Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimizing microstructure and mechanical properties of CoCrFeNi high-entropy alloy microfibers by electric current treatment

BO Le GAO Xiaoyu NING Zhiliang WANG Li SUN Jianfei ZHANG Zhenjiang HUANG Yongjiang

Citation:

Optimizing microstructure and mechanical properties of CoCrFeNi high-entropy alloy microfibers by electric current treatment

BO Le, GAO Xiaoyu, NING Zhiliang, WANG Li, SUN Jianfei, ZHANG Zhenjiang, HUANG Yongjiang
cstr: 32037.14.aps.74.20250518
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • High-entropy alloy (HEA) microfibers exhibit promising prospects in microscale high-tech applications due to their exceptional mechanical properties and stability. However, the strength-plasticity tradeoff largely hinders their further industrial applications. Heat treatment can optimize the mechanical properties of HEA microfibers. However, the traditional heat treatment (CHT) faces challenges in accurately adjusting the microstructures in a short period of time, while also being prone to grain coarsening, which can affect performance. In this study, an electric current treatment (ECT) technique is used to finely modulate the properties of cold-drawn CoCrFeNi high-entropy alloy microfibers on a microscale (~70 μm in diameter), the effects of thermal and athermal effects during ECT on microstructure and mechanical properties are systematically investigated through electron back scatter diffraction, transmission electron microscopy, and synchrotron radiation. A model of recrystallization, nucleation and growth of HEA microfibers is established. Compared with CHT, the synergistic effects of electron wind force and Joule heating during ECT significantly accelerate recrystallization kinetics, yielding finer and more homogeneous grains with a great decrease in dislocation density, and finally lead to better mechanical properties. The ECT-processed HEA microfibers achieve a yield strength in a range from 400 to 2033 MPa and a tensile elongation reaching 53%, which are much higher than those of CHT samples. These results demonstrate that the ECT is effective for optimizing the microstructure and properties of HEA microfibers, and can also provide both a theoretical foundation and technical guidance for fabricating high-performance metallic microfibers.
      Corresponding author: ZHANG Zhenjiang, river18202@163.com ; HUANG Yongjiang, yjhuang@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52371106).
    [1]

    陈金玺, 徐彬, 戴兰宏, 陈艳 2024 科学通报 69 3154Google Scholar

    Chen J X, Xu B, Dai L H, Chen Y 2024 Chin. Sci. Bull. 69 3154Google Scholar

    [2]

    高裕昆, 赵洁, 周晶晶, 周静 2025 物理学报 74 057701Google Scholar

    Gao Y K, Zhao J, Zhou J J, Zhou J 2025 Acta Phys. Sinica 74 057701Google Scholar

    [3]

    Zhang Y F, Wu K K, Shen S N, Zhang Q Y, Cao W, Liu S 2023 J. Micromech. Microeng. 33 025002Google Scholar

    [4]

    You J M, Kim H, Kim J, Kwon D S 2021 IEEE Rob. Autom. Lett. 6 7357Google Scholar

    [5]

    Abbas M, Eom H S, Byun J Y, Shin D, Kim S H 2023 J. Cleaner Prod. 418 138044Google Scholar

    [6]

    Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8 471Google Scholar

    [7]

    Sohrabi M J, Kalhor A, Mirzadeh H, Rodak K, Kim H S 2024 Prog. Mater Sci. 144 101295Google Scholar

    [8]

    Tong Y, Chen D, Han B, Wang J, Feng R, Yang T, Zhao C, Zhao Y L, Guo W, Shimizu Y, Liu C T, Liaw P K, Inoue K, Nagai Y, Hu A, Kai J J 2019 Acta Mater. 165 228Google Scholar

    [9]

    Wang K Y, Cheng Z J, Liu C Y, Yu H P, Ning Z L, Ramasamy P, Eckert J, Sun J F, Huang Y J, Zhang Y M, Ngan A H W 2025 Int. J. Plast. 189 104321Google Scholar

    [10]

