Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of radiation-induced attenuation on power scalability of single-frequency single-mode Yb-doped fiber amplifiers

CAO Jianqiu ZHOU Shangde LIU Pengfei HUANG Zhihe MA Pengfei WANG Zefeng SI Lei CHEN Jinbao

Citation:

Influence of radiation-induced attenuation on power scalability of single-frequency single-mode Yb-doped fiber amplifiers

CAO Jianqiu, ZHOU Shangde, LIU Pengfei, HUANG Zhihe, MA Pengfei, WANG Zefeng, SI Lei, CHEN Jinbao
cstr: 32037.14.aps.74.20250418
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Power scalability of single-frequency single-mode Yb-doped fiber amplifiers is significant for their applications. Considering their potential applications in radiation environments, the influence of radiation-induced attenuation (RIA) on the power scalability of signal-frequency single-mode Yb-doped fiber amplifiers is studied in this work. A theoretical model for predicting the power limitation of single-frequency single-mode Yb-doped fiber amplifiers is proposed by considering the limitations of pump brightness, stimulated Brillion scattering (SBS), and transverse mode instability (TMI), and taking RIA into account. It is revealed that RIA can not only greatly lower the power limit, but also make it more difficult to achieve power limitation. The analytic formula of power limit is deduced. It is found that the effect of RIA on the power limitation is mainly determined by the optimal length with no RIA. It is suggested that the reduction of power limitation caused by RIA can be weakened by shortening the optimum length of Yb-doped fiber.The requirement of Yb-doped fiber for achieving certain target power is also discussed and the needed ranges of core diameter and fiber length are given analytically. It is found that the RIA will increase the difficulty in achieving the target power by limiting the option of Yb-doped fibers. In spite of that, it is also found that such an effect of RIA can be weakened by increasing the core absorption coefficient and pump brightness. Moreover, the numerical model and related formula can also reveal the influence of radiation dose by fitting the relationship between RIA and radiation dose through using the empirical expressions such as power law. They can provide significant guidance for designing and utilizing single-frequency single-mode Yb-doped fiber amplifiers in radiation environments.
      Corresponding author: CHEN Jinbao, kdchenjinbao@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62475283, U20B2058).
    [1]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2009 Opt. Express 17 13240Google Scholar

    [2]

    Zervas M N 2019 Opt. Express 27 19019Google Scholar

    [3]

    Chen M N, Huang Z H, Cao J Q, Liu A M, Wang Z F, Chen J B 2025 Opt. Commun. 577 131462Google Scholar

    [4]

    Zhang Z Y, Zhou X J, Sui Z, Wang J J, Li H P, Liu Y Z, Liu Y 2009 Opt. Commun. 282 1186Google Scholar

    [5]

    Fu S J, Shi W, Yang F, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 A49Google Scholar

    [6]

    安毅, 潘志勇, 杨欢, 黄良金, 马鹏飞, 闫志平, 姜宗福, 周朴 2021 物理学报 70 204204Google Scholar

    An Y, Pan Z Y, Yang H, Huang L J, Ma P F, Yan Z P, Jiang Z F, Zhou P 2021 Acta Phys. Sin. 70 204204Google Scholar

    [7]

    Mermelstein M D 2025 Appl. Opt. 64 1179Google Scholar

    [8]

    Liu W B, Cao J Q, Chen J B 2019 Opt. Express 27 9164Google Scholar

    [9]

    Dong L 2016 Opt. Express 24 19841Google Scholar

    [10]

    Liu P F, Cao J Q, Liu W G, Chen J B 2024 Opt. Fiber Technol. 84 103715Google Scholar

    [11]

    Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Top. Quantum Electron. 24 1Google Scholar

    [12]

    Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [13]

    Xia N, Yoo S 2020 J. Lightwave Technol. 38 4478Google Scholar

    [14]

    Cao J Q, Chen J B, Guo S F, Lu Q S, Xu X J 2014 IEEE J. Sel. Top. Quantum Electron. 20 373Google Scholar

