Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coupling mechanism between high-temperature rheological behavior and dynamic relaxation in metallic glasses

LIANG Shuyi ZHANG Langting ZHU Hangchen XING Guanghui QIAO Jichao

Citation:

Coupling mechanism between high-temperature rheological behavior and dynamic relaxation in metallic glasses

LIANG Shuyi, ZHANG Langting, ZHU Hangchen, XING Guanghui, QIAO Jichao
cstr: 32037.14.aps.74.20250392
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This study aims to establish the intrinsic link between the high-temperature rheological behavior and kinetic relaxation characteristics of La-based metallic glasses. By conducting dynamic mechanical analysis and high-temperature tensile strain-rate jump experiments on three La-based metallic glasses with significant β relaxation, and combining the findings within the free volume theory framework, their high-temperature rheological properties are investigated systematically. The results show that the steady-state flow stress and activation volume evolution trend are consistent within the normalized temperature range. The average activation energy for high-temperature rheology aligns with the activation energy range of α relaxation, confirming the strong association between rheological behavior and α relaxation. The activation energy for β relaxation shows an opposite trend, indicating that it may precede α relaxation. A dynamic competition between defect annihilation and generation governs the rheological behavior, and kinetic parameters reveal the temperature and strain-rate sensitivity of metallic glasses. This study lays a theoretical foundation for optimizing the high-temperature mechanical properties of La-based metallic glasses and also provides new insights into understanding the coupling relationship between multi-scale relaxation behavior and rheological mechanisms in metallic glasses.
      Corresponding author: QIAO Jichao, qjczy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12472069, 52271153), the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University, China (Grant No. CX2024012), the China Association for Science and Technology (CAST) Youth Talent Support Program-Doctoral Student Special Project, and the Shaanxi Undergraduate Training Program on Innovation and Entrepreneurship, China (Grant No. S202310699565).
    [1]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [2]

    Yu H B, Gao L, Gao J Q, Samwer K 2024 Natl. Sci. Rev. 11 nwae091Google Scholar

    [3]

    Alem S A A, Sabzvand M H, Govahi P, Poormehrabi P, Hasanzadeh Azar M, Salehi Siouki S, Rashidi R, Angizi S, Bagherifard S 2025 Adv. Compos. Hybrid Mater. 8 3Google Scholar

    [4]

    王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨 2024 物理学报 73 217101Google Scholar

    Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101Google Scholar

    [5]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81Google Scholar

    [6]

    Fan Z, Li Q, Fan C, Wang H, Zhang X 2019 J. Mater. Res. 34 1595Google Scholar

    [7]

    王军强, 欧阳酥 2017 物理学报 66 176102Google Scholar

    Wang J Q, Ouyang S 2017 Acta Phys. Sin. 66 176102Google Scholar

    [8]

    Liang S Y, Zhang L T, Wang Y J, Wang B, Pelletier J M, Qiao J C 2024 Int. J. Fatigue 187 108446Google Scholar

    [9]

    Tong Y, Song L, Gao Y, Fan L, Li F, Yang Y, Mo G, Liu Y, Shui X, Zhang Y, Gao M, Huo J, Qiao J, Pineda E, Wang J Q 2023 Nat. Commun. 14 8407Google Scholar

    [10]

    Gallino I, Cangialosi D, Evenson Z, Schmitt L, Hechler S, Stolpe M, Ruta B 2018 Acta Mater. 144 400Google Scholar

    [11]

    Li W, Zuo X F, Liu R, Pang C M, Jin F, Zhu W W, Yuan C C 2024 Int. J. Plast. 174 103893Google Scholar

    [12]

    Kelly J P, Fuller S M, Seo K, Novitskaya E, Eliasson V, Hodge A M, Graeve O A 2016 Mater. Des. 93 26Google Scholar

    [13]

    Zhang Y, Li C, Fu X, Hou S, Li C, Kou S, Li X 2025 J. Alloys Compd. 1020 179364Google Scholar

    [14]

    武振伟, 汪卫华 2020 物理学报 69 066101Google Scholar

    Wu Z W, Wang W H 2020 Acta Phys. Sin. 69 066101Google Scholar

    [15]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [16]

    Zhang L T, Wang Y J, Yang Y, Qiao J C 2022 Sci. China-Phys. Mech. Astron. 65 106111Google Scholar

    [17]

