Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synergistic effect of rotation and strong shear flow on interface instability in laser additive manufacturing of dilute alloys

LI Guoxuan FAN Hailong

Citation:

Synergistic effect of rotation and strong shear flow on interface instability in laser additive manufacturing of dilute alloys

LI Guoxuan, FAN Hailong
cstr: 32037.14.aps.74.20250829
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • To address the persistent challenge of morphological instability during laser-based additive manufacturing (AM) of dilute alloys, the coupled effects of rotation and strong shear flow on the stability of the solid–liquid interface under rapid solidification conditions are systematically investigated in this work. A comprehensive multi-physics theoretical model is established based on linear stability analysis through introducing key dimensionless parameters: Taylor number (Ta), inverse Schmidt number (${\cal{R}}$), dimensionless surface energy (Γ), and a nonlinear shear velocity profile applied parallel to the interface. The model also accounts for the presence of a solute boundary layer. By solving the resulting perturbation equations, the growth rates of interface disturbances are obtained. The results reveal that strong shear flow markedly increases the critical morphological number, indicating enhanced interfacial stability. When rotation is introduced, the instability region in wavenumber space is significantly compressed, particularly at small wavenumbers, due to the Coriolis-induced stabilization. How the critical conditions vary with the increase of Ta and surface energy is shown in Fig. (a), while the instantaneous perturbation fields of concentration and velocity in the melt pool are exhibited in Fig. (b), where the Coriolis effect promotes symmetrical recirculation cells and suppresses disturbance penetration in the vertical direction. Moreover, the synergy of rotation and shear flow facilitates a more uniform solute distribution near the interface, mitigates compositional gradients, and supports the formation of ordered laminar flow structures. These effects contribute to suppressing constitutional undercooling and refine the microstructure. The model is dimensionless and universal, and key dimensionless groups reflect process inputs, such as solidification rate, thermal gradients, and material diffusivity. This work offers critical physical insights into rotation–flow coupling mechanisms in AM and provides a quantitative framework for optimizing process parameters to control microstructural evolution. These findings are particularly relevant to AM of symmetric components (e.g., axisymmetric gears or biomedical implants) where rotational auxiliary fields can be practically introduced.
      Corresponding author: FAN Hailong, fanhailong_2011@163.com
    [1]

    Srinivasan D, Ananth K 2022 J. Indian Inst. Sci. 102 311Google Scholar

    [2]

    Su X Z, Zhang P L, Huang Y Z 2024 Metals 14 1373Google Scholar

    [3]

    Goncalves A, Ferreira B, Leite M, Ribeiro I 2023 Sustain. Prod. Consum. 42 292Google Scholar

    [4]

    Priyadarshini J, Singh R K, Mishra R, Dora M 2023 Technol. Forecast. Soc. Change 194 122686Google Scholar

    [5]

    赵增亮 2019 硕士学位论文(石家庄: 河北科技大学)

    Zhao Z L 2019 M.S. Thesis (Shijiazhuang: Hebei University of Science and Technology

    [6]

    Zhang M, Qin C, Wang Y F, Hu X Y, Ma J G, Zhuang H, Xue J M, Wan L, Chang J, Zou W G, Wu C T 2022 Addit. Manuf. 54 102721Google Scholar

    [7]

    Zou Z Q, Xu J K, Ren W F, Wang M F, Yu H D 2025 J. Manuf. Processes 135 269Google Scholar

    [8]

    Queguineur A, Marolleau J, Lavergne A, Rückert G 2020 Weld World 64 1389Google Scholar

    [9]

    Choi J, Sung K, Hyun J, Shin S C 2025 Carbohydr. Polym. 349 122972Google Scholar

    [10]

    Ismail I F, Shuib R K, Ramli M R, Chia S K 2024 J. Phys. Conf. Ser. 2907 012024Google Scholar

    [11]

    Chen A N, Liu K, Yan C Z 2024 Front. Mater. 11 1519909Google Scholar

    [12]

    Ye Z W, Hao Z D, Dou R, Wang L, Tang W Z 2024 Int. J. Appl. Ceram. Technol. 21 2824Google Scholar

    [13]

    Guo X H, Meng Y F, Yu Q X, Xu J N, Wu X, Chen H 2025 Opt. Laser Technol. 187 112800Google Scholar

    [14]