    [15]

    Cao J Q, Chen M N, Huang Z H, Wang Z F, Chen J B 2024 Opt. Express 32 12892Google Scholar

    [16]

    Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Opt. 20 093001Google Scholar

    [17]

    Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809Google Scholar

    [18]

    Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A, Meunier J P, Schwank J R, Shaneyfelt M R, Dodd P E, Blackmore E W 2009 IEEE Trans. Nucl. Sci. 56 3293Google Scholar

    [19]

    Chen Y S, Xu H Z, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430Google Scholar

    [20]

    Tao M M, Chen H W, Feng G B, Luan K P, Wang F, Huang K, Ye X S 2020 Opt. Express 28 10104Google Scholar

    [21]

    曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝 2024 物理学报 73 204202Google Scholar

    Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Si L, Chen J B 2024 Acta Phys. Sin. 73 204202Google Scholar

    [22]

    Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Chen J B 2024 2024 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC) Beijing, China November 2–5, 2024 pp1–3Google Scholar

    [23]

    Zervas M N 2016 Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF) Vancouver, Canada, 2016 pSoW2H.2

    [24]

    Golob J E, Lyons P B, Looney L D 1977 IEEE Trans. Nucl. Sci. 24 2164Google Scholar

    [25]

    Shao C Y, Yu C L, Zhu Y M, Zhou Q L, Georges B, Małgorzata E G, Chen W B, Hu L L 2022 J. Lumin. 248 118939Google Scholar

    [26]

    Girard S, Alessi A, Richard N, Martin-Samos L, De Michele V, Giacomazzi L, Agnello S, Di Francesca D, Morana A, Winkler B, Reghioua I, Paillet P, Cannas M, Robin T, Boukenter A, Ouerdane Y 2019 Rev. Phys. 4 100032Google Scholar

    [27]

    Griscom D L, Gingerich M E, Friebele E J 1994 IEEE Trans. Nucl. Sci. 41 523Google Scholar

    [28]

    黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利 2014 物理学报 63 200201Google Scholar

    Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201Google Scholar

  • 图 1  三种因素限制功率(单位: kW)随纤芯直径和光纤长度的变化, 辐致损耗分别为0 dB/m (a), 0.01 dB/m (b), 0.03 dB/m (c)和0.05 dB/m (d), 其中, 泵浦光亮度(PB), SBS和TMI限制区域分别由黄色、绿色和橙色标记. 计算得到的功率极限分别为1.47 kW (a), 1.41 kW (b), 1.30 kW (c)和1.22 kW (d). 图(a)的功率极限出现在SBS和TMI区域的交界线上, 其他三图的功率极限出现在三条交界线的交点上(由红色六角星标记). 交界线的交点坐标分别为(79.1, 2.126) (a); (77.6, 2.131) (b); (74.9, 2.142) (c); (74.6, 2.153) (d)

    Figure 1.  Variations of power limits (unit: kW) with the core diameter and length of Yb-doped fiber, where the RIA values are 0 dB/m (a), 0.01 dB/m (b), 0.03 dB/m (c), and 0.05 dB/m (d), respectively. The PB-limited, SBS-limited, and TMI-limited regions are marked in yellow, green, and orange, respectively. The calculated power limits are 1.47 kW (a), 1.41 kW (b), 1.30 kW (c), and 1.22 kW (d), respectively. The power limit in (a) appears at the boundary between the SBS-limited and TMI-limited regions, while the power limit in each of the other three graphs appears at the cross point (marked by the red hexagram) of three boundary lines. The coordinates of cross points: (a) (79.1, 2.126); (b) (77.6, 2.131); (c) (74.9, 2.142); (d) (74.6, 2.153).