    Ding Y, Shi F, Wang X, Bai Y, Wang Z, Hu L 2024 Acta Mater. 266 119698Google Scholar

    [18]

    Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965Google Scholar

    [19]

    Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903Google Scholar

    [20]

    Meng S, Hao Q, Wang B, Wang Y, Pineda E, Qiao J 2025 J. Appl. Phys. 137 055108Google Scholar

    [21]

    Qiao J C, Pineda E 2025 Eur. J. Phys. 46 035501Google Scholar

    [22]

    Monnier X, Cangialosi D, Ruta B, Busch R, Gallino I 2020 Sci. Adv. 6 1454Google Scholar

    [23]

    Duan Y J, Zhang L T, Qiao J C, Wang Y J, Yang Y, Wada T, Kato H, Pelletier J M, Pineda E, Crespo D 2022 Phys. Rev. Lett. 129 175501Google Scholar

    [24]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 5Google Scholar

    [25]

    Liang D D, Wang X D, Ge K, Cao Q P, Jiang J Z 2014 J. Non-Cryst. Solids 383 97Google Scholar

    [26]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [27]

    Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402Google Scholar

    [28]

    Zhu Y, Shang T, Yuan J, Song Z, Luo W, Zhang J, Li M 2024 J. Non-Cryst. Solids 645 123196Google Scholar

    [29]

    Su S, Zhao W, Su X, Shadangi Y, Jin Z, Ning Z, Zhang Y, Sun J, Huang Y 2025 J. Mater. Sci. Technol. 227 304Google Scholar

    [30]

    Su S, Liu C Y, Su X, Shadangi Y, Cao G Y, Ning Z L, Sun J F, Huang Y J, Eckert J 2025 Rare Metals 120501

    [31]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [32]

    Bletry M, Guyot P, Bréchet Y, Blandin J J, Soubeyroux J L 2007 Acta Mater. 55 6331Google Scholar

    [33]

    Homer E R, Schuh C A 2009 Acta Mater. 57 2823Google Scholar

    [34]

    Anand L, Su C 2007 Acta Mater. 55 3735Google Scholar

    [35]

    Rao W, Chen Y, Dai L H 2022 Int. J. Plast. 154 103309Google Scholar

    [36]

    Liang S Y, Zhang L T, Wang B, Wang Y J, Pineda E, Qiao J C 2024 Intermetallics 164 108115Google Scholar

    [37]

    Hao Q, Lü G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2024 Int. J. Plast. 175 103926Google Scholar

    [38]

    Mo J, Shen B, Wan Y, Zhou Z, Sun B, Liang X 2020 J. Non-Cryst. Solids 528 119742Google Scholar

    [39]

    Yuan S, Liang A, Liu C, Tian L, Mousseau N, Branicio P S 2023 Phys. Rev. Mater. 7 123603Google Scholar

    [40]

    Liang S Y, Zhu F, Wang Y J, Pineda E, Wada T, Kato H, Qiao J C 2024 Int. J. Eng. Sci. 205 104146Google Scholar

    [41]

    黄蓓蓓, 郝奇, 吕国建, 乔吉超 2023 物理学报 72 136101Google Scholar

    Huang B B, Hao Q, Lü G J, Qiao J C 2023 Acta Phys. Sin. 72 136101Google Scholar

    [42]

    Gong X, Wang X D, Xu T, Cao Q, Zhang D, Jiang J Z 2021 J. Phys. Chem. B 125 657Google Scholar

    [43]

    Jiang W, Zhao Y, Zhang B 2021 J. Non-Cryst. Solids 571 121062Google Scholar

    [44]

    Li R, Pang S, Ma C, Zhang T 2007 Acta Mater. 55 3719Google Scholar

    [45]

    Anand L, Su C 2005 J. Mech. Phys. Solids 53 1362Google Scholar

    [46]

    Meduri C, Hasan M, Adam S, Kumar G 2018 J. Alloys Compd. 732 922Google Scholar

    [47]

    Li L, Homer E R, Schuh C A 2013 Acta Mater. 61 3347Google Scholar

    [48]

    Kato H, Igarashi H, Inoue A 2008 Mater. Lett. 62 1592Google Scholar

    [49]

    Liu Y, Yang Z, Yang Y, Luo J, Huang X 2024 J. Non-Cryst. Solids 629 122891Google Scholar

    [50]