    李继峰 2022 硕士学位论文(哈尔滨: 哈尔滨工程大学)

    Li J F 2022 M. S. Thesis (Harbin: Harbin Engineering University

    [15]

    Kowal K N, Davis S H 2019 Acta Mater. 164 464Google Scholar

    [16]

    Chen B Y, Zhang Q Y, Sun D K, Wang Z J 2022 J. Cryst. Growth 585 126583Google Scholar

    [17]

    Ma C Z, Zhang R J, Li Z X, Jiang X, Wang Y W, Zhang C, Yin H Q, Qu X H 2023 Integr. Mater. Manuf. Innov. 12 502Google Scholar

    [18]

    Jegatheesan M, Bhattacharya A 2022 Int. J. Heat Mass Transfer 182 121916Google Scholar

    [19]

    Hofmann D C, Roberts S, Otis R, Kolodziejska J, Dillon R P, Suh J, Shapiro A A, Liu Z K, Borgonia J P 2014 Sci. Rep. 4 5357Google Scholar

    [20]

    Griffiths R J, Garcia D, Song J, Vasudevan V K, Steiner M A, Cai W J, Yu H Z 2021 Mater 15 100967Google Scholar

    [21]

    Claude A, Chalvin M, Campcasso S, Hugel V 2024 Procedia CIRP 125 266Google Scholar

    [22]

    Zhang H J, Wu M H, Rodrigues C M G, Ludwig A, Kharicha A, Rónaföldi A, Roósz A, Veres Z, Svéda M 2022 Acta Mater. 241 118391Google Scholar

    [23]

    Zeng C, Huang F, Xue J T, Jia Y, Hu J X 2024 3D Print. Addit. Manuf. 11 e1887Google Scholar

    [24]

    卢林 2023 硕士学位论文(镇江: 江苏科技大学)

    Lu L 2023 M. S. Thesis (Zhenjiang: Jiangsu University of Science and Technology

    [25]

    赵旭山 2023 博士学位论文(武汉: 华中科技大学)

    Zhao X S 2023 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology

    [26]

    Han X, Li C, Sun H, Sun Y C 2024 Weld. World 68 1707Google Scholar

    [27]

    Merchant G J, Davis S H 1990 Acta Metall. Mater. 38 2683Google Scholar

    [28]

    Aziz M J 1982 J. Appl. Phys. 53 1158Google Scholar

  • 图 1  增材制造中的液体熔池凝固

    Figure 1.  Solidification of the molten pool during additive manufacturing.

    图 2  不同流速下, 逆临界形态数$ {\cal{M}}_{\mathrm{c}}^{ - 1} $随泰勒数$ {T_{\mathrm{a}}} $的变化曲线, 所用参数取值为$ \beta = 1 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}} = 1 $, $ \varGamma $ = 0.02

    Figure 2.  Function of inverse critical morphological number $ {\cal{M}}_{\mathrm{c}}^{ - 1} $ with Taylor number $ {T_{\mathrm{a}}} $ under different flow velocities, with the parameter values set to $ \beta = 1 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}} = 1 $ and $ \varGamma $ = 0.02.

    图 3  不同泰勒数$ {T_{\mathrm{a}}} $下, 逆临界形态数$ {\cal{M}}_{\mathrm{c}}^{ - 1} $随$ {v^{ - 1}} $变化的函数关系, 所用参数取值为$ \beta = 1 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}} = 1 $, $ \varGamma $ = 0.06

    Figure 3.  Functional relationship of the inverse critical morphological number $ {\cal{M}}_{\mathrm{c}}^{ - 1} $ with $ {v^{ - 1}} $ under different Taylor numbers $ {T_{\mathrm{a}}} $, with the parameter values set to $ \beta = 1 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}} = 1 $ and $ \varGamma $ = 0.06.

    图 4  不同泰勒数$ {T_{\mathrm{a}}} $下, 逆临界形态数$ {\cal{M}}_{\mathrm{c}}^{ - 1} $随表面能$ \varGamma $变化的函数关系, 所用参数取值为$ v = 100 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}} = 0.5 $, $ \beta $ = 0.01

    Figure 4.  Functional relationship of the inverse critical morphological number $ {\cal{M}}_{\mathrm{c}}^{ - 1} $ with surface energy $ \varGamma $ under different Taylor numbers $ {T_{\mathrm{a}}} $, with the parameter values set to $ v = 100 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}} = 0.5 $ and $ \beta $ = 0.01.