    图 2  不同无辐照最佳光纤长度$ L_{\mathrm{opt}}^0$对应的功率极限比值(a)、最佳光纤长度比值(b)和最佳纤芯直径比值(c)随辐致损耗的变化, 其中4条曲线(实线、点线、虚线和点划线)给出的是数值精确解, 4种符号(圆圈、菱形、六角星和方形)标记的是近似解析解. 图(c)中$D_{\mathrm{opt}}^0 $表示无辐照最佳纤芯直径, 对应于$L_{\mathrm{opt}}^0 $为1, 2, 5和10 m的$D_{\mathrm{opt}}^0 $值分别为54.3 μm, 76.7 μm, 121.4 μm和171.6 μm

    Figure 2.  Ratios of limited power (a), optimum fiber length (b) and optimum core diameter (c) corresponding to different optimal fiber lengths without radiation varies with RIA, where four plots (solid, dotted, dashed and dot-dash lines) give the exact numerical solutions and four symbols (circle, diamond, start and square) mark the approximate analytic solutions. $D_{\mathrm{opt}}^0 $ in panel (c) is the optimum core diameter with no RIA, and its value is 54.3 μm, 76.7 μm, 121.4 μm and 171.6 μm corresponding to $ L_{\mathrm{opt}}^0$ of 1, 2, 5 and 10 m, respectively.

    表 1  数值计算所用的参数值[1]

    Table 1.  Symbols and values used in numerical calculation[1].

    物理量 参数值 物理量 参数值
    gB/(×10–11 m·W–1) 5 A/dB 20
    dn/dT /(×10–6 K–1) 11.8 G 10
    NA 0.45 η0 0.84
    ηheat 0.1 Γs 0.9
    Ιpump/(W·μm–2·sr–1) 0.021 k/(W·m–1·K–1) 1.38
    λp/nm 976 λs/nm 1080
    α976/(dB·m–1) 250
    DownLoad: CSV
  • [1]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2009 Opt. Express 17 13240Google Scholar

    [2]

    Zervas M N 2019 Opt. Express 27 19019Google Scholar

    [3]

    Chen M N, Huang Z H, Cao J Q, Liu A M, Wang Z F, Chen J B 2025 Opt. Commun. 577 131462Google Scholar

    [4]

    Zhang Z Y, Zhou X J, Sui Z, Wang J J, Li H P, Liu Y Z, Liu Y 2009 Opt. Commun. 282 1186Google Scholar

    [5]

    Fu S J, Shi W, Yang F, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 A49Google Scholar

    [6]

    安毅, 潘志勇, 杨欢, 黄良金, 马鹏飞, 闫志平, 姜宗福, 周朴 2021 物理学报 70 204204Google Scholar

    An Y, Pan Z Y, Yang H, Huang L J, Ma P F, Yan Z P, Jiang Z F, Zhou P 2021 Acta Phys. Sin. 70 204204Google Scholar

    [7]

    Mermelstein M D 2025 Appl. Opt. 64 1179Google Scholar

    [8]

    Liu W B, Cao J Q, Chen J B 2019 Opt. Express 27 9164Google Scholar

    [9]

    Dong L 2016 Opt. Express 24 19841Google Scholar

    [10]

    Liu P F, Cao J Q, Liu W G, Chen J B 2024 Opt. Fiber Technol. 84 103715Google Scholar

    [11]

    Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Top. Quantum Electron. 24 1Google Scholar

    [12]

    Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [13]

    Xia N, Yoo S 2020 J. Lightwave Technol. 38 4478Google Scholar

    [14]

    Cao J Q, Chen J B, Guo S F, Lu Q S, Xu X J 2014 IEEE J. Sel. Top. Quantum Electron. 20 373Google Scholar

    [15]

    Cao J Q, Chen M N, Huang Z H, Wang Z F, Chen J B 2024 Opt. Express 32 12892Google Scholar

    [16]

    Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Opt. 20 093001Google Scholar

    [17]

    Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809Google Scholar

    [18]

    Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A, Meunier J P, Schwank J R, Shaneyfelt M R, Dodd P E, Blackmore E W 2009 IEEE Trans. Nucl. Sci. 56 3293Google Scholar