    Bian X L, Wang G, Chen H C, Yan L, Wang J G, Wang Q, Hu P F, Ren J L, Chan K C, Zheng N, Teresiak A, Gao Y L, Zhai Q J, Eckert J, Beadsworth J, Dahmen K A, Liaw P K 2016 Acta Mater. 106 66Google Scholar

    [51]

    Yoo B G, Park K W, Lee J C, Ramamurty U, Jang J I 2009 J. Mater. Res. 24 1405Google Scholar

    [52]

    Cheng Y T, Hao Q, Pelletier J M, Pineda E, Qiao J C 2021 Int. J. Plast. 146 103107Google Scholar

    [53]

    Lass E A, Zhu A, Shiflet G J, Joseph Poon S 2011 Acta Mater. 59 6341Google Scholar

    [54]

    Pan S, Zheng G P, Qiao J, Niu X, Wang W, Qin J 2019 J. Alloys Compd. 799 450Google Scholar

    [55]

    Acharya A, Widom M 2017 J. Mech. Phys. Solids 104 1Google Scholar

    [56]

    Rao W, Chen Y, Dai L H, Jiang M Q 2025 J. Mech. Phys. Solids 196 106002Google Scholar

    [57]

    Jiang J, Lu Z, Shen J, Wada T, Kato H, Chen M 2021 Nat. Commun. 12 3843Google Scholar

    [58]

    Schirmacher W, Ruocco G, Mazzone V 2015 Phys. Rev. Lett. 115 015901Google Scholar

    [59]

    孟绍怡, 郝奇, 吕国建, 乔吉超 2023 物理学报 72 076101Google Scholar

    Meng S Y, Hao Q, Lü G J, Qiao J C 2023 Acta Phys. Sin. 72 076101Google Scholar

    [60]

    Xing G H, Hao Q, Zhu F, Wang Y J, Yang Y, Kato H, Pineda E, Lan S, Qiao J 2024 Sci. China-Phys. Mech. Astron. 67 256111Google Scholar

    [61]

    Ju J D, Atzmon M 2014 Acta Mater. 74 183Google Scholar

    [62]

    Yamasaki T, Maeda S, Yokoyama Y, Okai D, Fukami T, Kimura H M, Inoue A 2006 Intermetallics 14 1102Google Scholar

    [63]

    Hasan O A, Boyce M C 1995 Polym. Eng. Sci. 35 331Google Scholar

    [64]

    Wu F F, Zhang Z F, Mao S X 2009 Acta Mater. 57 257Google Scholar

    [65]

    Qiao J W, Zhang Y, Jia H L, Yang H J, Liaw P K, Xu B S 2012 Appl. Phys. Lett. 100 121902Google Scholar

    [66]

    Wu L, Zhu Z, Liu D, Fu H, Li H, Wang A, Zhang H, Li Z, Zhang L, Zhang H 2020 J. Mater. Sci. Technol. 37 64Google Scholar

    [67]

    江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗 2022 物理学报 71 058101Google Scholar

    Jiang S S, Zhu L, Liu S N, Yang Z Z, Lan S, Wang Y G 2022 Acta Phys. Sin. 71 058101Google Scholar

  • 图 1  La62Al14Ag2.34Ni10.83Co10.83, La20Ce20Y20Ni20Al20和(La0.6Ce0.4)65Al10Co25非晶合金归一化内耗随归一化温度的演化(驱动频率: 1 Hz; 升温速率: 3 K/min)

    Figure 1.  Evolution of the normalized internal friction with the normalized temperature for La62Al14Ag2.34Ni10.83Co10.83, La20Ce20Y20Ni20Al20 and (La0.6Ce0.4)65Al10Co25 metallic glasses (driving frequency: 1 Hz; heating rate: 3 K/min).

    图 2  在0.92Tα, 0.93Tα, 0.94Tα, 0.95Tα下, (a) La62Al14Ag2.34Ni10.83Co10.83, (b) La20Ce20Y20Ni20Al20和(c) (La0.6Ce0.4)65Al10Co25非晶合金拉伸应变率跳跃实验(应变率: 2.5×10–4 —1.25×10–3 s–1)的应力-应变曲线

    Figure 2.  Stress-strain curves from tensile strain-rate jump experiments (strain rate ranging from 2.5×10–4 to 1.25×10–3 s–1) of (a) La62Al14Ag2.34Ni10.83Co10.83, (b) La20Ce20Y20Ni20Al20 and (c) (La0.6Ce0.4)65Al10Co25 metallic glasses at 0.92Tα, 0.93Tα, 0.94Tα and 0.95Tα, respectively.