    Wang K Y, Cheng Z J, Ning Z L, Yu H P, Ramasamy P, Eckert J, Sun J F, Ngan A H W, Huang Y J 2025 Rare Metals 44 1332Google Scholar

    [11]

    Li D Y, Li C X, Feng T, Zhang Y D, Sha G, Lewandowski J J, Liaw P K, Zhang Y 2017 Acta Mater. 123 285Google Scholar

    [12]

    Ma X G, Chen J, Wang X H, Xu Y J, Xue Y J 2019 J. Alloys Compd. 795 45Google Scholar

    [13]

    Liu J P, Chen J X, Liu T W, Li C, Chen Y, Dai L H 2020 Scr. Mater. 181 19Google Scholar

    [14]

    Chen J X, Chen Y, Liu J P, Liu T W, Dai L H 2021 Scr. Mater. 199 113897Google Scholar

    [15]

    Gao X Y, Liu J, Fu W J, Huang Y J, Ning Z L, Zhang Z, Sun J F, Chen W 2023 Mater. Des. 233 112250Google Scholar

    [16]

    Zhou S C, Dai C D, Hou H X, Lu Y P, Liaw P K, Zhang Y 2023 Scr. Mater 226 115234Google Scholar

    [17]

    Deng L, Li R X, Luo J R, Li S L, Xie X F, Wu S S, Zhang W R, Liaw P K, Korznikova E A, Zhang Y 2024 Int. J. Plast. 175 103929Google Scholar

    [18]

    Liu X L, Wu Y D, Zheng B Y, Bai R, Gao L, Dong Z, Song C Q, Yu Y, Gao P, Hui X D 2024 Small 20 2403371Google Scholar

    [19]

    Yan K, Sun J P, Bai J, Liu H, Huang X, Jin Z Y, Wu Y N 2019 Mater. Sci. Eng. , A 739 513Google Scholar

    [20]

    Bo L, Gao X Y, Song W J, Ning Z L, Sun J F, Ngan A H W, Huang Y J 2025 Int. J. Plast. 188 104307Google Scholar

    [21]

    Kustra P, Milenin A, Byrska-Wójcik D, Grydin O, Schaper M 2017 J. Mater. Process. Technol. 247 234Google Scholar

    [22]

    陆子川, 姜风春, 侯红亮, 刘郢, 程玉洁, 果春焕 2015 塑性工程学报 22 117Google Scholar

    Lu Z C, Jiang F C, Hou H L, Liu Y, Cheng Y J, Guo C H 2015 J. Plast. Eng. 22 117Google Scholar

    [23]

    Jeong K, Jin S W, Kang S G, Park J W, Jeong H J, Hong S T, Cho S H, Kim M J, Han H N 2022 Acta Mater. 232 117925Google Scholar

    [24]

    Wu Z C, Xu X F, Zhao Y, Yan X D, Zhou Y C, Wei L, Yu Y Q 2023 Mater. Sci. Eng. , A 863 144536Google Scholar

    [25]

    Li M Q, Shen Y D, Luo K, An Q, Gao P, Xiao P H, Zou Y 2023 Nat. Mater. 22 958Google Scholar

    [26]

    Gao X Y, Liu J, Bo L, Chen W, Sun J F, Ning Z L, Ngan W, Huang Y J 2024 Acta Mater. 277 120203Google Scholar

    [27]

    Liu Y F, Ren J, Guan S, Li C Y, Zhang Y, Muskeri S, Liu Z Y, Yu D J, Chen Y, An K, Cao Y, Liu W, Zhu Y T, Chen W, Mukherjee S, Zhu T, Chen W 2023 Acta Mater. 250 118884Google Scholar

    [28]

    HajyAkbary F, Sietsma J, Bottger A J, Santofimia M J 2015 Mater. Sci. Eng. A 639 208Google Scholar

    [29]

    李亦庄, 黄明欣 2020 金属学报 56 487Google Scholar

    Li Y Z, Huang M X 2020 Acta Metall. Sin. 56 487Google Scholar

    [30]

    Yang B, Motz C, Rester M, Dehm G 2012 Philos. Mag. 92 3243Google Scholar

    [31]