    图 5  平面$ (\alpha {\cal{V}}, {{\cal{M}}^{ - 1}}{\cal{V}}) $上的中性稳定性曲线, 所用参数取值为$ {a_2} = 0 $, $ \beta/v = 0.01 $, $ {k_{\mathrm{E}}} = 0.5 $, $ {\cal{R}}$ = 1

    Figure 5.  Neutral stability curve on plane $ (\alpha {\cal{V}}, {{\cal{M}}^{ - 1}}{\cal{V}}) $, with the parameter values set to $ {a_2} = 0 $, $ \beta/v = 0.01 $, $ {k_{\mathrm{E}}} = 0.5 $ and $ {\cal{R}}$ = 1.

    图 6  当泰勒数$ {T_{\mathrm{a}}} = 10 $时, 不同流速$ {\cal{V}} $下的中性稳定性曲线, 所用参数取值为$ {a_2} = 0 $, $ \beta = 0.01 $, $ {k_{\mathrm{E}}} = 0.5 $, $ \varGamma = $$ 0.001 $, $ {\cal{R}}$ = 1

    Figure 6.  Neutral stability curves under different flow velocities $ {\cal{V}} $ at a Taylor number of $ {T_{\mathrm{a}}} = 10 $ with the parameter values set to $ {a_2} = 0 $, $ \beta = 0.01 $, $ {k_{\mathrm{E}}} = 0.5 $, $ \varGamma = 0.001 $ and $ {\cal{R}}$ = 1.

    图 7  当泰勒数$ {T_{\mathrm{a}}} = 10 $时, 熔池内瞬时扰动浓度场与速度场分布图, 所用参数取值为$ {a_1} = 1.6 $, $ {a_2} = 0 $, $ {\cal{R}}$ = 1. 图中彩色背景表示扰动浓度场, 白色箭头表示扰动速度矢量场

    Figure 7.  Instantaneous distributions of the perturbation concentration field and velocity field in the melt pool at a Taylor number of $ {T_{\mathrm{a}}} = 10 $, with parameter values set to $ {a_1} = 1.6 $, $ {a_2} = 0 $ and $ {\cal{R}} = 1 $. The colored background represents the perturbation concentration field, while the white arrows indicate the perturbation velocity vector field.

  • [1]

    Srinivasan D, Ananth K 2022 J. Indian Inst. Sci. 102 311Google Scholar

    [2]

    Su X Z, Zhang P L, Huang Y Z 2024 Metals 14 1373Google Scholar

    [3]

    Goncalves A, Ferreira B, Leite M, Ribeiro I 2023 Sustain. Prod. Consum. 42 292Google Scholar

    [4]

    Priyadarshini J, Singh R K, Mishra R, Dora M 2023 Technol. Forecast. Soc. Change 194 122686Google Scholar

    [5]

    赵增亮 2019 硕士学位论文(石家庄: 河北科技大学)

    Zhao Z L 2019 M.S. Thesis (Shijiazhuang: Hebei University of Science and Technology

    [6]

    Zhang M, Qin C, Wang Y F, Hu X Y, Ma J G, Zhuang H, Xue J M, Wan L, Chang J, Zou W G, Wu C T 2022 Addit. Manuf. 54 102721Google Scholar

    [7]

    Zou Z Q, Xu J K, Ren W F, Wang M F, Yu H D 2025 J. Manuf. Processes 135 269Google Scholar

    [8]

    Queguineur A, Marolleau J, Lavergne A, Rückert G 2020 Weld World 64 1389Google Scholar

    [9]

    Choi J, Sung K, Hyun J, Shin S C 2025 Carbohydr. Polym. 349 122972Google Scholar

    [10]

    Ismail I F, Shuib R K, Ramli M R, Chia S K 2024 J. Phys. Conf. Ser. 2907 012024Google Scholar

    [11]

    Chen A N, Liu K, Yan C Z 2024 Front. Mater. 11 1519909Google Scholar

    [12]

    Ye Z W, Hao Z D, Dou R, Wang L, Tang W Z 2024 Int. J. Appl. Ceram. Technol. 21 2824Google Scholar

    [13]

