, Jalili M, Khayyam H 2023 Expert Syst. Appl. 214 119086Google Scholar

    [19]

    Li X Y, Zhang Z J, Liu J M, Gai K K 2019 Proceedings of the 2019 ACM International Symposium on Blockchain and Secure Critical Infrastructure New York, USA, May 9–12, 2019 p13

    [20]

    Zhao G H, Jia P, Zhou A M, Zhang B 2020 Neurocomputing 414 18Google Scholar

    [21]

    Yu E Y, Wang Y P, Fu Y, Chen D B, Xie M 2020 Knowl-Based Syst. 198 105893Google Scholar

    [22]

    Zhang M, Wang X J, Jin L, Song M, Li Z Y 2022 Neurocomputing 497 13Google Scholar

    [23]

    王博雅, 杨小春, 卢升荣, 唐勇平, 洪树权, 蒋惠园 2024 物理学报 73 226401Google Scholar

    Wang B Y, Yang X C, Lu S R, Tang Y P, Hong S Q, Jiang H Y 2024 Acta Phys. Sin. 73 226401Google Scholar

    [24]

    Chen L Y, Xi Y, Dong L, Zhao M J, Li C L, Liu X, Cui X H 2024 Inf. Process. Manag. 61 103775Google Scholar

    [25]

    Tang J X, Qu J T, Song S H, Zhao Z L, Du Q 2024 J. King Saud Univ. –Comput. Inf. Sci. 36 102183Google Scholar

    [26]

    Zhang P, Wang J L, Li X J, Li M H, Di Z R, Fan Y 2008 Physica A 387 6869Google Scholar

    [27]

    Zhang J X, Chen D B, Dong Q, Zhao Z D 2016 Sci. Rep. 6 27823Google Scholar

    [28]

    Hajarathaiah K, Enduri M K, Dhuli S, Anamalamudi S, Cenkeramaddi L R 2023 IEEE Access 11 808Google Scholar

    [29]

    Sheng J F, Dai J Y, Wang B, Duan G H, Long J, Zhang J K, Guan K R, Hu S, Chen L, Guan W H 2020 Physica A 541 123262Google Scholar

    [30]

    Kermack W O, McKendrick A G 1927 Proc. R. Soc. Lond. Ser. A - Contain. Pap. Math. Phys. Charact. 115 700Google Scholar

    [31]

    Bae J, Kim S 2014 Physica A 395 549Google Scholar

    [32]

    Kendall M G 1945 Biometrika 33 239Google Scholar

    [33]

    Barabási A L, Albert R 1999 Sci. 286 509Google Scholar

    [34]

    Dorogovtsev S N, Goltsev A V, Mendes J F F 2006 Phys. Rev. Lett. 96 040601Google Scholar

    [35]

    Blagus N, Šubelj L, Bajec M 2012 Physica A 391 2794Google Scholar

    [36]

    Newman M E J 2006 Phys. Rev. E 74 036104Google Scholar

    [37]

    Rual J F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz G F, Gibbons F D, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg D S, Zhang L V, Wong S L, Franklin G, Li S M, Albala J S, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski R S, Vandenhaute J, Zoghbi H Y, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick M E, Hill D E, Roth F P, Vidal M 2005 Nature 437 1173Google Scholar

    [38]

    Jeong H, Mason S P, Barabási A L, Oltvai Z N 2001 Nature 411 41Google Scholar

    [39]

    Knuth D E 1993 The Stanford GraphBase: A Platform for Combinatorial Computing (New York: ACM Press

    [40]

    Gleiser P M, Danon L 2003 Adv. Complex Syst. 6 565Google Scholar

    [41]

    Colizza V, Pastor-Satorras R, Vespignani A 2007 Nat. Phys. 3 276Google Scholar

    [42]

    Kunegis J 2013 Proceedings of the 22nd International Conference on World Wide Web Rio de Janeiro, Brazil, May 13–17, 2013 p1343

    [43]