    Peng S Y, Tian Y Z, Ni Z Y, Lu S, Li S 2024 Int. J. Plast. 182 104129Google Scholar

    [32]

    Liu M W, Gong W, Zheng R X, Li J, Zhang Z, Gao S, Ma C L, Tsuji N 2022 Acta Mater. 226 117629Google Scholar

    [33]

    Ben D D, Yang H J, Dong Y A, Tian Y Z, Sun S J, Meng L X, Duan Q Q, Zhang P, Zhang Z F 2023 Mater. Charact. 195 112557Google Scholar

    [34]

    秦荣山, 周本濂 1997 材料研究学报 11 69

    Qin R S, Zhou B L 1997 Chin. J. Mater. Res. 11 69

    [35]

    Zhang W, Sui M L, Zhou Y Z, Zhong Y, Li D X 2002 Adv. Eng. Mater. 4 697Google Scholar

    [36]

    Liu Y, Fan J F, Zhang H, Jin W, Dong H B, Xu B S 2015 J. Alloys Compd. 622 229Google Scholar

    [37]

    Zhang X, Li H W, Shao G D, Gao J, Zhan M 2022 J. Alloys Compd. 898 162762Google Scholar

    [38]

    Li X, Zhu Q, Hong Y R, Zheng H, Wang J, Wang J W, Zhang Z 2022 Nat. Commun. 13 6503Google Scholar

    [39]

    Cao W D, Sprecher A F, Conrad H 1989 J. Phys. Sci. Instrum. E 22 1026Google Scholar

  • 图 1  不同电流密度电流处理CoCrFeNi高熵合金纤维的IPF图和KAM图 (a), (a1) ECT120; (b), (b1) ECT140; (c), (c1) ECT160; (d), (d1) ECT180; (e), (e1) ECT200

    Figure 1.  IPF and KAM images of electric current treated CoCrFeNi HEA microfibers with various current densities: (a), (a1) ECT120; (b), (b1) ECT140; (c), (c1) ECT160; (d), (d1) ECT180; (e), (e1) ECT200.

    图 2  不同热效应温度处理高熵合金纤维的IPF图和KAM图 (a), (a1) CHT747; (b), (b1) CHT850; (c), (c1) CHT943; (d), (d1) CHT1013; (e), (e1) CHT1075

    Figure 2.  IPF and KAM images of HEA microfibers with different thermal effect temperatures: (a), (a1) CHT747; (b), (b1) CHT850; (c), (c1) CHT943; (d), (d1) CHT1013; (e), (e1) CHT1075.

    图 3  (a), (b) ECT和CHT处理的高熵合金纤维的高能X射线衍射图谱; (c) 高能X射线衍射图谱中得到的相应位错密度

    Figure 3.  High energy X-ray diffraction (HEXRD) patterns of the microfibers processed under different (a) ECT and (b) CHT conditions; (c) corresponding dislocation density from the HEXRD patterns.

    图 4  不同处理方式得到的CoCrFeNi纤维的工程应力应变曲线 (a)不同电流密度电流处理; (b)不同温度退火处理

    Figure 4.  Engineering tensile stress-strain curves of CoCrFeNi microfibers treated with different methods: (a) Different current densities for ECT; (b) different temperatures for CHT.

    图 5  (a), (b) ECT100纤维的TEM明场像; (c), (d) CHT623纤维的TEM明场像及对应的选区电子衍射斑点

    Figure 5.  (a), (b) TEM bright field images of ECT100 microfibers; (c), (d) TEM bright field images and corresponding selected area electron diffraction pattern of CHT623 microfibers.

    图 6  (a), (b) ECT120纤维的TEM明场图像; (c), (d) CHT747纤维的TEM明场图像

    Figure 6.  (a), (b) TEM bright field images of ECT120 microfibers; (c), (d) TEM bright field images of CHT747 microfibers.