    Guo X H, Meng Y F, Yu Q X, Xu J N, Wu X, Chen H 2025 Opt. Laser Technol. 187 112800Google Scholar

    [14]

    李继峰 2022 硕士学位论文(哈尔滨: 哈尔滨工程大学)

    Li J F 2022 M. S. Thesis (Harbin: Harbin Engineering University

    [15]

    Kowal K N, Davis S H 2019 Acta Mater. 164 464Google Scholar

    [16]

    Chen B Y, Zhang Q Y, Sun D K, Wang Z J 2022 J. Cryst. Growth 585 126583Google Scholar

    [17]

    Ma C Z, Zhang R J, Li Z X, Jiang X, Wang Y W, Zhang C, Yin H Q, Qu X H 2023 Integr. Mater. Manuf. Innov. 12 502Google Scholar

    [18]

    Jegatheesan M, Bhattacharya A 2022 Int. J. Heat Mass Transfer 182 121916Google Scholar

    [19]

    Hofmann D C, Roberts S, Otis R, Kolodziejska J, Dillon R P, Suh J, Shapiro A A, Liu Z K, Borgonia J P 2014 Sci. Rep. 4 5357Google Scholar

    [20]

    Griffiths R J, Garcia D, Song J, Vasudevan V K, Steiner M A, Cai W J, Yu H Z 2021 Mater 15 100967Google Scholar

    [21]

    Claude A, Chalvin M, Campcasso S, Hugel V 2024 Procedia CIRP 125 266Google Scholar

    [22]

    Zhang H J, Wu M H, Rodrigues C M G, Ludwig A, Kharicha A, Rónaföldi A, Roósz A, Veres Z, Svéda M 2022 Acta Mater. 241 118391Google Scholar

    [23]

    Zeng C, Huang F, Xue J T, Jia Y, Hu J X 2024 3D Print. Addit. Manuf. 11 e1887Google Scholar

    [24]

    卢林 2023 硕士学位论文(镇江: 江苏科技大学)

    Lu L 2023 M. S. Thesis (Zhenjiang: Jiangsu University of Science and Technology

    [25]

    赵旭山 2023 博士学位论文(武汉: 华中科技大学)

    Zhao X S 2023 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology

    [26]

    Han X, Li C, Sun H, Sun Y C 2024 Weld. World 68 1707Google Scholar

    [27]

    Merchant G J, Davis S H 1990 Acta Metall. Mater. 38 2683Google Scholar

    [28]