    图 3  (a) La20Ce20Y20Ni20Al20非晶合金(La-2)在高温拉伸应变率跳过程中峰值应力随应变率的演化及其基于(1)式的拟合曲线; (b) La基非晶合金峰值应力处激活体积随归一化温度的演化

    Figure 3.  (a) Evolution of the peak stress with the strain rate during the high-temperature tensile strain-rate jump process of La20Ce20Y20Ni20Al20 metallic glass (La-2) and the fitting curves based on Eq. (1); (b) evolution of the activation volume at the peak stress of La-based metallic glasses with the normalized temperature.

    图 4  (a) La基非晶合金的参考应变率$ {\dot{\varepsilon }}_{0} $与归一化温度的关系; (b) La基非晶合金在0.92Tα—0.95Tα时无外力作用下扩散的平均激活能

    Figure 4.  (a) Relationship between the reference strain rate $ {\dot{\varepsilon }}_{0} $ and the normalized temperature of La-based metallic glasses; (b) average activation energy for diffusion without an applied force of La-based metallic glasses at 0.92Tα–0.95Tα.

    图 5  (a) 350—390 K温度下La20Ce20Y20Ni20Al20非晶合金(La-2)内耗的频率谱; (b) La基非晶合金体系β弛豫过程中激励频率与峰值温度之间的关系及Arrhenius拟合; (c) 三种La基非晶合金体系的β弛豫激活能

    Figure 5.  (a) Frequency spectra of the internal friction of the La20Ce20Y20Ni20Al20 metallic glass (La-2) at temperatures ranging from 350 to 390 K; (b) relationship between the driving frequency and the peak temperature during β relaxation process in the La-based metallic glasses, along with the Arrhenius fitting; (c) activation energies of β relaxation for the La-based metallic glasses.

    图 6  La基非晶合金高温拉伸应变率跳跃实验应力随时间的演化及其基于自由体积理论的拟合结果 (a) La-1; (b) La-2; (c) La-3

    Figure 6.  Evolution of stress with time during the high-temperature tensile strain-rate jump experiments of the La-based metallic glasses and fitting results based on the free volume theory: (a) La-1; (b) La-2; (c) La-3.

    图 7  (a) La基非晶合金流变阶段相对缺陷浓度随应变率及温度的演化; (b) La基非晶合金高温拉伸应变率跳过程中相对缺陷浓度演化

    Figure 7.  (a) Evolution of the relative defect concentration with strain rate and temperature during the rheological stage of La-based metallic glasses; (b) evolution of the relative defect concentration during the high-temperature tensile strain-rate jump process of La-based metallic glasses.

    图 8  (a) La基非晶合金缺陷生成速率与湮灭速率的比值随温度的演化; (b) 不同非晶合金的$ -{\mathrm{d}}({a}_{x}/{k}_{{\mathrm{r}}})/{\mathrm{d}}T $

    Figure 8.  (a) Evolution of the ratio between the defect generation rate and the annihilation rate with temperature for La-based metallic glasses; (b) $ -{\mathrm{d}}({a}_{x}/{k}_{{\mathrm{r}}})/{\mathrm{d}}T $ for different metallic glasses.

  • [1]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [2]

    Yu H B, Gao L, Gao J Q, Samwer K 2024 Natl. Sci. Rev. 11 nwae091Google Scholar

    [3]

    Alem S A A, Sabzvand M H, Govahi P, Poormehrabi P, Hasanzadeh Azar M, Salehi Siouki S, Rashidi R, Angizi S, Bagherifard S 2025 Adv. Compos. Hybrid Mater. 8 3Google Scholar

    [4]

    王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨 2024 物理学报 73 217101Google Scholar

    Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101Google Scholar

    [5]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81Google Scholar

    [6]

    Fan Z, Li Q, Fan C, Wang H, Zhang X 2019 J. Mater. Res. 34 1595Google Scholar

    [7]

    王军强, 欧阳酥 2017 物理学报 66 176102Google Scholar

    Wang J Q, Ouyang S 2017 Acta Phys. Sin. 66 176102Google Scholar

    [8]