    Batagelj V, Mrvar A 1998 Connections 21 47Google Scholar

  • [1] WANG Xiang, ZHOU Yishen, ZHANG Xuange, CHEN Xihao. Convolutional network single-pixel imaging with fusion attention mechanism. Acta Physica Sinica, 2025, 74(8): 084202. doi: 10.7498/aps.74.20250010
    [2] LIANG Zongwen, LIAO Junzhuo, XUE Chongchen, AO Yongcai. Bi-dimensional gravity-influence model: Quantitative assessment of node performance based on individual potential and geographic location. Acta Physica Sinica, 2025, 74(6): 068901. doi: 10.7498/aps.74.20241256
    [3] ZHU Shunkai, YUAN Fang, HU Kai, PI Taotao, ZHU Xicheng, LI Cheng. Design of bistatic radar cross section reduction metasurface based on convolutional neural networks. Acta Physica Sinica, 2025, 74(10): 107802. doi: 10.7498/aps.74.20250109
    [4] WU Yinhua, CHONG Zhe, ZHU Pengfei, CHEN Shasha, ZHOU Shun. Removal of background white light in coherent-dispersion spectrometer based on convolutional neural network. Acta Physica Sinica, 2025, 74(10): 104201. doi: 10.7498/aps.74.20250090
    [5] Wang Bo-Ya, Yang Xiao-Chun, Lu Sheng-Rong, Tang Yong-Ping, Hong Shu-Quan, Jiang Hui-Yuan. A multidimensional node importance evaluation method based on graph convolutional networks. Acta Physica Sinica, 2024, 73(22): 226401. doi: 10.7498/aps.73.20240937
    [6] Wang Ting-Ting, Liang Zong-Wen, Zhang Ruo-Xi. Importance evaluation method of complex network nodes based on information entropy and iteration factor. Acta Physica Sinica, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [7] Zhao Wei-Rui, Wang Hao, Zhang Lu, Zhao Yue-Jin, Chu Chun-Yan. High-precision co-phase method for segments based on a convolutional neural network. Acta Physica Sinica, 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [8] Huang Wei-Jian, Li Yong-Tao, Huang Yuan. Prediction of chaotic time series using hybrid neural network and attention mechanism. Acta Physica Sinica, 2021, 70(1): 010501. doi: 10.7498/aps.70.20200899
    [9] Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng. Phase retrieval wavefront sensing based on image fusion and convolutional neural network. Acta Physica Sinica, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [10] Yang Song-Qing, Jiang Yuan, Tong Tian-Chi, Yan Yu-Wei, Gan Ge-Sheng. A method of evaluating importance of nodes in complex network based on Tsallis entropy. Acta Physica Sinica, 2021, 70(21): 216401. doi: 10.7498/aps.70.20210979
    [11] Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong. A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm. Acta Physica Sinica, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [12] Huang Li-Ya, Tang Ping-Chuan, Huo You-Liang, Zheng Yi, Cheng Xie-Feng. Node importance based on the weighted K-order propagation number algorithm. Acta Physica Sinica, 2019, 68(12): 128901. doi: 10.7498/aps.68.20190087
    [13] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [14] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Chen Li-Dong. Node importance measurement based on neighborhood similarity in complex network. Acta Physica Sinica, 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [15] Wang Yu, Guo Jin-Li. Evaluation method of node importance in directed-weighted complex network based on multiple influence matrix. Acta Physica Sinica, 2017, 66(5): 050201. doi: 10.7498/aps.66.050201
    [16] Li Xian-Rui, Zhu Yan-Li. Analysis of information entropy of DC-DC converter. Acta Physica Sinica, 2014, 63(23): 238401. doi: 10.7498/aps.63.238401
    [17] Liu Jian-Guo, Ren Zhuo-Ming, Guo Qiang, Wang Bing-Hong. Node importance ranking of complex networks. Acta Physica Sinica, 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [18] Ren Zhuo-Ming, Shao Feng, Liu Jian-Guo, Guo Qiang, Wang Bing-Hong. Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [19] Yu Hui, Liu Zun, Li Yong-Jun. Key nodes in complex networks identified by multi-attribute decision-making method. Acta Physica Sinica, 2013, 62(2): 020204. doi: 10.7498/aps.62.020204
    [20] Analysis of functional brain network based on electroencephalogram. Acta Physica Sinica, 2007, 56(12): 7330-7338. doi: 10.7498/aps.56.7330
Metrics
  • Abstract views:  490
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2025
  • Accepted Date:  17 April 2025
  • Available Online:  19 April 2025
  • Published Online:  20 June 2025

/

返回文章
返回