    [19]

    Chen Y S, Xu H Z, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430Google Scholar

    [20]

    Tao M M, Chen H W, Feng G B, Luan K P, Wang F, Huang K, Ye X S 2020 Opt. Express 28 10104Google Scholar

    [21]

    曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝 2024 物理学报 73 204202Google Scholar

    Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Si L, Chen J B 2024 Acta Phys. Sin. 73 204202Google Scholar

    [22]

    Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Chen J B 2024 2024 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC) Beijing, China November 2–5, 2024 pp1–3Google Scholar

    [23]

    Zervas M N 2016 Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF) Vancouver, Canada, 2016 pSoW2H.2

    [24]

    Golob J E, Lyons P B, Looney L D 1977 IEEE Trans. Nucl. Sci. 24 2164Google Scholar

    [25]

    Shao C Y, Yu C L, Zhu Y M, Zhou Q L, Georges B, Małgorzata E G, Chen W B, Hu L L 2022 J. Lumin. 248 118939Google Scholar

    [26]

    Girard S, Alessi A, Richard N, Martin-Samos L, De Michele V, Giacomazzi L, Agnello S, Di Francesca D, Morana A, Winkler B, Reghioua I, Paillet P, Cannas M, Robin T, Boukenter A, Ouerdane Y 2019 Rev. Phys. 4 100032Google Scholar

    [27]

    Griscom D L, Gingerich M E, Friebele E J 1994 IEEE Trans. Nucl. Sci. 41 523Google Scholar

    [28]

    黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利 2014 物理学报 63 200201Google Scholar

    Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201Google Scholar

  • [1] Feng Yun-Long, Hou Shang-Lin, Lei Jing-Li, Wu Gang, Yan Zu-Yong. Analysis of acoustic modes induced by backward stimulated Brillouin scattering in acoustic wave-guided single mode optical fibers. Acta Physica Sinica, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [2] Zhao Wei, Fu Shi-Jie, Sheng Quan, Xue Kai, Shi Wei, Yao Jian-Quan. Suppression effect of auxiliary laser on stimulated Raman scattering effect of high-power Yb-doped fiber laser amplifier. Acta Physica Sinica, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [3] Cao Jian-Qiu, Zhou Shang-De, Liu Peng-Fei, Huang Zhi-He, Wang Ze-Feng, Si Lei, Chen Jin-Bao. Theoretical study on radiation effect on threshold of transverse mode instability of Yb-doped fiber amplifiers. Acta Physica Sinica, 2024, 73(20): 204202. doi: 10.7498/aps.73.20240816
    [4] Xue Bin-Tao, Zhang Li-Min, Liang Yong-Qi, Liu Ning, Wang Ding-Ping, Chen Liang, Wang Tie-Shan. Proton irradiation induced damage effects in CH3NH3PbI3-based perovskite solar cells. Acta Physica Sinica, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [5] Li Xue-Jian, Cao Min, Tang Min, Mi Yue-An, Tao Hong, Gu Hao, Ren Wen-Hua, Jian Wei, Ren Guo-Bin. Inter-mode stimulated Brillouin scattering and simultaneous temperature and strain sensing in M-shaped few-mode fiber. Acta Physica Sinica, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [6] Peng Hai-Bo, Liu Feng-Fei, Zhang Bing-Tao, Zhang Xiao-Yang, Sun Meng-Li, Du Xin, Wang Peng, Yuan Wei, Wang Tie-Shan, Wang Jian-Wei. Comparative studies of irradiation effects in borosilicate glass and fused silica irradiated by energetic Xe ions. Acta Physica Sinica, 2018, 67(3): 038101. doi: 10.7498/aps.67.20172117
    [7] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin. Irradiation effect of Sm2Co17 type permanent magnets. Acta Physica Sinica, 2017, 66(22): 226101. doi: 10.7498/aps.66.226101
    [8] Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei. Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [9] Tao Ru-Mao, Zhou Pu, Wang Xiao-Lin, Si Lei, Liu Ze-Jin. Experimental study on mode instability in high power all-fiber master oscillator power amplifer fiber lasers. Acta Physica Sinica, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [10] Wei Wei, Zhang Xia, Yu Hui, Li Yu-Peng, Zhang Yang-An, Huang Yong-Qing, Chen Wei, Luo Wen-Yong, Ren Xiao-Min. Slow light based on stimulated Brillouin scattering in microstructured fiber. Acta Physica Sinica, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [11] Zheng Di, Pan Wei. Feasibility study of nonlinear optical loop mirror in the cascaded stimwlated Brillouin scatteving-based slow light system. Acta Physica Sinica, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [12] Chen Xu-Dong, Shi Jin-Wei, Liu Juan, Liu Bao, Xu Yan-Xia, Shi Jiu-Lin, Liu Da-He. Amplification of stimulated Brillouin scattering by collinear laser pulse series with two orthogonal polarizations. Acta Physica Sinica, 2010, 59(2): 1047-1051. doi: 10.7498/aps.59.1047
    [13] Jin Yu-Zhe, Hu Yi-Pei, Zeng Xiang-Hua, Yang Yi-Jun. Gamma radiation effect on GaN-based blue light-emitting diodes with multi-quantum well. Acta Physica Sinica, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [14] Chen Xu-Dong, Shi Jin-Wei, Ouyang Min, Liu Bao, Xu Yan-Xia, Shi Jiu-Lin, Liu Da-He. Collinear amplification by dual-beam stimulated Brillouin scattering in a single optical cell. Acta Physica Sinica, 2009, 58(7): 4680-4684. doi: 10.7498/aps.58.4680
    [15] Zhang Lin, Han Chao, Ma Yong-Ji, Zhang Yi-Men, Zhang Yu-Ming. Gamma-ray radiation effect on Ni/4H-SiC SBD. Acta Physica Sinica, 2009, 58(4): 2737-2741. doi: 10.7498/aps.58.2737
    [16] Qiao Hui, Liao Yi, Hu Wei-Da, Deng Yi, Yuan Yong-Gang, Zhang Qin-Yao, Li Xiang-Yang, Gong Hai-Mei. Real-time study of γ irradiation on Hg1-xCdxTe focal plane photodiodes. Acta Physica Sinica, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [17] Wang Chun-Can, Zhang Fan, Tong Zhi, Ning Ti-Gang, Jian Shui-Sheng. Study on the suppression of the stimulated Brillouin scattering in high-power single-frequency multicore fiber amplifier. Acta Physica Sinica, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [18] Guo Shao-Feng, Lin Wen-Xiong, Lu Qi-Sheng, Chen Sui, Lin Zong-Zhi, Deng Shao-Yong, Zhu Yong-Xiang. Experimental research on stimulated Brillouin scattering in fused silica glass. Acta Physica Sinica, 2007, 56(4): 2218-2222. doi: 10.7498/aps.56.2218
    [19] Lü Zhi-Wei, Wang Xiao-Hui, Lin Dian-Yang, Wang Chao, Zhao Xiao-Yan, Tang Xiu-Zhang, Zhang Hai-Feng, Shan Yu-Sheng. A study on the stability of stimulated Brillouin scattering for KrF laser. Acta Physica Sinica, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
    [20] ZHANG TING-QING, LIU CHUAN-YANG, LIU JIA-LU, WANG JIAN-PING, HUANG ZHI, XU NA-JUN, HE BAO-PING, PENG HONG-LUN, YAO YU-JUAN. RADIATION EFFECTS OF MOS DEVICE AT LOW DOSE RATE AND LOW TEMPERATURE. Acta Physica Sinica, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
Metrics
  • Abstract views:  346
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2025
  • Accepted Date:  03 May 2025
  • Available Online:  10 May 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回