    Liang S Y, Zhang L T, Wang Y J, Wang B, Pelletier J M, Qiao J C 2024 Int. J. Fatigue 187 108446Google Scholar

    [9]

    Tong Y, Song L, Gao Y, Fan L, Li F, Yang Y, Mo G, Liu Y, Shui X, Zhang Y, Gao M, Huo J, Qiao J, Pineda E, Wang J Q 2023 Nat. Commun. 14 8407Google Scholar

    [10]

    Gallino I, Cangialosi D, Evenson Z, Schmitt L, Hechler S, Stolpe M, Ruta B 2018 Acta Mater. 144 400Google Scholar

    [11]

    Li W, Zuo X F, Liu R, Pang C M, Jin F, Zhu W W, Yuan C C 2024 Int. J. Plast. 174 103893Google Scholar

    [12]

    Kelly J P, Fuller S M, Seo K, Novitskaya E, Eliasson V, Hodge A M, Graeve O A 2016 Mater. Des. 93 26Google Scholar

    [13]

    Zhang Y, Li C, Fu X, Hou S, Li C, Kou S, Li X 2025 J. Alloys Compd. 1020 179364Google Scholar

    [14]

    武振伟, 汪卫华 2020 物理学报 69 066101Google Scholar

    Wu Z W, Wang W H 2020 Acta Phys. Sin. 69 066101Google Scholar

    [15]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [16]

    Zhang L T, Wang Y J, Yang Y, Qiao J C 2022 Sci. China-Phys. Mech. Astron. 65 106111Google Scholar

    [17]

    Ding Y, Shi F, Wang X, Bai Y, Wang Z, Hu L 2024 Acta Mater. 266 119698Google Scholar

    [18]

    Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965Google Scholar

    [19]

    Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903Google Scholar

    [20]

    Meng S, Hao Q, Wang B, Wang Y, Pineda E, Qiao J 2025 J. Appl. Phys. 137 055108Google Scholar

    [21]

    Qiao J C, Pineda E 2025 Eur. J. Phys. 46 035501Google Scholar

    [22]

    Monnier X, Cangialosi D, Ruta B, Busch R, Gallino I 2020 Sci. Adv. 6 1454Google Scholar

    [23]

    Duan Y J, Zhang L T, Qiao J C, Wang Y J, Yang Y, Wada T, Kato H, Pelletier J M, Pineda E, Crespo D 2022 Phys. Rev. Lett. 129 175501Google Scholar

    [24]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 5Google Scholar

    [25]

    Liang D D, Wang X D, Ge K, Cao Q P, Jiang J Z 2014 J. Non-Cryst. Solids 383 97Google Scholar

    [26]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [27]

    Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402Google Scholar

    [28]

    Zhu Y, Shang T, Yuan J, Song Z, Luo W, Zhang J, Li M 2024 J. Non-Cryst. Solids 645 123196Google Scholar

    [29]

    Su S, Zhao W, Su X, Shadangi Y, Jin Z, Ning Z, Zhang Y, Sun J, Huang Y 2025 J. Mater. Sci. Technol. 227 304Google Scholar

    [30]

    Su S, Liu C Y, Su X, Shadangi Y, Cao G Y, Ning Z L, Sun J F, Huang Y J, Eckert J 2025 Rare Metals 120501

    [31]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [32]

    Bletry M, Guyot P, Bréchet Y, Blandin J J, Soubeyroux J L 2007 Acta Mater. 55 6331Google Scholar

    [33]

    Homer E R, Schuh C A 2009 Acta Mater. 57 2823Google Scholar

    [34]

    Anand L, Su C 2007 Acta Mater. 55 3735Google Scholar

    [35]

    Rao W, Chen Y, Dai L H 2022 Int. J. Plast. 154 103309Google Scholar

    [36]

    Liang S Y, Zhang L T, Wang B, Wang Y J, Pineda E, Qiao J C 2024 Intermetallics 164 108115Google Scholar

    [37]

    Hao Q, Lü G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2024 Int. J. Plast. 175 103926Google Scholar

    [38]

    Mo J, Shen B, Wan Y, Zhou Z, Sun B, Liang X 2020 J. Non-Cryst. Solids 528 119742Google Scholar

    [39]

    Yuan S, Liang A, Liu C, Tian L, Mousseau N, Branicio P S 2023 Phys. Rev. Mater. 7 123603Google Scholar