    图 7  电流处理对CoCrFeNi高熵合金纤维再结晶的作用机制示意图 (a)冷拔态; (b)再结晶形核(位错重排); (c)部分再结晶; (d)完全再结晶

    Figure 7.  Schematic diagram of the mechanism of electric current treatment on CoCrFeNi HEA microfiber recrystallization: (a) Cold drawn; (b) recrystallized nucleation (dislocation rearrangement); (c) partial recrystallization; (d) complete recrystallization.

    表 1  实验设计方案

    Table 1.  Experimental design scheme.

    电流密度
    /(A·mm–2)
    标记 稳定温度/K 传统热处理
    温度/K
    标记
    100 ECT100 623 623 CHT623
    120 ECT120 747 747 CHT747
    140 ECT140 850 850 CHT850
    160 ECT160 943 943 CHT943
    180 ECT180 1013 1013 CHT1013
    200 ECT200 1075 1075 CHT1075
    DownLoad: CSV

    表 2  电流处理和热处理样品的平均晶粒尺寸

    Table 2.  Average grain size of samples subjected to ECT and CHT.

    样品 晶粒尺寸/μm 样品 晶粒尺寸/μm
    ECT100 CHT623
    ECT120 1.5±0.2 CHT747 1.3±0.1
    ECT140 1.9±0.2 CHT850 1.7±0.2
    ECT160 2.5±0.7 CHT943 3.1±0.6
    ECT180 4.6±1.1 CHT1013 5.8±1.3
    ECT200 15.0±3.1 CHT1075 16.8±4.0
    DownLoad: CSV

    表 3  不同电流处理和退火处理工艺得到的高熵合金纤维的屈服强度和均匀延伸率

    Table 3.  Yield strength and uniform elongation of electric current treated microfibers with various current densities and heat treated microfibers with various temperatures.

    样品屈服强度/
    MPa
    均匀延伸率/
    %
    样品屈服强度/
    MPa
    均匀延伸率/
    %
    As drawn19300
    ECT10020330CHT62316800
    ECT12014807CHT74714900
    ECT140113043CHT85010503
    ECT16080052CHT94371513.5
    ECT18055039CHT101350041
    ECT20040019CHT107536028
    DownLoad: CSV
  • [1]

    陈金玺, 徐彬, 戴兰宏, 陈艳 2024 科学通报 69 3154Google Scholar

    Chen J X, Xu B, Dai L H, Chen Y 2024 Chin. Sci. Bull. 69 3154Google Scholar

    [2]

    高裕昆, 赵洁, 周晶晶, 周静 2025 物理学报 74 057701Google Scholar

    Gao Y K, Zhao J, Zhou J J, Zhou J 2025 Acta Phys. Sinica 74 057701Google Scholar

    [3]

    Zhang Y F, Wu K K, Shen S N, Zhang Q Y, Cao W, Liu S 2023 J. Micromech. Microeng. 33 025002Google Scholar

    [4]

    You J M, Kim H, Kim J, Kwon D S 2021 IEEE Rob. Autom. Lett. 6 7357Google Scholar

    [5]

    Abbas M, Eom H S, Byun J Y, Shin D, Kim S H 2023 J. Cleaner Prod. 418 138044Google Scholar

    [6]

    Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8 471Google Scholar

    [7]

    Sohrabi M J, Kalhor A, Mirzadeh H, Rodak K, Kim H S 2024 Prog. Mater Sci. 144 101295Google Scholar

    [8]

    Tong Y, Chen D, Han B, Wang J, Feng R, Yang T, Zhao C, Zhao Y L, Guo W, Shimizu Y, Liu C T, Liaw P K, Inoue K, Nagai Y, Hu A, Kai J J 2019 Acta Mater. 165 228Google Scholar

    [9]

    Wang K Y, Cheng Z J, Liu C Y, Yu H P, Ning Z L, Ramasamy P, Eckert J, Sun J F, Huang Y J, Zhang Y M, Ngan A H W 2025 Int. J. Plast. 189 104321Google Scholar

    [10]

    Wang K Y, Cheng Z J, Ning Z L, Yu H P, Ramasamy P, Eckert J, Sun J F, Ngan A H W, Huang Y J 2025 Rare Metals 44 1332Google Scholar