    Aziz M J 1982 J. Appl. Phys. 53 1158Google Scholar

  • [1] YANG Sanxiang, LIU Chao, GUO Ning, WANG Zhengxiong. The influence of magnetic field gradient on the rotating spoke instability. Acta Physica Sinica, 2025, 74(23): . doi: 10.7498/aps.74.20251010
    [2] CHEN Kai, JIANG Han. Influence of far field flow on interface morphological stability of deep cellular crystal. Acta Physica Sinica, 2025, 74(13): 136801. doi: 10.7498/aps.74.20250357
    [3] Xu Ming, Xu Li-Qing, Zhao Hai-Lin, Li Ying-Ying, Zhong Guo-Qiang, Hao Bao-Long, Ma Rui-Rui, Chen Wei, Liu Hai-Qing, Xu Guo-Sheng, Hu Jian-Sheng, Wan Bao-Nian, the EAST Team. Summary of magnetohydrodynamic instabilities and internal transport barriers under condition of qmin$\approx $2 in EAST tokamak. Acta Physica Sinica, 2023, 72(21): 215204. doi: 10.7498/aps.72.20230721
    [4] Xu Mo-Fei, Yu Xiang, Zhang Shi-Jian, Gennady Efimovich Remnev, Le Xiao-Yun. A method of real-time monitoring beam output stability of intense pulsed ion beam. Acta Physica Sinica, 2023, 72(17): 175205. doi: 10.7498/aps.72.20230854
    [5] Li Ji, Liu Bin, Bai Jing, Wang Huan-Yu, He Tian-Chen. Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap. Acta Physica Sinica, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [6] Zhang Zhong-Qiang, Fan Jin-Wei, Zhang Fu-Jian, Cheng Guang-Gui, Ding Jian-Ning. Axial driving characteristics of water in rotating black phosphorus nanotubes. Acta Physica Sinica, 2020, 69(11): 110201. doi: 10.7498/aps.69.20200116
    [7] Feng Wu-Liang, Wang Fei, Zhou Xing, Ji Xiao, Han Fu-Dong, Wang Chun-Sheng. Stability of interphase between solid state electrolyte and electrode. Acta Physica Sinica, 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [8] Dang Nan-Nan, Zhang Zheng-Yuan, Zhang Jia-Zhong. Stability switching behavior of thermoacoustic oscillation in Rijke tube. Acta Physica Sinica, 2018, 67(13): 134301. doi: 10.7498/aps.67.20180269
    [9] Zhang Da-Yu, Luo Jian-Jun, Zheng Yin-Huan, Yuan Jian-Ping. Analysis of planar shear deformable beam using rotation field curvature formulation. Acta Physica Sinica, 2017, 66(11): 114501. doi: 10.7498/aps.66.114501
    [10] Qin Xiu-Pei, Geng De-Lu, Hong Zhen-Yu, Wei Bing-Bo. Rotation mechanism of ultrasonically levitated cylinders. Acta Physica Sinica, 2017, 66(12): 124301. doi: 10.7498/aps.66.124301
    [11] Bi Hai-Liang, Wei Lai, Fan Dong-Mei, Zheng Shu, Wang Zheng-Xiong. Excitations of tearing mode and Kelvin-Helmholtz mode in rotating cylindrical plasmas. Acta Physica Sinica, 2016, 65(22): 225201. doi: 10.7498/aps.65.225201
    [12] Gong Zhen-Xing, Li You-Rong, Peng Lan, Wu Shuang-Ying, Shi Wan-Yuan. Asymptotic solution of thermal-solutal capillary convection in a slowly rotating shallow annular pool of two components solution. Acta Physica Sinica, 2013, 62(4): 040201. doi: 10.7498/aps.62.040201
    [13] Liu Wang, Wu Qi-Qi, Chen Shun-Li, Zhu Jing-Jun, An Zhu, Wang Yuan. Helium effect on the stability of the interface of Cu/W nanomultilayer. Acta Physica Sinica, 2012, 61(17): 176802. doi: 10.7498/aps.61.176802
    [14] Wang Zhi-Jun, Wang Jin-Cheng, Yang Gen-Cang. The asymptotic analysis of interfacial stability with surface tension anisotropy for directional solidification of alloys. Acta Physica Sinica, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [15] Jian Guang-De, Dong Jia-Qi. Numerical study of kinetic shear Alfvn instability in tokamak plasmas. Acta Physica Sinica, 2005, 54(4): 1641-1647. doi: 10.7498/aps.54.1641
    [16] Lin Xin, Li Tao, Wang Lin-Lin, Su Yun-Peng, Huang Wei-Dong. Time-dependent interface stability during directional solidification of a single phase alloy(Ⅰ) Theoritical. Acta Physica Sinica, 2004, 53(11): 3971-3977. doi: 10.7498/aps.53.3971
    [17] Huang Wei-Dong, Lin Xin, Li Tao, Wang Lin-Lin, Y. Inatomi. A time-dependent interface stability during directional solidification of a single phase alloy(Ⅱ)Comparison with experimental results. Acta Physica Sinica, 2004, 53(11): 3978-3983. doi: 10.7498/aps.53.3978
    [18] Ma Wei-Zheng, Ji Cheng-Chang, Li Jian-Guo. . Acta Physica Sinica, 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
    [19] HE YU-QUAN, LIANG BAO-SHE, LIU SHU-SHENG. EXPERIMENTAL AND NUMERICAL STUDY ON THE STABILITY OF COUNTER-ROTATING CIRCULAR COUETTE SYSTEM WITH THE INTERMEDIATE RADIUS RATIO. Acta Physica Sinica, 1998, 47(10): 1658-1664. doi: 10.7498/aps.47.1658
    [20] KE FU-JIU, CAI SHI-DONG, CHEN LIU, ZHANG CHENG-FU, QI XIANG-LIN. ON THE STABILITY OF DRIFT WAVES WITH STRONG COLLISION. Acta Physica Sinica, 1988, 37(8): 1275-1283. doi: 10.7498/aps.37.1275
Metrics
  • Abstract views:  286
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Received Date:  25 June 2025
  • Accepted Date:  23 July 2025
  • Available Online:  14 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回