    [40]

    Liang S Y, Zhu F, Wang Y J, Pineda E, Wada T, Kato H, Qiao J C 2024 Int. J. Eng. Sci. 205 104146Google Scholar

    [41]

    黄蓓蓓, 郝奇, 吕国建, 乔吉超 2023 物理学报 72 136101Google Scholar

    Huang B B, Hao Q, Lü G J, Qiao J C 2023 Acta Phys. Sin. 72 136101Google Scholar

    [42]

    Gong X, Wang X D, Xu T, Cao Q, Zhang D, Jiang J Z 2021 J. Phys. Chem. B 125 657Google Scholar

    [43]

    Jiang W, Zhao Y, Zhang B 2021 J. Non-Cryst. Solids 571 121062Google Scholar

    [44]

    Li R, Pang S, Ma C, Zhang T 2007 Acta Mater. 55 3719Google Scholar

    [45]

    Anand L, Su C 2005 J. Mech. Phys. Solids 53 1362Google Scholar

    [46]

    Meduri C, Hasan M, Adam S, Kumar G 2018 J. Alloys Compd. 732 922Google Scholar

    [47]

    Li L, Homer E R, Schuh C A 2013 Acta Mater. 61 3347Google Scholar

    [48]

    Kato H, Igarashi H, Inoue A 2008 Mater. Lett. 62 1592Google Scholar

    [49]

    Liu Y, Yang Z, Yang Y, Luo J, Huang X 2024 J. Non-Cryst. Solids 629 122891Google Scholar

    [50]

    Bian X L, Wang G, Chen H C, Yan L, Wang J G, Wang Q, Hu P F, Ren J L, Chan K C, Zheng N, Teresiak A, Gao Y L, Zhai Q J, Eckert J, Beadsworth J, Dahmen K A, Liaw P K 2016 Acta Mater. 106 66Google Scholar

    [51]

    Yoo B G, Park K W, Lee J C, Ramamurty U, Jang J I 2009 J. Mater. Res. 24 1405Google Scholar

    [52]

    Cheng Y T, Hao Q, Pelletier J M, Pineda E, Qiao J C 2021 Int. J. Plast. 146 103107Google Scholar

    [53]

    Lass E A, Zhu A, Shiflet G J, Joseph Poon S 2011 Acta Mater. 59 6341Google Scholar

    [54]

    Pan S, Zheng G P, Qiao J, Niu X, Wang W, Qin J 2019 J. Alloys Compd. 799 450Google Scholar

    [55]

    Acharya A, Widom M 2017 J. Mech. Phys. Solids 104 1Google Scholar

    [56]

    Rao W, Chen Y, Dai L H, Jiang M Q 2025 J. Mech. Phys. Solids 196 106002Google Scholar

    [57]

    Jiang J, Lu Z, Shen J, Wada T, Kato H, Chen M 2021 Nat. Commun. 12 3843Google Scholar

    [58]

    Schirmacher W, Ruocco G, Mazzone V 2015 Phys. Rev. Lett. 115 015901Google Scholar

    [59]

    孟绍怡, 郝奇, 吕国建, 乔吉超 2023 物理学报 72 076101Google Scholar

    Meng S Y, Hao Q, Lü G J, Qiao J C 2023 Acta Phys. Sin. 72 076101Google Scholar

    [60]

    Xing G H, Hao Q, Zhu F, Wang Y J, Yang Y, Kato H, Pineda E, Lan S, Qiao J 2024 Sci. China-Phys. Mech. Astron. 67 256111Google Scholar

    [61]

    Ju J D, Atzmon M 2014 Acta Mater. 74 183Google Scholar

    [62]

    Yamasaki T, Maeda S, Yokoyama Y, Okai D, Fukami T, Kimura H M, Inoue A 2006 Intermetallics 14 1102Google Scholar

    [63]

    Hasan O A, Boyce M C 1995 Polym. Eng. Sci. 35 331Google Scholar

    [64]

    Wu F F, Zhang Z F, Mao S X 2009 Acta Mater. 57 257Google Scholar

    [65]

    Qiao J W, Zhang Y, Jia H L, Yang H J, Liaw P K, Xu B S 2012 Appl. Phys. Lett. 100 121902Google Scholar

    [66]

