-
The asymmetric wetting Janus fiber membrane exhibits many unique properties when interacting with liquids due to its significant difference in wetting properties on both sides. Therefore, it has broad application prospects in fields such as microfluidics and biomedicine. The directional transport of droplets is one of the key functions of Janus fiber membranes, and its transport mechanism and regulation rules are crucial for practical applications. However, there is currently insufficient research on how wettability gradient and pore structure regulate the directional transport behavior of droplets. This study established a two-phase flow phase-field model, and the model's reliability was validated through droplet transport experiments conducted on plasma-assisted fabricated Janus fiber membranes. Building on this foundation, the directional transport behavior of droplets within the membrane was systematically investigated. Results had shown that the spontaneous transport of droplets from hydrophobic to hydrophilic sides was driven by a synergistic effect of surface free energy gradient, Laplace pressure difference, and capillary force. It was found that hydrophobic layer thickness, hydrophilic layer thickness, wettability gradient and pore structure were key factors in regulating transport efficiency. Compared with traditional structures, Janus fiber membranes with wettability gradients could significantly improve the directional transport speed of droplets, and the wettability of the hydrophilic side showed a significant positive correlation with transport velocity. Although increasing pores could accelerate droplet transport, it concurrently reduced the steady-state spreading area on the hydrophilic side. This study provides an important theoretical basis for optimizing the Janus fiber membrane structure and achieving efficient and precise manipulation of droplets.
-
Keywords:
- Janus membrane /
- plasma modification /
- two-phase flow phase field model /
- asymmetric wettability /
- droplet transport
-
[1] Liang Y, Kim M, Yang E, Septiyanti M, Kim S, Kim H, Byun J, Mamani K C, Choi H 2024 Chem. Eng. J. 496 154087
[2] Li H N, Yang J, Xu Z K 2020 Adv. Mater. Interf. 7 1902064
[3] Yang S, Zhao P, Cheng C, Li C, Cheng B 2024 J. Text. Res. 45 10 (in Chinese) [杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻 2024纺织学报 45 10]
[4] Li C X, Zhong F Y, Guo C Y, Zhang Q J, Chen J P, Zhong L B, Zheng Y M 2025 Sep. Purif. Technol. 361 131378
[5] Zhou H, Guo Z 2019 J. Mater. Chem. A 7 12921
[6] Li K, Yang H C, Xu Z K 2024 ACS Appl. Polym. Mater. 6 14190
[7] Yang P, Ju Y, He J, Xia Z, Chen L, Tang S 2024 Adv. Fiber Mater. 6 1765
[8] Zhou H, Wang H, Lin T, Niu H 2022 Chem. Eng. J. 427 131936
[9] Xu B, Zhang J, Pan D, Ni J, Yin K, Zhang Q, Ding Y, Li A, Wu D, Shen Z 2022 Lab Chip 22 4382
[10] Wang F, Ren J, Peng Q, Sun H, Zeng Q, Zhang Y, Shi G, Zhang M 2024 Anal. Chem. 96 15394
[11] Dong Y, Violet C, Sun C, Li X, Sun Y, Zheng Q, Tang C Elimelech M 2025 Nat. Commu. 16 2659
[12] Lv Y, Meng J, Yu L, Zhi C 2024 J. Adv. Text. Eng. 2 79 (in Chinese) [吕媛媛, 孟家光, 余灵婕, 支超 2024纺织工程学报2 79]
[13] Li H N, Yang J, Xu Z K 2020 Adv. Mater. Interf. 7 1902064
[14] Zhang H, Chen Q 2021 Acta Phys. Sin. 70 22 (in Chinese) [张海宝, 陈强2021 物理学报70 22]
[15] Yang H C, Xie Y, Hou J, Cheetham A K, Chen V, Darling S B 2018 Adv. Mater. 30 1801495
[16] Xing Y, Jiang W, Zhang H, Zhou K, Yu X, Li Y 2022 J. Zhejiang Sci-Tech Univ. (Nat. Sci. Ed.) 47 467 (in Chinese) [邢亚杰, 蒋吾伟, 张洪晶, 周克, 虞啸天, 李永强 2022浙江理工大学学报(自然科学版) 47 467]
[17] Wang W 2021 Master Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [王伟2021 硕士学位论文(南京:南京理工大学)]
[18] Zhou B 2023 Master Dissertation (Zhengzhou: Zhengzhou University) (in Chinese) [周宝凯2023 硕士学位论文(郑州:郑州大学)]
[19] Li K, Yang H C, Li H N, Zhang C, Liang H Q, Xu Z K 2025 Small Struct. 6 2400470
[20] Zhang X, Jin J, Zhu Y 2021 Membrane Sci. Technol. 43 148 (in Chinese) [张兴振, 靳健, 朱玉长2023膜科学与技术43 148]
[21] Lipowsky R 2018 J. Phys. Chem. B 122 3572
[22] Ceyhan U, Tiktaş A, Özdoğan M 2020 Colloid Interf. Sci. Commu. 35 100238
[23] Varnavides G, Mortensen A, Carter W C 2021 Acta Mater. 210 116831
[24] Chowdhury I U, Mahapatra P S, Sen A K 2021 Chem. Eng. Sci. 229 116136
[25] Goel S, Ramachandran A 2017 J. Colloid Interf. Sci. 492 199
[26] Izri Z, Van Der Linden M. N, Michelin S, Dauchot O 2014 Phys. Rev. Lett. 113 248302
[27] Blank M, Nair P, Pöschel T 2023 Comput. Method Appl. Mech. Eng. 406 115907
[28] Li C, Kim B, Yoon J, Sett S, Oh J 2024 Adv. Funct. Mater. 34 2308265
[29] Cassie A B D, Baxter S 1944 Trans. Faraday Society 40 546
[30] Ody T, Panth M, Sommers A D, Eid K F 2016 Langmuir 32 6967
[31] Wenzel R N 1936 Ind. Eng. Chem. 28 988
[32] Du Q, Zhou P, Pan Y, Qu X, Liu L, Yu H, Hou J 2022 Chem. Eng. Sci. 249 117327
[33] Chai G, Hu Y, Liu H, Li J, Yu J, Liu L, Su J 2024 Int. J. Multiphase Flow 172 104695
Metrics
- Abstract views: 60
- PDF Downloads: 1
- Cited By: 0