    [11]

    Li D Y, Li C X, Feng T, Zhang Y D, Sha G, Lewandowski J J, Liaw P K, Zhang Y 2017 Acta Mater. 123 285Google Scholar

    [12]

    Ma X G, Chen J, Wang X H, Xu Y J, Xue Y J 2019 J. Alloys Compd. 795 45Google Scholar

    [13]

    Liu J P, Chen J X, Liu T W, Li C, Chen Y, Dai L H 2020 Scr. Mater. 181 19Google Scholar

    [14]

    Chen J X, Chen Y, Liu J P, Liu T W, Dai L H 2021 Scr. Mater. 199 113897Google Scholar

    [15]

    Gao X Y, Liu J, Fu W J, Huang Y J, Ning Z L, Zhang Z, Sun J F, Chen W 2023 Mater. Des. 233 112250Google Scholar

    [16]

    Zhou S C, Dai C D, Hou H X, Lu Y P, Liaw P K, Zhang Y 2023 Scr. Mater 226 115234Google Scholar

    [17]

    Deng L, Li R X, Luo J R, Li S L, Xie X F, Wu S S, Zhang W R, Liaw P K, Korznikova E A, Zhang Y 2024 Int. J. Plast. 175 103929Google Scholar

    [18]

    Liu X L, Wu Y D, Zheng B Y, Bai R, Gao L, Dong Z, Song C Q, Yu Y, Gao P, Hui X D 2024 Small 20 2403371Google Scholar

    [19]

    Yan K, Sun J P, Bai J, Liu H, Huang X, Jin Z Y, Wu Y N 2019 Mater. Sci. Eng. , A 739 513Google Scholar

    [20]

    Bo L, Gao X Y, Song W J, Ning Z L, Sun J F, Ngan A H W, Huang Y J 2025 Int. J. Plast. 188 104307Google Scholar

    [21]

    Kustra P, Milenin A, Byrska-Wójcik D, Grydin O, Schaper M 2017 J. Mater. Process. Technol. 247 234Google Scholar

    [22]

    陆子川, 姜风春, 侯红亮, 刘郢, 程玉洁, 果春焕 2015 塑性工程学报 22 117Google Scholar

    Lu Z C, Jiang F C, Hou H L, Liu Y, Cheng Y J, Guo C H 2015 J. Plast. Eng. 22 117Google Scholar

    [23]

    Jeong K, Jin S W, Kang S G, Park J W, Jeong H J, Hong S T, Cho S H, Kim M J, Han H N 2022 Acta Mater. 232 117925Google Scholar

    [24]

    Wu Z C, Xu X F, Zhao Y, Yan X D, Zhou Y C, Wei L, Yu Y Q 2023 Mater. Sci. Eng. , A 863 144536Google Scholar

    [25]

    Li M Q, Shen Y D, Luo K, An Q, Gao P, Xiao P H, Zou Y 2023 Nat. Mater. 22 958Google Scholar

    [26]

    Gao X Y, Liu J, Bo L, Chen W, Sun J F, Ning Z L, Ngan W, Huang Y J 2024 Acta Mater. 277 120203Google Scholar

    [27]

    Liu Y F, Ren J, Guan S, Li C Y, Zhang Y, Muskeri S, Liu Z Y, Yu D J, Chen Y, An K, Cao Y, Liu W, Zhu Y T, Chen W, Mukherjee S, Zhu T, Chen W 2023 Acta Mater. 250 118884Google Scholar

    [28]

    HajyAkbary F, Sietsma J, Bottger A J, Santofimia M J 2015 Mater. Sci. Eng. A 639 208Google Scholar

    [29]

    李亦庄, 黄明欣 2020 金属学报 56 487Google Scholar

    Li Y Z, Huang M X 2020 Acta Metall. Sin. 56 487Google Scholar

    [30]

    Yang B, Motz C, Rester M, Dehm G 2012 Philos. Mag. 92 3243Google Scholar

    [31]

