-
Nano-plasmonic chiral structures exhibit stronger plasmonic circular dichroism than most organic materials. In addition to the circular dichroism response, the interaction between light and nano-plasmonic chiral structures also involves the photothermal and optomechanical effects. However, the synergistic effect between the photothermal and optomechanical effects under circularly polarized light excitation remains poorly understood. This article investigates the synergistic effect of the photothermal and optomechanical effects in chiral gold nanorod trimers. The asymmetric photothermal and optomechanical effects in gold nanorod trimers with adjacent homochiral centers are analyzed by finite element simulation. The simulation results show that the dynamic structure of the chiral gold nanorod trimers is activated when the photothermal temperature reaches the threshold value. At the same time, the asymmetric optical torque generated by left- and right-handed circularly polarized light will lead to asymmetric changes in the geometry of the gold nanorod trimer, especially in the twist angle of the chiral center, so that the spectral response of the gold nanorod trimer is polarization-dependent. More significantly, based on the synergistic effect of the photothermal and optomechanical effects, experimental results show that the chiral gold nanorod oligomers can be used to control the asymmetric enhancement and suppression of the plasmonic circular dichroic spectral response through the enantioselective interaction of left- and right-handed circularly polarized light. This study provides an important reference for the design of advanced nano-photonics devices.
-
Keywords:
- nano-plasmonic chirality /
- circular dichroism /
- asymmetric optomechanical effect /
- asymmetric photothermal effect
-
[1] Gerlach H 2013 Chirality 25 684
[2] Morrow S M, Bissette A J, Fletcher S P 2017 Nat. Nanotechnol. 12 410
[3] Hentschel M, Schaferling M, Duan X, Giessen H, Liu N 2017 Sci. Adv. 3 e1602735
[4] Ma W, Xu L, de Moura A F, Wu X, Kuang H, Xu C, Kotov N A 2017 Chem. Rev. 117 8041
[5] Ben-Moshe A, Maoz B M, Govorov A O, Markovich G 2013 Chem. Soc. Rev. 42 7028
[6] Valev V K, Baumberg J J, Sibilia C, Verbiest T 2013 Adv. Mater. 25 2517
[7] Soukoulis C M, Wegener M 2011 Nat. Photonics 5 523
[8] McPeak K M, van Engers C D, Bianchi S, Rossinelli A, Poulikakos L V, Bernard L, Herrmann S, Kim D K, Burger S, Blome M, Jayanti S V, Norris D J 2015 Adv. Mater. 27 6244
[9] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M 2009 Science 325 1513
[10] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N, Kadodwala M 2010 Nat. Nanotechnol. 5 783
[11] Ma W, Xu L, Wang L, Xu C, Kuang H 2019 Adv. Funct. Mater. 29 1805512
[12] Solomon M L, Saleh A, Poulikakos L V, Abendroth J M, Tadesse L F, Dionne J A 2020 Acc. Chem. Res. 53 588
[13] Hao C, Xu L, Ma W, Wu X, Wang L, Kuang H, Xu C 2015 Adv. Funct. Mater. 25 5816
[14] Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J 2021 Chem. Rev. 121 13342
[15] Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679
[16] Hu Z, Meng D, Lin F, Zhu X, Fang Z, Wu X 2019 Adv. Opt. Mater. 7 1801590
[17] Nguyen M K, Kuzyk A 2019 ACS Nano 13 13615
[18] Wang M, Dong J, Zhou C, Xie H, Ni W, Wang S, Jin H, Wang Q 2019 ACS Nano 13 13702
[19] D P, Shah R K, S K, Soni S 2022 Appl. Nanosci. 12 2045
[20] Baffou G, Girard C, Quidant R 2010 Phys. Rev. Lett. 104 136805
[21] Huang W H, Li S F, Xu H T, Xiang Z X, Long Y B, Deng H D 2018 Opt. Express 26 6202
[22] Zhang Q, Xiao J J, Zhang X M, Yao Y 2013 Opt. Commun. 301 121
[23] Avalos-Ovando O, Besteiro L V, Movsesyan A, Markovich G, Liedl T, Martens K, Wang Z, Correa-Duarte M A, Govorov A O 2021 Nano Lett. 21 7298
[24] Zhao W, Zhang W, Wang R Y, Ji Y, Wu X, Zhang X 2019 Adv. Funct. Mater. 29 1900587
[25] Song J, Ji C Y, Ma X, Li J, Zhao W, Wang R Y 2024 J. Phys. Chem. Lett. 15 975
[26] Johnson P B, W. C R 1972 Phys. Rev. B 6 4370
[27] Song M, Tong L, Liu S, Zhang Y, Dong J, Ji Y, Guo Y, Wu X, Zhang X, Wang R Y 2021 ACS Nano 15 5715
[28] Ma W, Kuang H, Xu L, Ding L, Xu C, Wang L, Kotov N A 2013 Nat. Commun. 4 2689
[29] Wang S, Liu X, Mourdikoudis S, Chen J, Fu W, Sofer Z, Zhang Y, Zhang S, Zheng G 2022 ACS Nano 16 19789
[30] Tan L, Fu W, Gao Q, Wang P P 2024 Adv. Mater. 36 2309033
[31] Kim R M, Huh J H, Yoo S, Kim T G, Kim C, Kim H, Han J H, Cho N H, Lim Y C, Im S W, Im E, Jeong J R, Lee M H, Yoon T Y, Lee H Y, Park Q H, Lee S, Nam K T 2022 Nature 612 470
Metrics
- Abstract views: 150
- PDF Downloads: 2
- Cited By: 0