    Wu L, Zhu Z, Liu D, Fu H, Li H, Wang A, Zhang H, Li Z, Zhang L, Zhang H 2020 J. Mater. Sci. Technol. 37 64Google Scholar

    [67]

    江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗 2022 物理学报 71 058101Google Scholar

    Jiang S S, Zhu L, Liu S N, Yang Z Z, Lan S, Wang Y G 2022 Acta Phys. Sin. 71 058101Google Scholar

  • [1] An Wanying, Liang Shuyi, Zhang Langting, Kato Hidemi, Qiao Jichao. Deformation characteristic and rejuvenation mechanism of a metallic glass during the mechanical cycling processes. Acta Physica Sinica, 2025, 74(16): . doi: 10.7498/aps.74.20250563
    [2] Cheng Qi, Sun Yong-Hao, Wang Wei-Hua. Top-view analysis of ultrafast differential scanning calorimetry data. Acta Physica Sinica, 2024, 73(7): 078101. doi: 10.7498/aps.73.20232027
    [3] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [4] Huang Bei-Bei, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. Dynamical relaxation and stress relaxation of Zr-based metallic glass. Acta Physica Sinica, 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [5] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [6] Cheng Yi-Ting, Andrey S. Makarov, Gennadii V. Afonin, Vitaly A. Khonik, Qiao Ji-Chao. Evolution of defect concentration in Zr50–xCu34Ag8Al8Pdx (x = 0, 2) amorphous alloys derived using shear modulus and calorimetric data. Acta Physica Sinica, 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [7] Wu Zhen-Wei, Wang Wei-Hua. Linking local connectivity to atomic-scale relaxation dynamics in metallic glass-forming systems. Acta Physica Sinica, 2020, 69(6): 066101. doi: 10.7498/aps.69.20191870
    [8] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [9] Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [10] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [11] Jin Xin-Xin, Jin Feng, Liu Ning, Sun Qi-Cheng. Analysis of elastic energy relaxation process for granular materials at quasi-static state. Acta Physica Sinica, 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [12] Xu Fu, Li Ke-Feng, Deng Xu-Hui, Zhang Ping, Long Zhi-Lin. Research on viscoelastic behavior and rheological constitutive parameters of metallic glasses based on fractional-differential rheological model. Acta Physica Sinica, 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [13] Tang Yi-Wei, Ai Liang, Cheng Yun, Wang An-An, Li Shu-Guo, Jia Ming. Relaxation behavior simulation of power lithium-ion battery in high-rate charging-discharging process. Acta Physica Sinica, 2016, 65(5): 058201. doi: 10.7498/aps.65.058201
    [14] Sun Qi-Cheng, Liu Chuan-Qi, Gordon G D Zhou. Relaxation of granular elasticity. Acta Physica Sinica, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [15] Lu Min, Xu Wei-Bing, Liu Wei-Qing, Hou Chun-Ju, Liu Zhi-Yong. An atomistic simulation on melting and breaking relaxation characteristics of Ag nanorods at high temperature. Acta Physica Sinica, 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [16] Zhou Zheng-Cun, Zhao Hong-Ping, Gu Su-Yi, Wu Qian. Relaxation resulting from atomic defects in quenched Fe-Al alloys. Acta Physica Sinica, 2008, 57(2): 1025-1029. doi: 10.7498/aps.57.1025
    [17] Xu Feng, Liu Tang-Yan, Huang Yong-Ren. Theoretical description and numerical computation of the relaxation of multi-spin system in the presence of an RF field. Acta Physica Sinica, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [18] Cheng Wei-Dong, Sun Min-Hua, Li Jia-Yun, Wang Ai-Ping, Sun Yong-Li, Liu Fang, Liu Xiong-Jun. Small angle X-ray scattering research of the relaxation and crystallization process in Cu60Zr30Ti10 amorphous alloy. Acta Physica Sinica, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [19] Huang Zhi, Bai Hai-Yang, Jing Xiu-Nian, Wang Zhi-Xin, Wang Wan-Lu. A study on the resistance minima in an amorphous alloy at low temperature. Acta Physica Sinica, 2004, 53(10): 3457-3461. doi: 10.7498/aps.53.3457
    [20] . Acta Physica Sinica, 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
Metrics
  • Abstract views:  404
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2025
  • Accepted Date:  16 April 2025
  • Available Online:  24 April 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回