    Peng S Y, Tian Y Z, Ni Z Y, Lu S, Li S 2024 Int. J. Plast. 182 104129Google Scholar

    [32]

    Liu M W, Gong W, Zheng R X, Li J, Zhang Z, Gao S, Ma C L, Tsuji N 2022 Acta Mater. 226 117629Google Scholar

    [33]

    Ben D D, Yang H J, Dong Y A, Tian Y Z, Sun S J, Meng L X, Duan Q Q, Zhang P, Zhang Z F 2023 Mater. Charact. 195 112557Google Scholar

    [34]

    秦荣山, 周本濂 1997 材料研究学报 11 69

    Qin R S, Zhou B L 1997 Chin. J. Mater. Res. 11 69

    [35]

    Zhang W, Sui M L, Zhou Y Z, Zhong Y, Li D X 2002 Adv. Eng. Mater. 4 697Google Scholar

    [36]

    Liu Y, Fan J F, Zhang H, Jin W, Dong H B, Xu B S 2015 J. Alloys Compd. 622 229Google Scholar

    [37]

    Zhang X, Li H W, Shao G D, Gao J, Zhan M 2022 J. Alloys Compd. 898 162762Google Scholar

    [38]

    Li X, Zhu Q, Hong Y R, Zheng H, Wang J, Wang J W, Zhang Z 2022 Nat. Commun. 13 6503Google Scholar

    [39]

    Cao W D, Sprecher A F, Conrad H 1989 J. Phys. Sci. Instrum. E 22 1026Google Scholar

  • [1] WU Hao, WANG Xu, WANG Jianyuan, ZHAI Wei, WEI Bingbo. Three-dimensional ultrasounds modulate solidification microstructure and mechanical property of (FeCoNiCrMn)92Mo8 high-entropy alloy. Acta Physica Sinica, 2025, 74(17): . doi: 10.7498/aps.74.20250657
    [2] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [3] Wen Peng, Tao Gang. Molecular dynamics study of temperature effects on shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [4] Shen Tian-Zhan, Song Hai-Yang, An Min-Rong. Effect of twin boundary on mechanical behavior of Cr26Mn20Fe20Co20Ni14 high-entropy alloy by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [5] Huang Wen-Jun, Qiao Jun-Wei, Chen Shun-Hua, Wang Xue-Jiao, Wu Yu-Cheng. Preparation, structures and properties of tungsten-containing refractory high entropy alloys. Acta Physica Sinica, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [6] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [7] Deng Shi-Jie, Zhao Yu-Hong, Hou Hua, Wen Zhi-Qin, Han Pei-De. Structural, mechanical and thermodynamic properties of Ti2AlX (X= C, N) at high pressure. Acta Physica Sinica, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [8] Chen Zhi-Peng, Ma Ya-Nan, Lin Xue-Ling, Pan Feng-Chun, Xi Li-Ying, Ma Zhi, Zheng Fu, Wang Yan-Qing, Chen Huan-Ming. Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound. Acta Physica Sinica, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [9] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [10] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [11] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [12] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [13] Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei. Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation. Acta Physica Sinica, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [14] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [15] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [16] Yu Wei-Yang, Tang Bi-Yu, Peng Li-Ming, Ding Wen-Jiang. Electronic structure and mechanical properties of α-Mg3Sb2. Acta Physica Sinica, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [17] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [18] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
    [19] Li Teng, Li Wei, Pan Wei, Li Xiu-Mei. Effect of microstructure on the mechanical properties of Fe45—50 Cr30—35Co20—25Mo0—4Zr0—2 alloy. Acta Physica Sinica, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [20] Zheng Li-Jing, Li Shu-Suo, Li Huan-Xi, Chen Chang-Qi, Han Ya-Fang, Dong Bao-Zhong. Small angle x-ray scattering study on microstructure and mechanical property evo lutions of equal-channel angular pressed 7050 Al alloy. Acta Physica Sinica, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
Metrics
  • Abstract views:  272
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2025
  • Accepted Date:  09 May 2025
  • Available Online:  29 May 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回